Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Sampling, RNA Extraction and cDNA Synthesis
2.2. High-Throughput Sequencing of Fungal GH11 Expressed Genes and Full-Length Xyn11-29 Sequence Retrieval
2.3. Bioinformatic Analysis and Statistics
2.4. Strains for Cloning and Heterologous Expression
2.5. Cloning of the Xyn11-29 cDNA in Pichia Pastoris and Screening of Transformants
2.6. Production and Purification of Recombinant Xyn11-29
2.7. Standard Conditions of Xylanase Activity
2.8. Influence of Temperature and pH on Xyn11-29 Activity and Enzyme Stability
2.9. Influence of Sea Salt on Xylanase Activity
2.10. Kinetic Properties
2.11. Lignocellulosic Biomass Hydrolysis
3. Results
3.1. Diversity of Fungal Expressed Genes Encoding GH11 Xylanases
3.2. Phylogeny of the Xylanase Sequences
3.3. Heterologous Production and Purification of the Recombinant Xyn11-29
3.4. Effect of pH and Temperature on the Activity and Stability of Xyn11-29
3.5. Catalytic Properties
3.6. Xylanase Activity against Lignocellulosic Biomass
3.7. Influence of Sea Salt on Xylanase Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kristensen, E.; Connolly, R.M.; Otero, X.L.; Marchand, C.; Ferreira, T.O.; Rivera-Monroy, V.H. Biogeochemical Cycles: Global Approaches and Perspectives. Mangrove Ecosyst. A Glob. Biogeogr. Perspect. Struct. Funct. Serv. 2017, 163–209. [Google Scholar] [CrossRef]
- Hyde, K.D.; Lee, S.Y. Ecology of Mangrove Fungi and Their Role in Nutrient Cycling: What Gaps Occur in Our Knowledge? Hydrobiologia 1995, 295, 107–118. [Google Scholar] [CrossRef]
- Bourgeois, C.; Alfaro, A.C.; Bisson, E.; Alcius, S.; Marchand, C. Trace Metal Dynamics in Soils and Plants along Intertidal Gradients in Semi-Arid Mangroves (New Caledonia). Mar. Pollut. Bull. 2020, 156, 111274. [Google Scholar] [CrossRef] [PubMed]
- Arfi, Y.; Buée, M.; Marchand, C.; Levasseur, A.; Record, E. Multiple Markers Pyrosequencing Reveals Highly Diverse and Host-Specific Fungal Communities on the Mangrove Trees Avicennia marina and Rhizophora stylosa. FEMS Microbiol. Ecol. 2012, 79, 433–444. [Google Scholar] [CrossRef]
- Luis, P.; Saint-Genis, G.; Vallon, L.; Bourgeois, C.; Bruto, M.; Marchand, C.; Record, E.; Hugoni, M. Contrasted Ecological Niches Shape Fungal and Prokaryotic Community Structure in Mangroves Sediments. Environ. Microbiol. 2019, 21, 1407–1424. [Google Scholar] [CrossRef] [PubMed]
- Ayed, A.B.; Saint-Genis, G.; Vallon, L.; Linde, D.; Turbé-Doan, A.; Haon, M.; Daou, M.; Bertrand, E.; Faulds, C.B.; Sciara, G.; et al. Exploring the Diversity of Fungal DyPs in Mangrove Soils to Produce and Characterize Novel Biocatalysts. J. Fungi 2021, 7, 321. [Google Scholar] [CrossRef]
- Linde, D.; Ayuso-Fernández, I.; Laloux, M.; Aguiar-Cervera, J.E.; de Lacey, A.L.; Ruiz-Dueñas, F.J.; Martínez, A.T. Comparing Ligninolytic Capabilities of Bacterial and Fungal Dye-Decolorizing Peroxidases and Class-II Peroxidase-Catalases. Int. J. Mol. Sci. 2021, 22, 2629. [Google Scholar] [CrossRef]
- Arfi, Y.; Chevret, D.; Henrissat, B.; Berrin, J.-G.; Levasseur, A.; Record, E. Characterization of Salt-Adapted Secreted Lignocellulolytic Enzymes from the Mangrove Fungus Pestalotiopsis sp. Nat. Commun. 2013, 4, 1810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B. Production, Characteristics, and Biotechnological Applications of Microbial Xylanases. Appl. Microbiol. Biotechnol. 2019, 103, 8763–8784. [Google Scholar] [CrossRef]
- Henrissat, B.; Davies, G. Structural and Sequence-Based Classification of Glycoside Hydrolases. Curr. Opin. Struct. Biol. 1997, 7, 637–644. [Google Scholar] [CrossRef]
