Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Extraction of GBR Fermented with Different LAB Strains
2.2. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
2.3. Total Phenol Content
2.4. HPLC
2.5. Cell Culture and Viability Assay
2.6. β-Hexosaminidase Release Assay
2.7. Experimental Murine Model
2.8. Passive Cutaneous Anaphylaxis (PCA)
2.9. Hematoxylin and Eosin (H&E) Staining
2.10. Toluidine Blue Staining
2.11. Immunohistochemistry
2.12. Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)
2.13. Western Blot Analysis
2.14. Statistical Analysis
3. Results
3.1. Screening of LAB for Fermenting Germinated Brown Rice
3.2. Fermented GBR Decreased the Release of β-Hexosaminidase in IgE/Ag-Stimulated RBL-2H3
3.3. GBR-SP024 Decreased TNF-α and IL-4 mRNA Expression in IgE/Ag-Stimulated RBL-2H3 Cells
3.4. GBR-SP024 Inhibited the Activation of FcεRI and NF-kB Signaling Pathway Molecules in IgE/Ag-Stimulated RBL-2H3 Cells
3.5. GBR-SP024 Reduced IgE/Ag-Mediated PCA and Inflammatory Cell Infiltration in BALB/c Mice
3.6. Fermented GBR Suppressed Mast Cell Degranulation in the Ears of IgE/Ag-Stimulated BALB/c Mice
3.7. GBR-SP024 Decreased COX-2 and 5-LOX mRNA Expression in the Ear Tissues of IgE/Ag-Stimulated BALB/c Mice
3.8. Fermented GBR Decreased IL-33 and NF-κB Protein Expression in IgE/Ag-Stimulated BALB/c Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- De Korte-de Boer, D.; Mommers, M.; Gielkens-Sijstermans, C.M.L.; Creemers, H.M.H.; Mujakovic, S.; Feron, F.J.M.; van Schayck, O.C.P. Stabilizing prevalence trends of eczema, asthma and rhinoconjunctivitis in Dutch schoolchildren (2001-2010). Allergy 2015, 70, 1669–1673. [Google Scholar] [CrossRef]
- Gould, H.J.; Sutton, B.J. IgE in allergy and asthma today. Nat. Rev. Immunol. 2008, 8, 205–217. [Google Scholar] [CrossRef]
- Zand, L.; Monaghan, M.; Griffin, B.R.; Wagner, S.J.; Criaci, I.M.; Kamal, A.; Garovic, V.D. The role of type I hypersensitivity reaction and IgE-mediated mast cell activation in acute interstitial nephritis. Clin. Nephrol. 2015, 84, 138–144. [Google Scholar] [CrossRef]
- DuBuske, L.M. Review of desloratadine for the treatment of allergic rhinitis, chronic idiopathic urticaria and allergic inflammatory disorders. Expert Opin. Pharmacother. 2005, 6, 2511–2523. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Khan, M.K. Germinated brown rice as a value added rice product: A review. J. Food Sci. Technol. 2011, 48, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Hiroshi, C. Attraction of germinated brown rice and contribution to rice consumption expansion. In Proceedings of the Workshop and Conf on Rice in the World at Stake, Tokyo, Japan, 21–28 August 2005. [Google Scholar]
- Driscoll, K.; Deshpande, A.; Chapp, A.; Li, K.; Datta, R.; Ramakrishna, W. Anti-inflammatory and immune-modulating effects of rice callus suspension culture (RCSC) and bioactive fractions in an in vitro inflammatory bowel disease model. Phytomedicine 2018, 57, 364–376. [Google Scholar] [CrossRef]
- Fan, J.P.; Choi, K.M.; Han, G.D. Inhibitory effects of water extracts of fermented rice bran on allergic response. Food Sci. Biotechnol. 2010, 19, 1573–1578. [Google Scholar] [CrossRef]
