Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Probiotics ProbioHumus and NaturGel
2.3. Determination of the Active Probiotic Concentration
2.4. Small Plot Field Experiments
2.5. Large Plot Field Experiments
2.6. Carrot Crop Yield Quality Determination
2.6.1. Sample Preparation
2.6.2. Quantitative Analysis of Monosaccharides
2.6.3. Determination of Total Carotenoids
2.6.4. Determination of Ascorbic Acid
2.6.5. Determination of Total Phenols
2.6.6. Evaluation of Antioxidant Activity
2.6.7. Determination of Nitrate Concentration
2.7. Statistical Analysis
3. Results
3.1. Morphometric Parameters of Carrots under Controlled Conditions
3.2. Morphometric Parameters of Carrots from Small Plots
3.3. Morphometric Parameters of Carrots from Large Plots
3.4. Monosaccharide Content
3.5. Total Carotenoid Content
3.6. Ascorbic Acid Content
3.7. Total Phenolic Content
3.8. Antioxidant Activity
3.9. Nitrate Content
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dresbøll, D.B.; Bjørn, G.K.; Thorup-Kristensen, K. Yields and the extent and causes of damage in cauliflower, bulb onion and carrot grown under organic or conventional regimes. J. Hortic. Sci. Biotehnol. 2008, 83, 770–776. [Google Scholar] [CrossRef]
- Bender, I.; Edesi, L.; Hiiesalu, I.; Ingver, A.; Kaart, T.; Kaldmäe, H.; Talve, T.; Tamm, I.; Luik, A. Organic carrot (Daucus carota L.) production has an advantage over conventional in quantity as well as in quality. Agronomy 2020, 10, 1420. [Google Scholar] [CrossRef]
- Mejía-Teniente, L.; Torres-Pacheco, I.; González-Chavira, M.M.; Ocampo-Velazquez, R.V. Use of elicitors as an approach for sustainable agriculture. Afr. J. Biotechnol. 2010, 9, 9155–9162. [Google Scholar]
- Posmyk, M.M.; Szafrańska, K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 2016, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Gómez, A.; Celador-Lera, L.; Fradejas-Bayón, M.; Rivas, R. Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol. 2017, 3, 483–501. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulant: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- García-Fraile, P.; Menéndez, E.; Celador-Lera, L.; Díez-Méndez, A.; Jiménez-Gómez, A.; Marcos-García, M.; Cruz-González, X.A.; Martínez-Hidalgo, P.; Mateos, P.F.; Rivas, R. Bacterial Probiotics: A truly green revolution. In Probiotics and Plant Health, 1st ed.; Kumar, V., Kumar, M., Sharma, S., Prasad, R., Eds.; Springer: Singapore, 2017; pp. 131–162. [Google Scholar]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [Green Version]
- Caris-Veyrat, C.; Amiot, M.J.; Tyssandier, V.; Grasselly, D.; Buret, M.; Mikolajczak, M.; Bouteloup-Demange, C.; Borel, P. Influence of organic versus conventional agricultural practice on the antioxidant microconstituent content of tomatoes and derived purees; consequences on antioxidant plasma status in humans. J. Agric. Food Chem. 2004, 52, 6503–6509. [Google Scholar] [CrossRef]
- Luthria, D.; Singh, A.P.; Wilson, T.; Vorsa, N.; Banuelos, G.S.; Vinyard, B.T. Influence of conventional and organic agricultural practices on the phenolic content in eggplant pulp: Plant-to-plant variation. Food Chem. 2010, 121, 406–411. [Google Scholar] [CrossRef]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Lamuela-Raventos, R.M. Is there any difference between the phenolic content of organic and conventional tomato juices? Food Chem. 2012, 130, 222–227. [Google Scholar] [CrossRef]
- Hashem, A.; Tabassum, B.; FathiAbd-Allah, E. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Søltoft, M.; Bysted, A.; Madsen, K.H.; Mark, A.B.; Bügel, S.G.; Nielsen, J.; Knuthsen, P. Effects of organic and conventional growth systems on the content of carotenoids in carrot roots, and on intake and plasma status of carotenoids in humans. J. Sci. Food Agric. 2011, 91, 767–775. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higa, T.; Parr, J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment, 1st ed.; International Nature Farming Research Center: Atami, Japan, 1994; pp. 1–16. [Google Scholar]
