Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure–Function Relationship Studies and Engineering
Abstract
:1. Introduction
2. Inventory of Characterized GSs and BRSs
2.1. Native GSs and BRSs Produced by LAB
2.2. Recombinant GSs and BRSs Produced by E. coli
Enzyme | Organism | Genbank | Specificity | Size (aa) | Reference |
---|---|---|---|---|---|
GTF-0 | Lb. reuteri | AAY86923.1 | R | 1781 | [79] |
GTF-A* | Lb. reuteri | AAU08015.1 | R | 1781 | [80] |
ASR* | Ln. mesenteroides | CAB65910.2 | A | 2057 | [81] |
ASR | Ln. citreum | AIM52834.1 | A | 2057 | (Wangpaiboon et al. NP) |
GTF-SI* | S. mutans | BAA26114.1 | M | 1455 | [82] |
GFT-ML1 | Lb. reuteri | AAU08004.1 | M | 1772 | [83] |
GFT-L | S. salivarius | AAC41412.1 | M | 1449 | [84] |
GTF-J | S. salivarius | AAA26896.1 | M | 1517 | [84] |
GTF-I | S. sobrinus | BAA02976.1 | M | 1590 | [85] |
GTF-I | S. downei | AAC63063.1 | M | 1597 | [86] |
GTF-B | S. mutans | AAA88588.1 | M | 1475 | [87] |
GTF-I | S. criceti | BAF62338.1 | M | 1461 | [88] |
GTF-F | S. orisuis | BAF62337.1 | M | 1466 | [88] |
GFT-D | S. mutans | AAN58619.1 | GS (n.d) | 1462 | [89] |
GTF-C | S. mutans | AAN58706.1 | GS (n.d) | 1455 | [89] |
GTF-B | S. mutans | AAN58705.1 | GS (n.d) | 1476 | [89] |
LcDS | Ln. citreum | BAF96719.1 | D | 1477 | [90] |
GTF-U | S. sobrinus | BAC07265.1 | D | 1554 | [91] |
GTF-S | S. downei | AAA26898.1 | D | 1365 | [92] |
GTF-R | S. oralis | BAA95201.1 | D | 1575 | [93] |
GTF-M | S. salivarius | AAC41413.1 | D | 1577 | [84] |
GTF-Kg3 | Lb. fermentum | AAU08008.1 | D | 1595 | [94] |
GTF-Kg15 | Lb. sakei | AAU08011.1 | D | 1561 | [94] |
GTF-K | S. salivarius | CAA77898.1 | D | 1599 | [84] |
GTF-I | S. sobrinus | BAA14241.1 | D | 1575 | [95] |
GTF-G | S. gordonii | AAC43483.1 | D | 1577 | [96] |
GFT-D | S. mutans | AAA26895.1 | D | 1430 | [97] |
GTF-33 | Lb. parabuchneri | AAU08006.1 | D | 1463 | [94] |
GTF-1971 | Lb. animalis | CCK33644.1 | D | 1585 | (Ruhmkorf et al., NP) |
GTF-180* | Lb. reuteri | AAU08001.1 | D | 1772 | [94] |
GTF-1624 | Lb. curvatus | CCK33643.1 | D | 1697 | (Ruhmkorf et al., NP) |
GTF-106A | Lb. reuteri | ABP88726.1 | D | 1782 | (Kaditzky et al., NP) |
DSR-X | Ln. mesenteroides | AAQ98615.2 | D | 1485 | [98] |
DSR-WC | W. cibaria | ACK38203.1 | D | 1472 | [99] |
DSR-T | Ln. mesenteroides | BAA90527.1 | D | 1015 | [100] |
DSR-S | Ln. mesenteroides | AAD10952.1 | D | 1527 | [101] |
DSR-P | Ln. mesenteroides | AAS79426.1 | D | 1454 | [102] |
DSR-N | Ln. mesenteroides | AFP53921.1 | D | 1527 | (Siddiqui et al. NP) |
DSR-K39 | W. cibaria | ADB43097.3 | D | 1445 | [60] |
DSR-F | Ln. citreum | ACY92456.1 | D | 1527 | [103] |
DSR-D | Ln. mesenteroides | AAG61158.1 | D | 1527 | [104] |
DSR-C39-2 | W. confusa | CCF30682.1 | D | 1412 | [59] |
DSR-C | Ln. citreum | CAB76565.1 | D | 1477 | [81] |
DSR-BCB4 | Ln. citreum | ABF85832.1 | D | 1465 | [105] |
DSR-B742 | Ln. citreum | AAG38021.1 | D | 1508 | [106] |
DSR-B | Ln. citreum | AAB95453.1 | D | 1508 | [107] |
DSR-A | Ln. citreum | AAB40875.1 | D | 1290 | [108] |
DEX-YG | Ln. mesenteroides | ABC75033.1 | D | 1527 | [109] |
DEX-T | Ln. citreum | ACA83218.1 | D | 1495 | [69] |
Wc392-DSR | W. confusa | AHU88292.1 | D | 1423 | (Krajala et al., NP) |
DSR | Ln. lactis | ACT20911.1 | D | 1500 | (Kim et al., NP) |
DSR-DP | Ln. citreum | CDX66641.1 | D | 1278 | [71] |
DSR-M* | Ln. citreum | CDX66895.1 | D | 2065 | [71] |
