Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Samples and Isolation
2.2. DNA Preparation
2.3. Phylogenetic Groups
2.4. Genes of Virulence Factors
3. Results
3.1. Phylogenetic Grouping
3.2. The Occurrence of E. coli and Virulence Genes in Unpasteurized Cheese
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oliver, S.P.; Jayarao, B.M.; Almeida, R.A. Foodborne Pathogens in Milk and the Dairy Farm Environment: Food Safety and Public Health Implications. Foodborne Pathog. Dis. 2005, 2, 115–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ombarak, R.; Hinenoya, A.; Awasthi, S.P.; Iguchi, A.; Shima, A.; Elbagory, A.; Yamasaki, S. Prevalence and pathogenic potential of Escherichia coli isolates from raw milk and raw milk cheese in Egypt. Int. J. Food Microbiol. 2016, 221, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Lee, S.; Choi, K.-H. Microbial benefits and risks of raw milk cheese. Food Control 2016, 63, 201–215. [Google Scholar] [CrossRef]
- Ioanna, F.; Quaglia, N.C.; Storelli, M.; Castiglia, D.; Goffredo, E.; Storelli, A.; De Rosa, M.; Normanno, G.; Jambrenghi, A.C.; Dambrosio, A. Survival of Escherichia coli O157:H7 during the manufacture and ripening of Cacioricotta goat cheese. Food Microbiol. 2018, 70, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Cancino-Padilla, N.; De Chile, P.U.C.; Fellenberg, M.A.; Franco, W.; Ibáñez, R.A.; Vargas-Bello-Pérez, E. Foodborne bacteria in dairy products: Detection by molecular techniques. Cienc. E Investig. Agrar. 2017, 44, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.; Oudit, D.; Alexander, P. Enumeration of Escherichia coli O157 in Outbreak-Associated Gouda Cheese Made with Raw Milk. J. Food Prot. 2015, 78, 1733–1737. [Google Scholar] [CrossRef]
- Mccollum, J.T.; Williams, N.J.; Beam, S.W.; Cosgrove, S.; Ettestad, P.J.; Ghosh, T.S.; Kimura, A.C.; Nguyen, L.; Stroika, S.G.; Vogt, R.L.; et al. Multistate Outbreak of Escherichia coli O157:H7 Infections Associated with In-Store Sampling of an Aged Raw-Milk Gouda Cheese, 2010. J. Food Prot. 2012, 75, 1759–1765. [Google Scholar] [CrossRef]
- Kaper, J.B.; Nataro, J.P.; Mobley, H. Pathogenic Escherichia coli. Nat. Rev. Genet. 2004, 2, 123–140. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Köck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Dallman, T.; Cross, L.; Bishop, C.; Perry, N.; Olesen, B.; Grant, K.A.; Jenkins, C. Whole Genome Sequencing of an Unusual Serotype of Shiga Toxin–producingEscherichia coli. Emerg. Infect. Dis. 2013, 19, 1302–1304. [Google Scholar] [CrossRef]
- Brussow, H.; Canchaya, C.; Hardt, W.-D. Phages and the Evolution of Bacterial Pathogens: From Genomic Rearrangements to Lysogenic Conversion. Microbiol. Mol. Biol. Rev. 2004, 68, 560–602. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, N.; Ceniti, C.; Santoro, A.; Clausi, M.T.; Casalinuovo, F. Foodborne Pathogen Assessment in Raw Milk Cheeses. Int. J. Food Sci. 2020, 2020, 3616713. [Google Scholar] [CrossRef]
- O’Loughin, E. Escherichia coli O157:H7. Lancet 1997, 349, 1553. [Google Scholar] [CrossRef]
- European Food Safety Authority and European Centre for Disease Prevention and Control (EFSA and ECDC). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, e05500. [Google Scholar] [CrossRef]
- Aslam, M.; Toufeer, M.; Bravo, C.N.; Lai, V.; Rempel, H.; Manges, A.; Diarra, M.S. Characterization of Extraintestinal Pathogenic Escherichia coli isolated from retail poultry meats from Alberta, Canada. Int. J. Food Microbiol. 2014, 177, 49–56. [Google Scholar] [CrossRef]