- Qeshmi, F.I.; Homaei, A.; Fernandes, P.; Hemmati, R.; Dijkstra, B.W.; Khajeh, K. Xylanases from Marine Microorganisms: A Brief Overview on Scope, Sources, Features and Potential Applications. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2020, 1868, 140312. [Google Scholar] [CrossRef]
- Wu, J.; Qiu, C.; Ren, Y.; Yan, R.; Ye, X.; Wang, G. Novel Salt-Tolerant Xylanase from a Mangrove-Isolated Fungus Phoma sp. MF13 and Its Application in Chinese Steamed Bread. ACS Omega 2018, 3, 3708–3716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragalini, C.; Ribière, C.; Parisot, N.; Vallon, L.; Prudent, E.; Peyretaillade, E.; Girlanda, M.; Peyret, P.; Marmeisse, R.; Luis, P. Solution Hybrid Selection Capture for the Recovery of Functional Full-Length Eukaryotic CDNAs from Complex Environmental Samples. DNA Res. 2014, 21, 685–694. [Google Scholar] [CrossRef] [Green Version]
- Barbi, F.; Bragalini, C.; Vallon, L.; Prudent, E.; Dubost, A.; Fraissinet-Tachet, L.; Marmeisse, R.; Luis, P. PCR Primers to Study the Diversity of Expressed Fungal Genes Encoding Lignocellulolytic Enzymes in Soils Using High-Throughput Sequencing. PLoS ONE 2014, 9, e116264. [Google Scholar] [CrossRef]
- Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online; American Cancer Society: Atlanta, GA, USA, 2017; pp. 1–15. ISBN 978-1-118-44511-2. [Google Scholar]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The Rapid Generation of Mutation Data Matrices from Protein Sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Haon, M.; Grisel, S.; Navarro, D.; Gruet, A.; Berrin, J.-G.; Bignon, C. Recombinant Protein Production Facility for Fungal Biomass-Degrading Enzymes Using the Yeast Pichia pastoris. Front. Microbiol. 2015, 6, 1002. [Google Scholar] [CrossRef] [PubMed]
- Kidby, D.K.; Davidson, D.J. A Convenient Ferricyanide Estimation of Reducing Sugars in the Nanomole Range. Anal. Biochem. 1973, 55, 321–325. [Google Scholar] [CrossRef]
- Debeire-Gosselin, M.; Loonis, M.; Samain, E.; Debeire, P. Purification and Properties of a 22 kDa Endoxylanase Excreted by a New Strain of Thermophilic Bacillus. Prog. Biotechnol. 1992, 7, 463–466. [Google Scholar]
- Rémond, C.; Aubry, N.; Crônier, D.; Noël, S.; Martel, F.; Roge, B.; Rakotoarivonina, H.; Debeire, P.; Chabbert, B. Combination of Ammonia and Xylanase Pretreatments: Impact on Enzymatic Xylan and Cellulose Recovery from Wheat Straw. Bioresour. Technol. 2010, 101, 6712–6717. [Google Scholar] [CrossRef]
- Aschenbroich, A.; Marchand, C.; Molnar, N.; Deborde, J.; Hubas, C.; Rybarczyk, H.; Meziane, T. Spatio-Temporal Variations in the Composition of Organic Matter in Surface Sediments of a Mangrove Receiving Shrimp Farm Effluents (New Caledonia). Sci. Total. Environ. 2015, 512–513, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Rajendran, N.; Kathiresan, K.; Chen, J. Bioprospects of Microbial Enzymes from Mangrove-Associated Fungi and Bacteria. In Advances in Food and Nutrition Research; Academic Press: London, UK, 2016; Volume 79, pp. 99–115. [Google Scholar] [CrossRef]
- Talens-Perales, D.; Sánchez-Torres, P.; Marín-Navarro, J.; Polaina, J. In Silico Screening and Experimental Analysis of Family GH11 Xylanases for Applications under Conditions of Alkaline PH and High Temperature. Biotechnol. Biofuels 2020, 13, 198. [Google Scholar] [CrossRef]
- Paës, G.; Berrin, J.-G.; Beaugrand, J. GH11 Xylanases: Structure/Function/Properties Relationships and Applications. Biotechnol. Adv. 2012, 30, 564–592. [Google Scholar] [CrossRef]
- Ahmed, S.; Riaz, S.; Jamil, A. Molecular Cloning of Fungal Xylanases: An Overview. Appl. Microbiol. Biotechnol. 2009, 84, 19–35. [Google Scholar] [CrossRef]