wcCab3-DSR | W. confusa | AKE50934.1 | D | 1401 | (Shukla et al., NP) |
DSR-R | Ln. mesenteroides | AAN38835.1 | D | 1330 | (Kim et al. NP) |
GTF-P | S. sanguinis | BAF43788.1 | D | 1575 | [95] |
GTF-Tl | S. sobrinus | AAX76986.1 | D | 1506 | [110] |
GTF-106B (DSR106.1) | Lb. reuteri | ABP88725 | D | 1883 | [111] |
DSR | Lb. animalis | CCK33644.1 | D | 1585 | [111] |
DSR-E | Ln. citreum | CAD22883.1 | D+α-1,2BRS | 2835 | [77] |
GtfZ | Lb. kunkeei | KRK22577.1 | D+α-1,3BRS | 2621 | [78] |
Gsy | Ln. mesenteroides | ANJ45894.1 | GS (n.d) | 1466 | [76] |
BRS-A | Ln. citreum | CDX66896.1 | α-1,2BRS | 1877 | [71] |
BRS-B | Ln. citreum | CDX65123.1 | α-1,3BRS | 1888 | [21] |
BRS-C | Ln. fallax | WP_010006776.1 | α-1,3BRS | 1774 | [21] |
BRS-D | Lb. kunkeei | WP_051592287.1 | α-1,2BRS | 1463 | [21] |
GBD-CD2* | Ln. citreum | CAD22883.1 | α-1,2BRS | 1694 | [112] |
3. Structure–Function Relationships
3.1. Catalytic Mechanism and Products
3.2. Mechanistic Insights from Primary Structures
3.3. Going Further with the Three-Dimensional Structures
4. Enzyme Engineering for Man-Made α-Glucans, Oligosaccharides and Glucoconjugates
4.1. Engineering the Linkage Specificity to Diversify Glucan and Oligosaccharide Structures
4.2. GS Engineering for Size-Controlled Polysaccharides and/or Enhance Production of Oligosaccharides
4.3. Engineering GSs and BRSs for Non-Natural Acceptor Glucosylation
5. Outlook
Funding
Conflicts of Interest
References
- Prestegard, J.H.; Liu, J.; Widmalm, G. Oligosaccharides and Polysaccharides. In Essentials of Glycobiology, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017. [Google Scholar]
- Freitas, F.; Alves, V.D.; Reis, M.A. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends Biotechnol. 2011, 29, 388–398. [Google Scholar] [CrossRef]
- Moscovici, M. Present and future medical applications of microbial exopolysaccharides. Front. Microbiol. 2015, 6, 1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roca, C.; Alves, V.D.; Freitas, F.; Reis, M.A.M. Exopolysaccharides enriched in rare sugars: Bacterial sources, production, and applications. Front. Microbiol. 2015, 6, 288. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Ortiz-Soto, M.E.; Roth, C.; Barnes, W.J.; Seibel, J.; Urbanowicz, B.R.; Pfrengle, F. Enzymatic Synthesis of Artificial Polysaccharides. ACS Sustain. Chem. Eng. 2020, 8, 11853–11871. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, Z.; Yin, J.; Shi, G.; Ding, Z. Biological strategies for oligo/polysaccharide synthesis: Biocatalyst and microbial cell factory. Carbohydr. Polym. 2021, 258, 117695. [Google Scholar] [CrossRef]
- Chen, Z.; Ni, D.; Zhang, W.; Stressler, T.; Mu, W. Lactic acid bacteria-derived α-glucans: From enzymatic synthesis to miscellaneous applications. Biotechnol. Adv. 2021, 47, 107708. [Google Scholar] [CrossRef] [PubMed]
- Shetty, P.R.; Batchu, U.R.; Buddana, S.K.; Sambasiva Rao, K.; Penna, S. A comprehensive review on α-D-Glucans: Structural and functional diversity, derivatization and bioapplications. Carbohydr. Res. 2021, 503, 108297. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, G.; Arumugam, S.; Doble, M. Industrial production and applications of α/β linear and branched glucans. Indian Chem. Eng. 2020, 1–15. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Loesche, W.J. Dental Caries: A Treatable Infection; Automated Diagnostic Documentation, Inc.: Grand Haven, MI, USA, 1993. [Google Scholar]
- Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional Polymers Based on Dextran. In Polysaccharides II; Klemm, D., Ed.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2006; pp. 199–291. [Google Scholar]
- Leathers, T.D. Polysaccharides and Polyamides in the Food Industry. Properties, Production, and Patents; Wiley-Blackwell: Hoboken, NJ, USA, 2005; Volume 1, pp. 233–255. [Google Scholar]
- Vettori, M.H.; Blanco, K.; Cortezi, M.; De Lima, C.; Contiero, J. Dextran: Effect of process parameters on production, purification and molecular weight and recent applications. Diálogos Ciênc 2012, 31, 171–186. [Google Scholar] [CrossRef]
- Hu, Q.; Lu, Y.; Luo, Y. Recent advances in dextran-based drug delivery systems: From fabrication strategies to applications. Carbohydr. Polym. 2021, 264, 1–15. [Google Scholar] [CrossRef]
- Wangpaiboon, K.; Padungros, P.; Nakapong, S.; Charoenwongpaiboon, T.; Rejzek, M.; Field, R.A.; Pichyangkura, R. An α-1,6-and α-1,3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef]
- Dennes, T.J.; Perticone, A.M.; Paullin, J.L. Cationic Poly Alpha-1,3-Glucan Ethers. Patent US2014070906W, 25 June 2015. [Google Scholar]
- Paullin, J.L.; Perticone, A.M.; Kasat, R.B.; Dennes, T.J. Preparation of Poly Alpha-1,3-Glucan Ethers. Patent US201314107067A, 26 June 2014. [Google Scholar]
- Brison, Y.; Malbert, Y.; Czaplicki, G.; Mourey, L.; Remaud-Siméon, M.; Tranier, S. Structural Insights into the Carbohydrate Binding Ability of an α-(1→2) Branching Sucrase from Glycoside Hydrolase Family 70. J. Biol. Chem. 2016, 291, 7527–7540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulis, C.; André, I.; Remaud-Siméon, M. GH13 amylosucrases and GH70 branching sucrases, atypical enzymes in their respective families. Cell Mol. Life Sci. CMLS 2016, 73, 2661–2679. [Google Scholar] [CrossRef]
- Vuillemin, M.; Claverie, M.; Brison, Y.; Séverac, E.; Bondy, P.; Morel, S.; Monsan, P.; Moulis, C.; Remaud-Siméon, M. Characterization of the First α-(1→3) Branching Sucrases of the GH70 Family. J. Biol. Chem. 2016, 291, 7687–7702. [Google Scholar] [CrossRef] [Green Version]
- Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids. Res. 2014, 42, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claverie, M.; Cioci, G.; Vuillemin, M.; Monties, N.; Roblin, P.; Lippens, G.; Remaud-Siméon, M.; Moulis, C. Investigations on the Determinants Responsible for Low Molar Mass Dextran Formation by DSR-M Dextransucrase. ACS Catal. 2017, 7, 7106–7119. [Google Scholar] [CrossRef]
- Leemhuis, H.; Pijning, T.; Dobruchowska, J.M.; Leeuwen, S.S.; van Kralj, S.; Dijkstra, B.W.; Dijkhuizen, L. Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J. Biotechnol. 2013, 2, 250–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wang, X.; Meng, X.; Dijkhuizen, L.; Liu, W. Structures, physico-chemical properties, production and (potential) applications of sucrose-derived α-d-glucans synthesized by glucansucrases. Carbohydr. Polym. 2020, 249, 1–12. [Google Scholar] [CrossRef]
- Monsan, P.; Remaud-Siméon, M.; André, I. Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Curr. Opin. Microbiol. 2010, 13, 293–300. [Google Scholar] [CrossRef]
- Koepsell, H.J.; Tsuchiya, H.M.; Hellman, N.N.; Kazenko, A.; Hoffman, C.A.; Sharpe, E.S.; Jackson, R.W. Enzymatic Synthesis of Dextran Acceptor Specificity and Chain Initiation. J. Biol. Chem. 1953, 200, 793–801. [Google Scholar] [CrossRef]