- Nordstrom, L.; Liu, C.M.; Price, L.B. Foodborne urinary tract infections: A new paradigm for antimicrobial-resistant foodborne illness. Front. Microbiol. 2013, 4, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Russo, T.A. Extraintestinal pathogenic Escherichia coli: “The other bad E. coli”. J. Lab. Clin. Med. 2002, 139, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Singer, R.S. Urinary tract infections attributed to diverse ExPEC strains in food animals: Evidence and data gaps. Front. Microbiol. 2015, 6, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altalhi, A.D.; Hassan, S. Bacterial quality of raw milk investigated by Escherichia coli and isolates analysis for specific virulence-gene markers. Food Control 2009, 20, 913–917. [Google Scholar] [CrossRef]
- Paneto, B.; Schocken-Iturrino, R.; Macedo, C.; Santo, E.; Marin, J. Occurrence of toxigenic Escherichia coli in raw milk cheese in Brazil. Arq. Bras. Med. Vet. Zootec. 2007, 59, 508–512. [Google Scholar] [CrossRef]
- Bessède, E.; Angla-Gre, M.; Delagarde, Y.; Hieng, S.S.; Menard, A.; Mégraud, F. Matrix-Assisted laser-desorption/ionization BIOTYPER: Experience in the routine of a University hospital. Clin. Microbiol. Infect. 2011, 17, 533–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The ClermontEscherichia coliphylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2012, 5, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Lescat, M.; Clermont, O.; Woerther, P.L.; Glodt, J.; Dion, S.; Skurnik, D.; Djossou, F.; Dupont, C.; Perroz, G.; Picard, B.; et al. CommensalEscherichia colistrains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ. Microbiol. Rep. 2012, 5, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Stell, A. Extended Virulence Genotypes of Escherichia coli Strains from Patients with Urosepsis in Relation to Phylogeny and Host Compromise. J. Infect. Dis. 2000, 181, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewers, C.; Kieβling, S.; Wilking, H.; Kiebling, S.; Alt, K.; Antáo, E.-M.; Laturnus, C.; Diehl, I.; Glodde, S.; Homeier, T. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: How closely related are they? Int. J. Med. Microbiol. 2007, 297, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Le Bouguenec, C.; Archambaud, M.; Labigne, A. Rapid and specific detection of the pap, afa, and sfa adhesin-encoding operons in uropathogenic Escherichia coli strains by polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 1189–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozois, C.M.; Dho-Moulin, M.; Brée, A.; Fairbrother, J.M.; Desautels, C.; Curtiss, R. Relationship between the Tsh Autotransporter and Pathogenicity of Avian Escherichia coli and Localization and Analysis of the tsh Genetic Region. Infect. Immun. 2000, 68, 4145–4154. [Google Scholar] [CrossRef] [Green Version]
- Pass, M.A.; Odedra, R.; Batt, R.M. Multiplex PCRs for Identification of Escherichia coli Virulence Genes. J. Clin. Microbiol. 2000, 38, 2001–2004. [Google Scholar] [CrossRef] [Green Version]
- Holko, I.; Bisova, T.; Holkova, Z.; Kmet, V. Virulence markers of Escherichia coli strains isolated from traditional cheeses made from unpasteurised sheep milk in Slovakia. Food Control 2006, 17, 393–396. [Google Scholar] [CrossRef]