- Kim, K.M.; Yu, K.W.; Kang, D.H.; Suh, H.J. Anti-stress and anti-fatigue effect of fermented rice bran. Phytother. Res. 2002, 16, 700–702. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.-Y.; Seo, Y.-K.; Park, J.-K.; Seo, M.-J.; Kim, J.-W.; Park, C.-S. Fermented Rice Bran Downregulates MITF Expression and Leads to Inhibition of α-MSH-Induced Melanogenesis in B16F1 Melanoma. Biosci. Biotechnol. Biochem. 2009, 73, 1704–1710. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kwon, H.-K.; Park, H.; Park, Y. Solid–state fermentation of germinated black bean (Rhynchosia nulubilis) using Lactobacillus pentosus SC65 and its immunostimulatory effect. Food Biosci. 2018, 26, 57–64. [Google Scholar] [CrossRef]
- Kwon, H.-K.; Song, M.-J.; Lee, H.-J.; Park, T.-S.; Kim, M.I.; Park, H.-J. Pediococcus pentosaceus-Fermented Cordyceps militaris Inhibits Inflammatory Reactions and Alleviates Contact Dermatitis. Int. J. Mol. Sci. 2018, 19, 3504. [Google Scholar] [CrossRef]
- Kwon, H.-K.; Park, H.-J. Phellinus linteus Grown on Germinated Brown Rice Inhibits IgE-Mediated Allergic Activity through the Suppression of FcεRI-Dependent Signaling Pathway In Vitro and In Vivo. Evid.-Based Complementary Altern. Med. 2019, 2019, 1485015. [Google Scholar] [CrossRef]
- Mitani, T.; Horinishi, A.; Kishida, K.; Kawabata, T.; Yano, F.; Mimura, H.; Ozaki, Y. Phenolics profile of mume, Japanese apricot (Prunus mume Sieb. et Zucc.) fruit. Biosci. Biotechnol. Biochem. 2013, 77, 1623–1627. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, T.H.; Lee, E.M.; Lee, M.H.; Lee, H.Y.; Chung, B.Y. Degradation of cyanidin-3-rutinoside and formation of protocatechuic acid methyl ester in methanol solution by gamma irradiation. Food Chem. 2014, 156, 312–318. [Google Scholar] [CrossRef]
- Jo, W.R.; Park, H.J. Antiallergic effect of fisetin on IgE-mediated mast cell activation in vitro and on passive cutaneous anaphylaxis (PCA). J. Nutr. Biochem. 2017, 48, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Park, H.-J. Anti-inflammatory effect of Phellinus linteus grown on germinated brown rice on dextran sodium sulfate-induced acute colitis in mice and LPS-activated macrophages. J. Ethnopharmacol. 2014, 154, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Park, N.K.; Choi, W.S.; Park, H.-J. Antiallergic Activity of Novel Isoflavone Methyl-glycosides from Cordyceps militaris Grown on Germinated Soybeans in Antigen-Stimulated Mast Cells. J. Agric. Food Chem. 2012, 60, 2309–2315. [Google Scholar] [CrossRef]
- Do, H.J.; Hwang, Y.J.; Yang, H.J.; Park, K.I. Effect of Rhus verniciflua extract on IgE-antigen-mediated allergic reaction in rat basophilic leukemic RBL-2H3 mast cells and passive cutaneous anaphylaxis in mice. Evid.-Based Complementary Altern. Med. 2019, 2019, 6497691. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, C.; Rupa, P.; Jiang, B.; Mine, Y. Inhibitory effects of Quillaja saponin on IgE-mediated degranulation of rat basophilic leukemia RBL-2H3 Cells. J. Funct. Foods 2012, 4, 864–871. [Google Scholar] [CrossRef]
- Qiao, H.; Andrade, M.V.; Lisboa, F.A.; Morgan, K.; Beaven, M.A. FcϵR1 and toll-like receptors mediate synergistic signals to markedly augment production of inflammatory cytokines in murine mast cells. Blood 2006, 107, 610–618. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Gordon, J.; Wershil, B.K. Cytokine production by mast cells and basophils. Curr. Opin. Immunol. 1991, 3, 865–873. [Google Scholar] [CrossRef]
- Yanes, D.A.; Mosser-Goldfarb, J.L. Emerging therapies for atopic dermatitis: The prostaglandin/leukotriene pathway. J. Am. Acad. Dermatol. 2018, 78, S71–S75. [Google Scholar] [CrossRef]