- Gangoiti, J.; Corwin, S.F.; Lamothe, L.M.; Vafiadi, C.; Hamaker, B.R.; Dijkhuizen, L. Synthesis of novel α-glucans with potential health benefits through controlled glucose release in the human gastrointestinal tract. Crit. Rev. Food. Sci. Nutr. 2020, 60, 123–146. [Google Scholar] [CrossRef]
- Djouzi, Z.; Andrieux, C.; Pelenc, V.; Somarriba, S.; Popot, F.; Paul, F.; Monsan, P.; Szylit, O. Degradation and fermentation of α-gluco-oligosaccharides by bacterial strains from human colon: In vitro and in vivo studies in gnotobiotic rats. J. Appl. Bacteriol. 1995, 79, 117–127. [Google Scholar] [CrossRef]
- Holt, S.M.; Skory, C.; Cote, G. Growth Assessment of Bifidobacterium on Glucansucrase-Derived Oligosaccharides. In Proceedings of the 1st International Electronic Conference on Microbiology, Online, 2–30 November 2020. [Google Scholar] [CrossRef]
- Holt, S.M.; Teresi, J.M.; Côté, G.L. Influence of alternansucrase-derived oligosaccharides and other carbohydrates on α-galactosidase and α-glucosidase activity in Bifidobacterium adolescentis. Lett. Appl. Microbiol. 2008, 46, 73–79. [Google Scholar] [CrossRef]
- Holt, S.M.; Miller-Fosmore, C.M.; Côté, G.L. Growth of various intestinal bacteria on alternansucrase-derived oligosaccharides. Lett. Appl. Microbiol. 2005, 40, 385–390. [Google Scholar] [CrossRef]
- Sanz, M.L.; Côté, G.L.; Gibson, G.R.; Rastall, R.A. Prebiotic properties of alternansucrase maltose-acceptor oligosaccharides. J. Agric. Food Chem. 2005, 53, 5911–5916. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jang, J.-K.; Park, Y.-S. Production Optimization, Structural Analysis, and Prebiotic- and Anti-Inflammatory Effects of Gluco-Oligosaccharides Produced by Leuconostoc lactis SBC001. Microorganisms 2021, 9, 3229. [Google Scholar] [CrossRef] [PubMed]
- Dols, M.; Remaud Siméon, M.; Willemot, R.-M.; Vignon, M.R.; Monsan, P.F. Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucra Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase se. Carbohydr. Res. 1997, 305, 549–559. [Google Scholar] [CrossRef]
- Hasselwander, O.; DiCosimo, R.; You, Z.; Cheng, Q.; Rothman, S.C.; Suwannakham, S.; Baer, Z.C.; Roesch, B.M.; Ruebling-Jass, K.D.; Lai, J.P.; et al. Development of dietary soluble fibres by enzymatic synthesis and assessment of their digestibility in in vitro, animal and randomised clinical trial models. Int. J. Food Sci. Nutr. 2017, 68, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.L.; Gibson, G.R.; Rastall, R.A. Influence of disaccharide structure on prebiotic selectivity in vitro. J. Agric. Food Chem. 2005, 53, 5192–5199. [Google Scholar] [CrossRef] [PubMed]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.W.; Gibson, G.R.; Rastall, R.A. The prebiotic effect of α-1,2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system. J. Funct. Foods 2013, 5, 1938–1946. [Google Scholar] [CrossRef]
- Sarbini, S.R.; Kolida, S.; Naeye, T.; Einerhand, A.; Brison, Y.; Remaud-Siméon, M.; Monsan, P.; Gibson, G.R.; Rastall, R.A. In vitro fermentation of linear and α-1,2-branched dextrans by the human fecal microbiota. Appl. Environ. Microbiol. 2011, 77, 5307–5315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malbert, Y.; Moulis, C.; Brison, Y.; Morel, S.; André, I.; Remaud-Siméon, M. Engineering a branching sucrase for flavonoid glucoside diversification. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Morel, S.; Andre, I.; Brison, Y.; Cambon, E.; Malbert, Y.; Pompon, D.; Remaud-Siméon, M.; Urban, P. Novel Flavonoids O-a-glucosylated on the B Cycle, Method for the Production Thereof and Uses. Patent US2017107242A1, 20 April 2017. [Google Scholar]