- Li, C.; Kumar, A.; Luo, X.; Shi, H.; Liu, Z.; Wu, G. Highly Alkali-Stable and Cellulase-Free Xylanases from Fusarium Sp. 21 and Their Application in Clarification of Orange Juice. Int. J. Biol. Macromol. 2020, 155, 572–580. [Google Scholar] [CrossRef]
- Pasin, T.M.; Salgado, J.C.S.; de Almeida Scarcella, A.S.; de Oliveira, T.B.; de Lucas, R.C.; Cereia, M.; Rosa, J.C.; Ward, R.J.; Buckeridge, M.S.; de Moraes, M.D.L.T. A Halotolerant Endo-1,4-β-Xylanase from Aspergillus Clavatus with Potential Application for Agroindustrial Residues Saccharification. Appl. Biochem. Biotechnol. 2020, 191, 1111–1126. [Google Scholar] [CrossRef] [PubMed]
- García-Huante, Y.; Cayetano-Cruz, M.; Santiago-Hernández, A.; Cano-Ramírez, C.; Marsch-Moreno, R.; Campos, J.E.; Aguilar-Osorio, G.; Benitez-Cardoza, C.G.; Trejo-Estrada, S.; Hidalgo-Lara, M.E. The Thermophilic Biomass-Degrading Fungus Thielavia terrestris Co3Bag1 Produces a Hyperthermophilic and Thermostable β-1,4-Xylanase with Exo- and Endo-Activity. Extremophiles 2017, 21, 175–186. [Google Scholar] [CrossRef]
- Heinen, P.R.; Bauermeister, A.; Ribeiro, L.F.; Messias, J.M.; Almeida, P.Z.; Moraes, L.A.B.; Vargas-Rechia, C.G.; De Oliveira, A.H.C.; Ward, R.J.; Kadowaki, M.K.; et al. GH11 Xylanase from Aspergillus tamarii Kita: Purification by One-Step Chromatography and Xylooligosaccharides Hydrolysis Monitored in Real-Time by Mass Spectrometry. Int. J. Biol. Macromol. 2018, 108, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Verma, P. Microbial Xylanases: A Helping Module for the Enzyme Biorefinery Platform. In Bioenergy Research: Revisiting Latest Development; Manish, S., Neha, S., Rajeev, S., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Rakotoarivonina, H.; Revol, P.-V.; Aubry, N.; Rémond, C. The Use of Thermostable Bacterial Hemicellulases Improves the Conversion of Lignocellulosic Biomass to Valuable Molecules. Appl. Microbiol. Biotechnol. 2016, 100, 7577–7590. [Google Scholar] [CrossRef]
- Rakotoarivonina, H.; Hermant, B.; Aubry, N.; Rabenoelina, F.; Baillieul, F.; Rémond, C. Dynamic Study of How the Bacterial Breakdown of Plant Cell Walls Allows the Reconstitution of Efficient Hemicellulasic Cocktails. Bioresour. Technol. 2014, 170, 331–341. [Google Scholar] [CrossRef]
- Wikee, S.; Hatton, J.; Turbé-Doan, A.; Mathieu, Y.; Daou, M.; Lomascolo, A.; Kumar, A.; Lumyong, S.; Sciara, G.; Faulds, C.B.; et al. Characterization and Dye Decolorization Potential of Two Laccases from the Marine-Derived Fungus Pestalotiopsis sp. Int. J. Mol. Sci. 2019, 20, 1864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dos Santos, J.A.; Vieira, J.M.F.; Videira, A.; Meirelles, L.A.; Rodrigues, A.; Taniwaki, M.H.; Sette, L.D. Marine-Derived Fungus Aspergillus Cf. tubingensis LAMAI 31: A New Genetic Resource for Xylanase Production. AMB Express 2016, 6, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, J.M.O.; Dela Cruz, T.E.E. Production of Xylanases by Mangrove Fungi from the Philippines and Their Application in Enzymatic Pretreatment of Recycled Paper Pulps. World J. Microbiol. Biotechnol. 2013, 29, 645–655. [Google Scholar] [CrossRef]
- Martinho, V.; Dos Santos Lima, L.M.; Barros, C.A.; Ferrari, V.B.; Passarini, M.R.Z.; Santos, L.A.; de Souza Sebastianes, F.L.; Lacava, P.T.; de Vasconcellos, S.P. Enzymatic Potential and Biosurfactant Production by Endophytic Fungi from Mangrove Forest in Southeastern Brazil. AMB Express 2019, 9, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, W.B.; Ayed, A.B.; Turbé-Doan, A.; Bertrand, E.; Mathieu, Y.; Faulds, C.B.; Lomascolo, A.; Sciara, G.; Record, E.; Mechichi, T. Enzyme Properties of a Laccase Obtained from the Transcriptome of the Marine-Derived Fungus Stemphylium lucomagnoense. Int. J. Mol. Sci. 2020, 21, 8402. [Google Scholar] [CrossRef]