- De Souza Vandenberghe, L.P.; Garcia, L.; Rodrigues, C.; Camara, M.C.; de Melo Pereira, G.V.; de Oliveira, J.; Soccol, C.R. Potential applications of plant probiotic microorganisms in agriculture and forestry. AIMS Microbiol. 2017, 3, 629–648. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, D.; Ansari, M.; Sahoo, R.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by imp roving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 2014, 13, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, K.A.A.; Tawfik, S.T. Response of sugar beet plant (Beta vulgaris L.) to mineral nitrogen fertilization and bio-fertilizers. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 677–688. [Google Scholar]
- Minikayev, R.; Gaffarova, L. The effect of bacterial preparations on the growth, development and quality indicators of sugar beet yield. BIO Web Conf. 2020, 17, 00250. [Google Scholar] [CrossRef] [Green Version]
- Bona, E.; Cantamessa, S.; Massa, N.; Manassero, P.; Marsano, F.; Copetta, A.; Lingua, G.; D’Agostino, G.; Gamalero, E.; Berta, G. Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: A field study. Mycorrhiza 2017, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Zhu, T.B.; Teng, M.J.; Chen, Y.; Liu, M.Q.; Hu, F.; Li, H.X. Effects of interaction between vermicompost and probiotics on soil property, yield and quality of tomato. J. Appl. Ecol. 2016, 27, 484–490. [Google Scholar]
- Gül, A.; Kidoglu, F.; Tüzel, Y. Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Span. J. Agric. Res. 2008, 6, 422–429. [Google Scholar] [CrossRef]
- Grabowska, A.; Kunicki, E.; Sękara, A.; Kalisz, A.; Wojciechowska, R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg. Crops Res. Bull. 2012, 77, 37–48. [Google Scholar] [CrossRef]
- Pobereżny, J.; Szczepanek, M.; Wszelaczyńska, E.; Prus, P. The quality of carrot after field biostimulant application and after storage. Sustainability 2020, 12, 1386. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Hamauzu, Y. Phenolic compounds and their antioxidant properties in different tissues of carrots (Daucus carota L.). J. Food Agric. Environ. 2004, 2, 95–100. [Google Scholar]
- Surjadinata, B.B.; Cisneros-Zevallos, L. Biosynthesis of phenolic antioxidants in carrot tissue increases with wounding intensity. Food Chem. 2012, 134, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Lada, R.; Stiles, A.; Surette, M.A.; Caldwell, C.; Nowak, J.; Sturz, A.V.; Blake, T.J. Stand establishment technologies for processing carrots. Acta Hortic. 2004, 631, 105–116. [Google Scholar] [CrossRef]
- Singh, D.P.; Beloy, J.; McInerney, J.K.; Day, L. Impact of boron, calcium and genetic factors on vitamin C, carotenoids, phenolic acids, anthocyanins and antioxidant capacity of carrots (Daucus carota). Food Chem. 2012, 132, 1161–1170. [Google Scholar] [CrossRef] [PubMed]
- Agbede, T.M.; Adekiya, A.O.; Eifediyi, E.K. Impact of poultry manure and NPK fertilizer on soil physical properties and growth and yield of carrot. J. Hortic. Res. 2017, 25, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Mackevičius, J.; Novickienė, L.; Pudanaitė, J. The effect of physiological analogues of auxin on growth and development of some cruciferous plants. Biologija 1999, 1, 53–56. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants. BBCH Monograph, 2nd ed.; Federal Biological Research Centre for Agriculture and Forestry: Bonn, Germany, 2001; pp. 115–117. [Google Scholar]