- Jo-Watanabe, A.; Okuno, T.; Yokomizo, T. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int. J. Mol. Sci. 2019, 20, 3580. [Google Scholar] [CrossRef]
- Li, X.; Lu, Y.; Yang, J.H.; Jin, Y.; Hwang, S.-L.; Chang, H.W. Natural Vanadium-Containing Jeju Groundwater Inhibits Immunoglobulin E-Mediated Anaphylactic Reaction and Suppresses Eicosanoid Generation and Degranulation in Bone Marrow Derived-Mast Cells. Biol. Pharm. Bull. 2012, 35, 216–222. [Google Scholar] [CrossRef]
- Paranjape, A.; Chernushevich, O.; Qayum, A.A.; Spence, A.J.; Taruselli, M.; Abebayehu, D.; Barnstein, B.O.; McLeod, J.J.A.; Baker, B.; Bajaj, G.S.; et al. Dexamethasone rapidly suppresses IL-33-stimulated mast cell function by blocking transcription factor activity. J. Leukoc. Biol. 2016, 100, 1395–1404. [Google Scholar] [CrossRef]
- Pushparaj, P.N.; Tay, H.K.; H’Ng, S.C.; Pitman, N.; Xu, D.; McKenzie, A.; Liew, F.Y.; Melendez, A.J. The cytokine interleukin-33 mediates anaphylactic shock. Proc. Natl. Acad. Sci. USA 2009, 106, 9773–9778. [Google Scholar] [CrossRef]
- Hsu, L.C.; Neilsen, C.V.; Bryce, P.J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS ONE 2010, 5, e11944. [Google Scholar] [CrossRef]
- Chan, B.C.L.; Lam, C.W.K.; Tam, L.-S.; Wong, C.K. IL33: Roles in Allergic Inflammation and Therapeutic Perspectives. Front. Immunol. 2019, 10, 364. [Google Scholar] [CrossRef]
- Min, Y.D.; Choi, C.H.; Bark, H.; Son, H.Y.; Park, H.H.; Lee, S.; Kim, S.H. Quercetin inhibits expression of inflammatory cytokines through attenuation of NF-κB and p38 MAPK in HMC-1 human mast cell line. Inflamm. Res. 2007, 56, 210–215. [Google Scholar] [CrossRef]
- Li, S.-C.; Lin, H.-P.; Chang, J.-S.; Shih, C.-K. Lactobacillus acidophilus-Fermented Germinated Brown Rice Suppresses Preneoplastic Lesions of the Colon in Rats. Nutrients 2019, 11, 2718. [Google Scholar] [CrossRef]
- Tian, S.; Nakamura, K.; Kayahara, H. Analysis of Phenolic Compounds in White Rice, Brown Rice, and Germinated Brown Rice. J. Agric. Food Chem. 2004, 52, 4808–4813. [Google Scholar] [CrossRef]
- Nisa, K.; Rosyida, V.T.; Nurhayati, S.; Indrianingsih, A.W.; Darsih, C.; Apriyana, W. Total phenolic contents and antioxidant activity of rice bran fermented with lactic acid bacteria. IOP Conf. Ser. Earth Environ. Sci. 2019, 251. [Google Scholar] [CrossRef]
- Srinivasan, M.; Sudheer, A.R.; Menon, V.P. Ferulic Acid: Therapeutic Potential Through Its Antioxidant Property. J. Clin. Biochem. Nutr. 2007, 40, 92–100. [Google Scholar] [CrossRef]
- Brugiolo, A.S.S.; Gouveia, A.C.C.; Alves, C.C.D.S.; Silva, F.M.D.C.E.; De Oliveira, E.; Ferreira, A.P. Ferulic acid supresses Th2 immune response and prevents remodeling in ovalbumin-induced pulmonary allergy associated with inhibition of epithelial-derived cytokines. Pulm. Pharmacol. Ther. 2017, 45, 202–209. [Google Scholar] [CrossRef]
- Oka, T.; Fujimoto, M.; Nagasaka, R.; Ushio, H.; Hori, M.; Ozaki, H. Cycloartenyl ferulate, a component of rice bran oil-derived γ-oryzanol, attenuates mast cell degranulation. Phytomedicine 2010, 17, 152–156. [Google Scholar] [CrossRef]
- Sierra, S.; Lara-Villoslada, F.; Olivares, M.; Jimenez, J.C.; Boza, J.; Xaus, J. Increased immune response in mice consuming rice bran oil. Eur. J. Nutr. 2005, 44, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Chu, X.; Jiang, L.; Yang, X.; Cai, Q.; Zheng, C.; Ci, X.; Guan, M.; Liu, J.; Deng, X. Protocatechuic Acid Attenuates Lipolysaccharide-Induced Acute Lung Injury. Inflammation 2012, 35, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Hwang, Y.R.; Kim, M.S.; Chung, M.S.; Kim, Y.-S. Comparison of Volatile and Nonvolatile Compounds in Rice Fermented by Different Lactic Acid Bacteria. Molecules 2019, 24, 1183. [Google Scholar] [CrossRef] [PubMed]