- Kern, M.; McGeehan, J.E.; Streeter, S.D.; Martin, R.N.A.; Besser, K.; Elias, L.; Eborall, W.; Malyon, G.P.; Payne, C.M.; Himmel, M.E.; et al. Structural Characterization of a Unique Marine Animal Family 7 Cellobiohydrolase Suggests a Mechanism of Cellulase Salt Tolerance. Proc. Natl. Acad. Sci. USA 2013, 110, 10189–10194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, S.; Bag, S.K.; Das, S.; Harvill, E.T.; Dutta, C. Molecular Signature of Hypersaline Adaptation: Insights from Genome and Proteome Composition of Halophilic Prokaryotes. Genome Biol. 2008, 9, R70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanyi, J.K. Salt-Dependent Properties of Proteins from Extremely Halophilic Bacteria. Bacteriol. Rev. 1974, 38, 272–290. [Google Scholar] [CrossRef]
- DasSarma, S.; DasSarma, P. Halophiles and Their Enzymes: Negativity Put to Good Use. Curr. Opin. Microbiol. 2015, 25, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.L.Y.; Huang, D.; Quek, Z.B.R.; Lee, J.N.; Wainwright, B.J. Mangrove-Associated Fungal Communities Are Differentiated by Geographic Location and Host Structure. Front. Microbiol. 2019, 10, 2456. [Google Scholar] [CrossRef]
Df | F | p | R2 | |
---|---|---|---|---|
Variable | ||||
Tree species | 1 | 4.369 | 0.02 | 0.104 |
Sediment depth | 1 | 1.629 | 0.20 | 0.039 |
Season | 1 | 6.641 | 0.01 | 0.158 |
Interaction | ||||
Tree × Depth | 1 | 5.376 | 0.01 | 0.128 |
Tree × Season | 1 | 4.755 | 0.02 | 0.113 |
Depth × Season | 1 | 1.674 | 0.18 | 0.040 |
Tree × Depth × Season | 1 | 1.579 | 0.19 | 0.038 |
Residuals | 16 |
Xyn11-29 | |
---|---|
KAF9530414.1 Crepidotus variabilis (Agaricales)ćKAF9459224.1 Lepista nuda (Agaricales) PVF97526.1 Serendipita vermifera ‘subsp. bescii’ (Sebacinales) ESK83196.1 Moniliophthora roreri (Agaricales) KAF9530413.1 Crepidotus variabilis (Agaricales) PVF91255.1 Serendipita vermifera ‘subsp. bescii’ (Sebacinales) KAF5345258.1 Leucoagaricus leucothites (Agaricales) CDS82539.1 uncultured eukaryote KTB33854.1 Moniliophthora roreri (Agaricales) KIM21487.1 Sebacina vermifera (Sebacinales) | 195/231(84%) 193/231(84%) 195/235(83%) 187/231(81%) 189/231(82%) 188/233(81%) 193/232(83%) 188/233(81%) 182/231(79%) 182/231(79%) |
Specific Activity (IU mg−1) | KM (g L−1) | kcat (s−1) | kcat/KM (L g −1 s−1 ) | |
---|---|---|---|---|
Xyn11-29 | 877 ± 37 | 3.30 ± 0.43 | 708 ± 52 | 216 ± 17 |
XynMF13A | 1322 ± 5 | 3.16 ± 0.43 | 1075 ± 0.75 | 340 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivaldi, C.; Daou, M.; Vallon, L.; Bisotto, A.; Haon, M.; Garajova, S.; Bertrand, E.; Faulds, C.B.; Sciara, G.; Jacotot, A.; et al. Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms 2021, 9, 1484. https://doi.org/10.3390/microorganisms9071484
Ivaldi C, Daou M, Vallon L, Bisotto A, Haon M, Garajova S, Bertrand E, Faulds CB, Sciara G, Jacotot A, et al. Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms. 2021; 9(7):1484. https://doi.org/10.3390/microorganisms9071484
Chicago/Turabian StyleIvaldi, Corinne, Mariane Daou, Laurent Vallon, Alexandra Bisotto, Mireille Haon, Sona Garajova, Emmanuel Bertrand, Craig B. Faulds, Giuliano Sciara, Adrien Jacotot, and et al. 2021. "Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity" Microorganisms 9, no. 7: 1484. https://doi.org/10.3390/microorganisms9071484
APA StyleIvaldi, C., Daou, M., Vallon, L., Bisotto, A., Haon, M., Garajova, S., Bertrand, E., Faulds, C. B., Sciara, G., Jacotot, A., Marchand, C., Hugoni, M., Rakotoarivonina, H., Rosso, M.-N., Rémond, C., Luis, P., & Record, E. (2021). Screening New Xylanase Biocatalysts from the Mangrove Soil Diversity. Microorganisms, 9(7), 1484. https://doi.org/10.3390/microorganisms9071484