- Kerr, P.S.; Rufy, T.W.; Huber, S.C. Changes in nonstructural carbohydrates in different parts of soybean (Glycine max [L.] Merr.) plants during a light/dark cycle and in extended darkness. Plant Physiol. 1985, 78, 576–581. [Google Scholar] [CrossRef] [Green Version]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Chakraborthy, G. Quantitative estimation of ascorbic acid by HPTLC indifferent varieties of amla. J. Young Pharm. 2009, 1, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Liebert, M.; Licht, U.; Böhm, V.; Bitsch, R. Antioxidant properties and total phenolics content of green and black tea under different brewing conditions. Z. Lebensm. Unters Forsch. 1999, 208, 217–220. [Google Scholar] [CrossRef]
- Hudz, N.; Yezerska, O.; Shanaida, M.; Horčinová-Sedláčková, V.; Wieczorek, P.P. Application of the Folin-Ciocalteu method to the evaluation of Salvia sclarea extracts. Pharmacia 2019, 66, 209–215. [Google Scholar] [CrossRef]
- Coklar, H.; Akbulut, M. Anthocyanins and phenolic compounds of Mahonia aquifolium berries and their contributions to antioxidant activity. J. Funct. Foods 2017, 35, 166–174. [Google Scholar] [CrossRef]
- Merino, L. Development and validation of a method for determination of residual nitrite/nitrate in foodstuffs and water after zinc reduction. Food Anal. Methods 2009, 2, 212–220. [Google Scholar] [CrossRef]
- Cocetta, G.; Ferrante, A. Nutritional and nutraceutical value of vegetable crops as affected by biostimulants Application. In eLS; Wiley: Chichester, UK, 2020. [Google Scholar] [CrossRef]
- Young, C.-C.; Shen, F.T.; Singh, S. Strategies for the exploration and development of biofertilizer. In Bacteria in Agrobiology: Plant Probiotics, 1st ed.; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 127–139. [Google Scholar]
- García-Fraile, P.; Menéndez, E.; Rivas, R. Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng. 2015, 2, 183–205. [Google Scholar] [CrossRef]
- Jiménez-Gómez, A.; García-Fraile, P.; Flores-Félix, J.D.; Rivas, R. Plants probiotics as a tool to produce highly functional fruits. PLoS ONE 2015, 10, e0122281. [Google Scholar]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant biostimulant regulatory framework: Prospects in Europe and current situation at international level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- Khan, S.; Yu, H.-J.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Lucini, L.; Miras-Moreno, B.; Colla, G.; Bonini, P.; Cardarelli, M. Metabolomic responses of maize shoots and roots elicited by combinatorial seed treatments with microbial and non-microbial biostimulants. Front. Microbiol. 2020, 11, 664. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Lesur-Dumoulin, C.; Malézieux, E.; Ben-Ari, T.; Langlais, C.; Makowski, D. Lower average yields but similar yield variability in organic versus conventional horticulture. A meta-analysis. Agron. Sustain. Dev. 2017, 37, 45. [Google Scholar] [CrossRef] [Green Version]
- Scharma, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; van der Putten, W.H. Crop yield cap and stability in organic and conventional farming system. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Wszelaczynska, E.; Szczepanek, M.; Poberezny, J.; Kazula, M. Effect of biostimulant application and long-term storage on the nutritional value of carrot. Hortic. Bras. 2019, 37, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Sharma, H.S.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Carillo, P.; Ciarmiello, L.F.; Woodrow, P.; Corrado, G.; Chiaiese, P.; Rouphael, Y. Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology 2020, 9, 253. [Google Scholar] [CrossRef]
- Barone, V.; Baglieri, A.; Stevanato, P.; Broccanello, C.; Bertoldo, G.; Bertaggia, M.; Cagnin, M.; Pizzeghello, D.; Moliterni, V.M.C.; Mandolino, G.; et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 2018, 30, 1061–1071. [Google Scholar] [CrossRef]