- Meulenbeld, G.H.; Hartmans, S. Transglycosylation by Streptococcus mutans GS-5 glucosyltransferase-D: Acceptor specificity and engineering of reaction conditions. Biotechnol. Bioeng. 2000, 70, 363–369. [Google Scholar] [CrossRef]
- Meulenbeld, G.H.; Zuilhof, H.; van Veldhuizen, A.; van den Heuvel, R.H.H.; Hartmans, S. Enhanced (+)-Catechin Transglucosylating Activity of Streptococcus mutans GS-5 Glucosyltransferase-D due to Fructose Removal. Appl. Environ. Microbiol. 1999, 65, 4141–4147. [Google Scholar] [CrossRef] [Green Version]
- André, I.; Grelier, S.; Guieysse, D.; Lafraya, A.; Monsan, P.; Moulis, C.; Peruch, F.; Remaud-Siméon, M.; Vuillemin, M. Enzymatic Production of Glycosylated Synthons. Patent US201615559193A, 13 September 2018. [Google Scholar]
- Grimaud, F.; Faucard, P.; Tarquis, L.; Pizzut-Serin, S.; Roblin, P.; Morel, S.; Gall, S.L.; Falourd, X.; Rolland-Sabaté, A.; Lourdin, D.; et al. Enzymatic synthesis of polysaccharide-based copolymers. Green Chem. 2018, 20, 4012–4022. [Google Scholar] [CrossRef] [Green Version]
- Gangoiti, J.; van Leeuwen, S.S.; Gerwig, G.J.; Duboux, S.; Vafiadi, C.; Pijning, T.; Dijkhuizen, L. 4,3-α-Glucanotransferase, a novel reaction specificity in glycoside hydrolase family 70 and clan GH-H. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leemhuis, H.; Dijkman, W.P.; Dobruchowska, J.M.; Pijning, T.; Grijpstra, P.; Kralj, S.; Kamerling, J.P.; Dijkhuizen, L. 4,6-α-Glucanotransferase activity occurs more widespread in Lactobacillus strains and constitutes a separate GH70 subfamily. Appl. Microbiol. Biotechnol. 2013, 97, 181–193. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Gangoiti, J.; Bai, Y.; Pijning, T.; Van Leeuwen, S.S.; Dijkhuizen, L. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol. Life Sci. CMLS 2016, 73, 2681–2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangoiti, J.; Pijning, T.; Dijkhuizen, L. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. Biotechnol. Adv. 2018, 36, 196–207. [Google Scholar] [CrossRef]
- Pasteur, L. On the viscous fermentation and the butyrous fermentation. Bull Soc. Chim. 1861, 11, 30–31. [Google Scholar]
- Scheibler, C. Investigation on the nature of the gelatinous excretion (so-called frog’s spawn) which is observed in production of beet-sugar juices. Z. Ver. Dtsch. Zucker Ind. 1874, 24, 309–319. [Google Scholar]
- Hestrin, S.; Avineri-Shapiro, S. Mechanism of Polysaccharide Production from Sucrose. Nature 1943, 152, 49–50. [Google Scholar] [CrossRef]
- Van Tieghem, P. On sugar-mill gum. Ann. Sci. Nature Bot. Biol. Veg. 1878, 7, 180–203. [Google Scholar]
- Jeanes, A.; Haynes, W.C.; Wilham, C.A.; Rankin, J.C.; Melvin, E.H.; Austin, M.J.; Cluskey, J.E.; Fisher, B.E.; Tsuchiya, H.M.; Rist, C.E. Characterization and classification of dextrans from ninety-six strains of bacteria. J. Am. Chem. Soc. 1954, 76, 5041–5052. [Google Scholar] [CrossRef]
- Monsan, P.; Bozonnet, S.; Albenne, C.; Joucla, G.; Willemot, R.-M.; Remaud-Siméon, M. Homopolysaccharides from lactic acid bacteria. Int. Dairy J. 2001, 11, 675–685. [Google Scholar] [CrossRef]