- Skočková, A.; Koláčková, I.; Kubelová, M.; Karpíšková, R. Shiga toxin-producing Escherichia coli (STEC) in the Czech Re-public: Characterization of pathogenic strains isolated from pig and cattle carcasses. J. Food Nutr. Res. 2017, 56, 362–371. [Google Scholar]
- Friedrich, A.W.; Bielaszewska, M.; Zhang, W.; Pulz, M.; Kuczius, T.; Ammon, A.; Karch, H. Escherichia coli Harboring Shiga Toxin 2 Gene Variants: Frequency and Association with Clinical Symptoms. J. Infect. Dis. 2002, 185, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panel, E.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18. [Google Scholar] [CrossRef]
- Morabito, S. Pathogenic Escherichia Coli: Molecular and Cellular Microbiology; Caister Academic Press: Norfolk, VA, USA, 2014; ISBN 9781908230379. [Google Scholar]
- Farrokh, C.; Jordan, K.; Auvray, F.; Glass, K.; Oppegaard, H.; Raynaud, S.; Thevenot, D.; Condron, R.; De Reu, K.; Govaris, A.; et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production. Int. J. Food Microbiol. 2013, 162, 190–212. [Google Scholar] [CrossRef]
- Guzman-Hernandez, R.; Contreras-Rodriguez, A.; Hernandez-Velez, R.; Perez-Martinez, I.; Lopez-Merino, A.; Zaidi, M.B.; Estrada-Garcia, T. Mexican unpasteurised fresh cheeses are contaminated with Salmonella spp., non-O157 Shiga toxin producing Escherichia coli and potential uropathogenic E. coli strains: A public health risk. Int. J. Food Microbiol. 2016, 237, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Garénaux, A.; Caza, M.; Dozois, C.M. The Ins and Outs of siderophore mediated iron uptake by extra-intestinal pathogenic Escherichia coli. Veter. Microbiol. 2011, 153, 89–98. [Google Scholar] [CrossRef]
- Sarowska, J.; Futoma-Kołoch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kostakioti, M.; Stathopoulos, C. Functional Analysis of the Tsh Autotransporter from an Avian Pathogenic Escherichia coli Strain. Infect. Immun. 2004, 72, 5548–5554. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Köhler, C.-D.; Dobrindt, U. What defines extraintestinal pathogenic Escherichia coli? Int. J. Med. Microbiol. 2011, 301, 642–647. [Google Scholar] [CrossRef]
- Tivendale, K.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.; Wannemuehler, Y.; Nolan, L.K. Avian-Pathogenic Escherichia coli Strains Are Similar to Neonatal Meningitis E. coli Strains and Are Able To Cause Meningitis in the Rat Model of Human Disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar] [CrossRef] [Green Version]
- Rúgeles, L.C.; Bai, J.; Martínez, A.J.; Vanegas, M.C.; Gómez-Duarte, O.G. Molecular characterization of diarrheagenic Escherichia coli strains from stools samples and food products in Colombia. Int. J. Food Microbiol. 2010, 138, 282–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene | Primer Sequence (5′3′) | Product | Tann | Reference |
---|---|---|---|---|
arpA | AACGCTATTCGCCAGCTTGC | 400 bp | 59 °C | [22] |
TCTCCCCATACCGTACGCTA | ||||
chuA | ATGGTACCGGACGAACCAAC | 288 bp | 59 °C | [22] |
TGCCGCCAGTACCAAAGACA | ||||
yjaA | CAAACGTGAAGTGTCAGGAG | 211 bp | 59 °C | [22] |
AATGCGTTCCTCAACCTGTG | ||||
tspE4.C4 | CACTATTCGTAAGGTCATCC | 152 bp | 59 °C | [22] |
AGTTTATCGCTGCGGGTCGC | ||||
ArpAgpE.f | GATTCCATCTTGTCAAAATATGCC | 301 bp | 57 °C | [23] |
GAAAAGAAAAAGAATTCCCAAGAG | ||||
trpAgpC.1 | AGTTTTATGCCCAGTGCGAG | 219 bp | 59 °C | [23] |
TCTGCGCCGGTCACGCCC | ||||
kps II | GCGCATTTGCTGATACTGTTG | 272 bp | 63 °C | [24] |
CATCCAGACGATAAGCATGAGCA | ||||
iss | ATCACATAGGATTCTGCCG | 700 bp | 61 °C | [25] |