- Sharma, K.D.; Karki, S.; Thakur, N.S.; Attri, S. Chemical composition, functional properties and processing of carrot—A review. J. Food Sci. Technol. 2012, 49, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Basak, A. Biostimulators—Definitions, classification and legislation. In Biostimulators in Modern Agriculture: General Aspects; Gawrońska, H., Ed.; Wieś Jutra: Warsaw, Poland, 2008; pp. 7–17. [Google Scholar]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. Hort. Sci. 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G.; Graziani, G.; Ritieni, A.; Cardarelli, M.; De Pascale, S. Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. Food Chem. 2017, 234, 10–19. [Google Scholar] [CrossRef]
- Rahman, M.; Sabir, A.A.; Mukta, J.A.; Khan, M.A.; Mohi-Ud-Din, M.; Miah, G.; Rahman, M.; Islam, M.T. Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci. Rep. 2018, 8, 2504. [Google Scholar] [CrossRef] [Green Version]
- Arscott, S.A.; Tanumihardjo, S.H. Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr. Rev. Food Sci. Food Saf. 2010, 9, 223–239. [Google Scholar] [CrossRef]
- Gajewski, M.; Węglarz, Z.; Sereda, A.; Bajer, M.; Kuczkowska, A.; Majewski, M. Carotenoid accumulation by carrot storage roots in relation to nitrogen fertilization level. Not. Bot. Hort. Agrobot. Cluj 2010, 38, 71–75. [Google Scholar]
- Chandrasekaran, M.; Chun, S.C.; Oh, J.-W.; Paramasivan, M.; Saini, R.K.; Sahayarayan, J.J. Bacillus subtilis CBR05 for tomato (Solanum lycopersicum) fruits in South Korea as a novel plant probiotic bacterium (PPB): Implications from total phenolics, flavonoids, and carotenoids content for fruit quality. Agronomy 2019, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Wszelaczyńska, E.; Pobereżny, J. Effect of foliar magnesium fertilisation and storage on some parameters of the nutritive value of carrot storage roots. J. Elementol. 2011, 16, 635–649. [Google Scholar]
- Przybysz, A.; Wrochna, M.; Słowiński, A.; Gawrońska, H. Stimulatory effect of Asahi SL on selected plant species. Acta Sci. Pol. Hortorum Cultus 2010, 9, 53–64. [Google Scholar]
- Kwiatkowski, C.A.; Kołodziej, B.; Woźniak, A. Yield and quality parameters of carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. Acta Sci. Pol. Hortorum Cultus 2013, 12, 55–68. [Google Scholar]
- Dawid, C.; Dunemann, F.; Schwab, W.; Nothnagel, T.; Hofmann, T. Bioactive C 17-Polyacetylenes in carrots (Daucus carota L.): Current knowledge and future perspectives. J. Agric. Food Chem 2015, 63, 9211–9222. [Google Scholar] [CrossRef] [PubMed]
- Keser, D.; Gamze, G.; Kelebek, H.; Keksin, M.; Soysal, Y.; Sekerli, Y.E.; Arslan, A.; Selli, S. Characterization of aroma and phenolic composition of carrot (Daucus carota ‘Nantes’) powders obtained from intermittent microwave drying using GC-MS and LC-MS/MS. Food Bioprod. Process. 2020, 119, 350–359. [Google Scholar] [CrossRef]
- Dong, R.; Yu, Q.; Liao, W.; Liu, S.; He, Z.; Hu, X.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chem. 2021, 339, 127879. [Google Scholar] [CrossRef] [PubMed]
- Karkleliene, R.; Radzevicius, A.; Bobinas, C. Productivity and root-crop quality of Lithuanian carrot (Daucus sativus Rohl.) breeder lines. Proc. Latv. Acad. Sci. Sect. B 2009, 63, 63–65. [Google Scholar] [CrossRef] [Green Version]
- Wierzbowska, J.; Cwalina-Ambroziak, B.; Głosek-Sobieraj, M.; Sienkiewicz, S. Yield and mineral content of edible carrot depending on cultivation and plant protection methods. Acta Sci. Pol. Hortorum Cultus 2017, 16, 75–86. [Google Scholar]
- Smolen, S.; Sady, W.; Ledwozyw-Smolen, I.; Strzetelski, P.; Liszka-Skoczylas, M.; Rozek, S. Quality of fresh and stored carrots depending on iodine and nitrogen fertilization. Food Chem. 2014, 159, 316–322. [Google Scholar] [CrossRef] [PubMed]
Treatment (1 mL/100 mL) | Average Mass (g) | Average Length (cm) | Average Width (cm) | |
---|---|---|---|---|
Fresh | Dry | |||
Control (H2O) | 3.64 ± 0.28 a | 0.31 ± 0.02 a | 3.19 ± 0.29 a | 1.31 ± 0.10 a |