- Ashina, K.; Tsubosaka, Y.; Nakamura, T.; Omori, K.; Kobayashi, K.; Hori, M.; Ozaki, H.; Murata, T. Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo. PLoS ONE 2015, 10, e0132367. [Google Scholar] [CrossRef] [PubMed]
- Donaghy, J.; Kelly, P.F.; McKay, A.M. Detection of ferulic acid esterase production by Bacillus spp. and lactobacilli. Appl. Microbiol. Biotechnol. 1998, 50, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Kalesnikoff, J.; Galli, S.J. New developments in mast cell biology. Nat. Immunol. 2008, 9, 1215–1223. [Google Scholar] [CrossRef]
- Roth, K.; Chen, W.-M.; Lin, T.-J. Positive and negative regulatory mechanisms in high-affinity IgE receptor-mediated mast cell activation. Arch. Immunol. et Ther. Exp. 2008, 56, 385–399. [Google Scholar] [CrossRef]
- Barbu, E.A.; Zhang, J.; Siraganian, R.P. The Limited Contribution of Fyn and Gab2 to the High Affinity IgE Receptor Signaling in Mast Cells. J. Biol. Chem. 2010, 285, 15761–15768. [Google Scholar] [CrossRef]
- Patil, S.U.; Shreffler, W.G. Immunology in the Clinic Review Series; focus on allergies: Basophils as biomarkers for assessing immune modulation. Clin. Exp. Immunol. 2011, 167, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Chu, X.; Guan, M.; Yang, X.; Xie, X.; Liu, F.; Chen, C.; Deng, X. Protocatechuic acid suppresses ovalbumin-induced airway inflammation in a mouse allergic asthma model. Int. Immunopharmacol. 2013, 15, 780–788. [Google Scholar] [CrossRef]
- Zhang, X.; Li, C.; Li, J.; Xu, Y.; Guan, S.; Zhao, M. Protective effects of protocatechuic acid on acute lung injury induced by lipopolysaccharide in mice via p38MAPK and NF-κB signal pathways. Int. Immunopharmacol. 2015, 26, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.J.; Koo, H.N.; Na, H.J.; Kim, M.S.; Hong, S.H.; Eom, J.W.; Kim, H.M. Inhibition of TNF-α and IL-6 production by aucubin through blockade of NF-κB activation in RBL-2H3 mast cells. Cytokine 2002, 18, 252–259. [Google Scholar] [CrossRef]
- Passante, E.; Ehrhardt, C.; Sheridan, H.; Frankish, N. RBL-2H3 cells are an imprecise model for mast cell mediator release. Inflamm. Res. 2009, 58, 611–618. [Google Scholar] [CrossRef]
- Nishi, K.; Kanayama, Y.; Kim, I.H.; Nakata, A.; Nishiwaki, H.; Sugahara, T. Docosahexaenoyl ethanolamide mitigates IgE-mediated allergic reactions by inhibiting mast cell degranulation and regulating allergy-related immune cells. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Stone, D.K.; Prussin, C.; Metcalfe, D.D. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 2010, 125, S73–S80. [Google Scholar] [CrossRef]
- Mekori, Y.A.; Metcalfe, D.D. Mast cells in innate immunity. Immunol. Rev. 2000, 173, 131–140. [Google Scholar] [CrossRef]
- Iwasaki, M.; Saito, K.; Takemura, M.; Sekikawa, K.; Fujii, H.; Yamada, Y.; Wada, H.; Mizuta, K.; Seishima, M.; Ito, Y. TNF-α contributes to the development of allergic rhinitis in mice. J. Allergy Clin. Immunol. 2003, 112, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Wedemeyer, J.; Tsai, M.; Galli, S.J. Roles of mast cells and basophils in innate and acquired immunity. Curr. Opin. Immunol. 2000, 12, 624–631. [Google Scholar] [CrossRef]