ACAAAAAGTTCTATCGCTTCC | ||||
papC | GACGGCTGTACTGCAGGGTGTGGCG | 328 bp | 61 °C | [26] |
ATATCCTTTCTGCAGGGATGCAATA | ||||
cvaC | CACACACAAACGGGAGCTGTT | 680 bp | 63 °C | [24] |
CACACACAAACGGGAGCTGTT | ||||
tsh | GGTGGTGCACTGGAGTGG | 620 bp | 55 °C | [27] |
AGTCCAGCGTGATAGTGG | ||||
iutA | GGCTGGACATGGGAACTGG | 300 bp | 63 °C | [24] |
CGTCGGGAACGGGTAGAATCG | ||||
fyuA | TGATTAACCCCGCGACGGGAA | 880 bp | 55 °C | [24] |
CGCAGTAGGCACGATGTTGTA | ||||
stx1 | ACGTTACAGCGTGTTGCRGGGATC | 121 bp | 63 °C | [28] |
TTGCCACAGACTGCGTCAGTRAGG | ||||
stx2 | TGTGGCTGGGTTCGTTAATACGGC | 102 bp | 63 °C | [28] |
TCCGTTGTCATGGAAACCGTTGTC | ||||
eaeA | TGAGCGGCTGGCATGAGTCATAC | 241 bp | 63 °C | [28] |
TCGATCCCCATCGTCACCAGAGG | ||||
cnf1 | GGCGACAAATGCAGTATTGCTTGG | 552 bp | 63 °C | [28] |
GACGTTGGTTGCGGTAATTTTGGG |
Phylogenetic Groups | No. of Isolates/% of Occurrence (n = 92) | Distribution According to Gene Groupings (n) | Quadruplex Genotype and Next Step for C or E Phylogroup | |||||
arpA | chuA | yjaA | TspE4.C4 | ArpA for E Group | trpA for C Group | |||
Group A/C | 29/(32%) | 12 | + | |||||
17 | + | + | - | |||||
Group C | 13/(14%) | 13 | + | + | + | |||
Group B1 | 33/(36%) | 33 | + | + | ||||
Group D/E | 12/(13%) | 8 | + | + | + | - | ||
4 | + | + | - | |||||
Group E | 1/(1%) | 1 | + | + | + | + | ||
Group F | 4/(4%) | 4 | + |
Phylogenetic Groups | No. of Isolates/No. with Virulence Genes (% Virulent Strains) | Presence of Virulence Genes | ||||||||||
iss | cvaC | papC | iutA | tsh | fyuA | kpsII | stx1 | stx2 | eaeA | cnf1 | ||
Group A | 29/8 (27.6%) | 1 | 1 | 4 | 2 | 2 | ||||||
Group B1 | 33/18 (54.6%) | 4 | 3 | 5 | 1 | 6 | 3 | 2 | 3 | 2 | ||
Group C | 13/5 (38.5%) | 1 | 1 | 2 | 1 | 1 | 1 | 2 | ||||
Group D | 12/8 (66.6%) | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |||
Group E | 1/1 (100%) | 1 | ||||||||||
Group F | 4/3 (75%) | 1 | 1 | 2 | 1 | |||||||
TOTAL | 92/43 (46.7%) | 7 | 4 | 11 | 2 | 10 | 11 | 5 | 3 | 6 | 1 | 6 |
No. of Genes | Virulence Genes | No. of Isolates (n = 92) |
---|---|---|
1 | iss | 1 |
1 | cvaC | 1 |
1 | papC | 5 |
1 | iutA | 1 |
1 | tsh | 6 |
1 | fyuA | 6 |
2 | fyuA, cnf1 | 1 |
1 | cnf1 | 1 |
1 | kpsII | 2 |
3 | iss, cvaC, cnf1 | 1 |
2 | iss, papC | 1 |
2 | iss, cnf1 | 1 |
3 | iss, iutA, cnf1 | 1 |
2 | iss, fyuA | 1 |
3 | iss, cvaC, papC | 1 |
2 | tsh, fyuA | 1 |
2 | tsh, kpsII | 1 |
2 | tsh, stx2 | 2 |
2 | papC, cvaC | 1 |
2 | papC, kpsII | 1 |
2 | papC, stx1 | 1 |
2 | papC, stx2 | 1 |
2 | fyuA, kpsII | 1 |
2 | fyuA, stx2 | 1 |
1 | eaeA | 1 |
1 | stx1 | 1 |
1 | stx2 | 1 |
3 | stx1, stx2, cnf1 | 1 |
0 | No gene | 49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bujňáková, D.; Karahutová, L.; Kmeť, V. Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia. Microorganisms 2021, 9, 1808. https://doi.org/10.3390/microorganisms9091808
Bujňáková D, Karahutová L, Kmeť V. Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia. Microorganisms. 2021; 9(9):1808. https://doi.org/10.3390/microorganisms9091808
Chicago/Turabian StyleBujňáková, Dobroslava, Lívia Karahutová, and Vladimír Kmeť. 2021. "Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia" Microorganisms 9, no. 9: 1808. https://doi.org/10.3390/microorganisms9091808
APA StyleBujňáková, D., Karahutová, L., & Kmeť, V. (2021). Escherichia coli Specific Virulence-Gene Markers Analysis for Quality Control of Ovine Cheese in Slovakia. Microorganisms, 9(9), 1808. https://doi.org/10.3390/microorganisms9091808