NaturGel | 3.52 ± 0.31 a | 0.33 ± 0.03 a | 3.19 ± 0.30 a | 1.29 ± 0.12 a |
ProbioHumus | 3.68 ± 0.20 a | 0.35 ± 0.04 a | 3.91 ± 0.40 b | 1.41 ± 0.11 b |
ProbioHumus + NaturGel | 4.12 ± 0.35 b | 0.40 ± 0.02 b | 4.40 ± 0.41 bc | 1.72 ± 0.14 bc |
Treatment (2 mL/100 mL) | ||||
NaturGel | 3.73 ± 0.29 a | 0.32 ± 0.02 a | 4.59 ± 0.41 b | 1.43 ± 0.11 b |
ProbioHumus | 4.02 ± 0.22 b | 0.43 ± 0.02 b | 5.75 ± 0.48 bc | 1.82 ± 0.20 c |
ProbioHumus + Naturgel | 4.92 ± 0.43 c | 0.51 ± 0.04 bc | 6.32 ± 0.51 c | 2.12 ± 0.18 c |
Treatment (4 mL/100 mL) | ||||
NaturGel | 3.61 ± 0.40 a | 0.31 ± 0.03 a | 4.12 ± 0.42 b | 1.38 ±0.15 b |
ProbioHumus | 4.12 ± 0.33 b | 0.44 ± 0.05 b | 5.80 ± 0.60 bc | 1.85 ± 0.20 c |
ProbioHumus + Naturgel | 4.83 ± 0.43 bc | 0.48 ± 0.04 bc | 6.41 ± 0.58 c | 2.01 ± 0.16 c |
Treatment | Average Mass (g) | Average Length (cm) | Average Width (cm) | |
---|---|---|---|---|
Organic | Fresh | Dry | ||
Control | 100.65 ± 8.7 c | 11.32 ± 1.0 c | 15.12 ± 1.4 a | 2.74 ± 0.21 c |
ProbioHumus | 94.67 ± 8.5 c | 10.54 ± 0.9 c | 17.41 ± 2.1 b | 2.67 ± 0.28 c |
ProbioHumus + NaturGel | 112.93 ± 10.3 d | 11.75 ± 0.9 c | 18.44 ± 1.8 b | 2.93 ± 0.31 cd |
Nonorganic | ||||
Control | 125.79 ± 10.2 a | 13.01 ± 0.51 a | 17.63 ± 1.5 a | 3.21 ± 0.22 a |
ProbioHumus | 136.90 ± 9.8 b | 13.89 ± 0.66 b | 15.87 ± 1.3 b | 3.85 ± 0.31 b |
ProbioHumus + Naturgel | 136.13 ± 10.1 b | 13.80 ± 0.71 b | 18.14 ± 1.7 a | 3.53 ± 0.31 ab |
Treatment | Average Mass (g) | Average Length (cm) | Average Width (cm) | |
---|---|---|---|---|
Organic | Fresh | Dry | ||
Control | 80.8 ± 2.4 a | 8.97 ± 0.03 a | 17.1 ± 0.2 bc | 2.7 ± 0.1 a |
ProbioHumus | 97.2 ± 4.8 b | 11.08 ± 0.03 b | 17.6 ± 0.1 ab. | 2.7 ± 0.1 a |
ProbioHumus + NaturGel | 88.5 ± 3.5 ab | 9.66 ± 0.03 ab | 18.1 ± 0.3 c | 2.8 ± 0.1 a |
Nonorganic | ||||
Control | 95.3 ± 2.5 b | 14.01 ± 0.09 c | 15.1 ± 0.5 a | 2.9 ± 0.1 b |
ProbioHumus | 115.5 ± 3.8 c | 15.60 ± 0.04 d | 17.4 ± 0.6 bc | 2.9 ± 0.3 b |
ProbioHumus + Naturgel | 97.5 ± 5.4 b | 14.42 ± 0.06 c | 18.4 ± 0.3 c | 2.6 ± 0.1 a |
Treatment | Monosaccharides (mg/g FM) |
---|---|
Organic | |
Control | 5.13 ± 0.31 a |
ProbioHumus | 6.08 ± 0.57 ab |
ProbioHumus + NaturGel | 6.81 ± 0.62 b |
Nonorganic | |
Control | 4.83 ± 0.38 a |
ProbioHumus | 5.76 ± 0.44 ab |
ProbioHums + NaturGel | 6.07 ± 0.53 b |
Treatment | Ascorbic Acid (μg/g FM) |
---|---|
Organic | |
Control | 41.32 ± 0.40 a |
ProbioHumus | 47.62 ± 0.38 b |
ProbioHumus + NaturGel | 45.70 ± 0.40 b |
Nonorganic | |
Control | 47.41 ± 0.40 b |
ProbioHumus | 53.59 ± 0.51 bc |
ProbioHumus + NaturGel | 62.57 ± 0.58 c |
Treatment | Total phenolics (GAE μg/g) |
---|---|
Organic | |
Control | 87.98 ± 5.0 a |
ProbioHumus | 82.46 ± 8.1 a |
ProbioHumus + NaturGel | 97.33 ± 7.1 b |
Nonorganic | |
Control | 90.66 ± 5.4 a |
ProbioHumus | 104.60 ± 7.8 b |
ProbioHums + NaturGel | 88.23 ± 8.1 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gavelienė, V.; Šocik, B.; Jankovska-Bortkevič, E.; Jurkonienė, S. Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops. Microorganisms 2021, 9, 1850. https://doi.org/10.3390/microorganisms9091850
Gavelienė V, Šocik B, Jankovska-Bortkevič E, Jurkonienė S. Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops. Microorganisms. 2021; 9(9):1850. https://doi.org/10.3390/microorganisms9091850
Chicago/Turabian StyleGavelienė, Virgilija, Božena Šocik, Elžbieta Jankovska-Bortkevič, and Sigita Jurkonienė. 2021. "Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops" Microorganisms 9, no. 9: 1850. https://doi.org/10.3390/microorganisms9091850
APA StyleGavelienė, V., Šocik, B., Jankovska-Bortkevič, E., & Jurkonienė, S. (2021). Plant Microbial Biostimulants as a Promising Tool to Enhance the Productivity and Quality of Carrot Root Crops. Microorganisms, 9(9), 1850. https://doi.org/10.3390/microorganisms9091850