- Coffman, R.L.; Carty, J. A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-gamma. J. Immunol. 1986, 136, 949–954. [Google Scholar]
- Burton, O.T.; Oettgen, H.C. Beyond immediate hypersensitivity: Evolving roles for IgE antibodies in immune homeostasis and allergic diseases. Immunol. Rev. 2011, 242, 128–143. [Google Scholar] [CrossRef]
- Gibbs, B.F. Human basophils as effectors and immunomodulators of allergic inflammation and innate immunity. Clin. Exp. Med. 2005, 5, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Wang, C.C.; Huang, H.M.; Lin, C.L.; Leu, S.J.; Lee, Y.L. Ferulic acid induces Th1 responses by modulating the function of dendritic cells and ameliorates Th2-mediated allergic airway inflammation in mice. Evid.-Based Complementary Altern. Med. 2015, 2015, 678487. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, X.; Vikash, V.; Ye, Q.; Wu, D.; Liu, Y.; Dong, W. ROS and ROS-mediated cellular signaling. Oxidative Med. Cell. Longev. 2016, 2016, 4350965. [Google Scholar] [CrossRef]
- Claar, D.; Hartert, T.V.; Peebles, R.S. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev. Respir. Med. 2014, 9, 55–72. [Google Scholar] [CrossRef]
- Nakajima, S. Resveratrol inhibits IL-33–mediated mast cell activation by targeting the MK2/3–PI3K/Akt axis. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Ding, W.; Zou, G.-L.; Zhang, W.; Lai, X.-N.; Chen, H.-W.; Xiong, L.-X. Interleukin-33: Its Emerging Role in Allergic Diseases. Molecules 2018, 23, 1665. [Google Scholar] [CrossRef] [PubMed]
- Min, S.-W.; Ryu, S.-N.; Kim, D.-H. Anti-inflammatory effects of black rice, cyanidin-3-O-β-d-glycoside, and its metabolites, cyanidin and protocatechuic acid. Int. Immunopharmacol. 2010, 10, 959–966. [Google Scholar] [CrossRef] [PubMed]
No | Strain | DPPH Activity (%) |
---|---|---|
1 | Leuconostoc lactis S-Per.s12 | 64.0 ± 2.9 $$$ |
2 | Pediococcus pentosaceus SC7 | 78.0 ± 1.5 |
3 | Lactobacillus paraplantarum SC61 | 67.6 ± 3.2 $$$ |
4 | Weisella kimchii Bro14 | 73.9 ± 13.3 |
5 | Leuconostoc lactis S.Pum21 | 62.4 ± 4.0 $$ |
6 | Pediococcus pentosaceus ON-30A | 53.8 ± 2.3 $$$ |
7 | Pediococcus pentosaceus GO008 | 82.0 ± 2.8 $$$ |
8 | Pediococcus pentosaceus SP-024 | 86.7 ± 2.7 |
Positive control | DPPH activity (%) | |
Ascorbic acid | 81.1 ± 2.1 |
Compound | Liquid Culture | Solid Culture | ||
---|---|---|---|---|
GBR | GBR-SP024 | GBR | GBR-SP024 | |
protocatechuic acid (mg/100 g) | 0.1 ± 0.00 | 0.3 ± 0.0 ** | not detecable | not detecable |
trans-ferulic acid (mg/100 g) | 23.2 ± 0.7 | 28.75 ± 0.8 *** | 20.4 ± 0.7 | 22.9 ± 0.2 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhong, K.-R.; Park, H.-J. Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models. Microorganisms 2021, 9, 1855. https://doi.org/10.3390/microorganisms9091855
Dhong K-R, Park H-J. Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models. Microorganisms. 2021; 9(9):1855. https://doi.org/10.3390/microorganisms9091855
Chicago/Turabian StyleDhong, Kyu-Ree, and Hye-Jin Park. 2021. "Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models" Microorganisms 9, no. 9: 1855. https://doi.org/10.3390/microorganisms9091855
APA StyleDhong, K.-R., & Park, H.-J. (2021). Pediococcus Pentosaceus from the Sweet Potato Fermented Ger-Minated Brown Rice Can Inhibit Type I Hypersensitivity in RBL-2H3 Cell and BALB/c Mice Models. Microorganisms, 9(9), 1855. https://doi.org/10.3390/microorganisms9091855