- Côté, G.L.; Skory, C.D.; Unser, S.M.; Rich, J.O. The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture. Appl. Microbiol. Biotechnol. 2013, 97, 7265–7273. [Google Scholar] [CrossRef]
- Bechtner, J.; Wefers, D.; Schmid, J.; Vogel, R.F.; Jakob, F. Identification and comparison of two closely related dextransucrases released by water kefir borne Lactobacillus hordei TMW 1.1822 and Lactobacillus nagelii TMW 1.1827. Microbiology 2019, 165, 956–966. [Google Scholar] [CrossRef]
- Vasileva, T.; Bivolarski, V.; Michailova, G.; Salim, A.; Rabadjiev, Y.; Ivanova, I.; Iliev, I. Glucansucrases produced by fructophilic lactic acid bacteria Lactobacillus kunkeei H3 and H25 isolated from honeybees. J. Basic. Microbiol. 2017, 57, 68–77. [Google Scholar] [CrossRef]
- Amari, M.; Arango, L.F.G.; Gabriel, V.; Robert, H.; Morel, S.; Moulis, C.; Gabriel, B.; Remaud-Siméon, M.; Fontagné-Faucher, C. Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Appl. Microbiol. Biotechnol. 2013, 97, 5413–5422. [Google Scholar] [CrossRef]
- Bounaix, M.-S.; Robert, H.; Gabriel, V.; Morel, S.; Remaud-Siméon, M.; Gabriel, B.; Fontagné-Faucher, C. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol. Lett. 2010, 311, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Dimopoulou, M.; Vuillemin, M.; Campbell-Sills, H.; Lucas, P.M.; Ballestra, P.; Miot-Sertier, C.; Favier, M.; Coulon, J.; Moine, V.; Doco, T.; et al. Exopolysaccharide (EPS) Synthesis by Oenococcus oeni: From Genes to Phenotypes. PLoS ONE 2014, 9, e98898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, R.; Goyal, A. Novel dextran from Pediococcus pentosaceus CRAG3 isolated from fermented cucumber with anti-cancer properties. Int. J. Biol. Macromol. 2013, 62, 352–357. [Google Scholar] [CrossRef]
- Shukla, S.; Verma, A.K.; Kajala, I.; Nyyssolä, A.; Baruah, R.; Katina, K.; Juvonen, R.; Tenkanen, M.; Goyal, A. Structure modeling and functional analysis of recombinant dextransucrase from Weissella confusa Cab3 expressed in Lactococcus lactis. Prep. Biochem. Biotechnol. 2016, 46, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Côté, G.L.; Robyt, J.F. The formation of α-D-(1→3) branch linkages by an exocellular glucansucrase from Leuconostoc mesenteroides NRRL B-742. Carbohydr. Res. 1983, 119, 141–156. [Google Scholar] [CrossRef]
- Côté, G.L.; Robyt, J.F. Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1→6),(1→3)-α-D-glucan. Carbohydr. Res. 1982, 101, 57–74. [Google Scholar] [CrossRef]
- Sato, S.; Koga, T.; Inoue, M. Isolation and some properties of extracellular D-glucosyltransferases and D-fructosyltransferases from Streptococcus mutans serotypes c, e, and f. Carbohydr. Res. 1984, 134, 293–304. [Google Scholar] [CrossRef]
- Aoki, H.; Shiroza, T.; Hayakawa, M.; Sato, S.; Kuramitsu, H.K. Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis. Infect. Immun. 1986, 53, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Biswas, I. Complete genome sequence of Streptococcus mutans GS-5, a serotype c strain. J. Bacteriol. 2012, 194, 4787–4788. [Google Scholar] [CrossRef]
- Kim, J.F.; Jeong, H.; Lee, J.-S.; Choi, S.-H.; Ha, M.; Hur, C.-G.; Kim, J.-S.; Lee, S.; Park, H.-S.; Park, Y.-H.; et al. Complete Genome Sequence of Leuconostoc citreum KM20. J. Bacteriol. 2008, 190, 3093–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laguerre, S.; Amari, M.; Vuillemin, M.; Robert, H.; Loux, V.; Klopp, C.; Morel, S.; Gabriel, B.; Remaud-Siméon, M.; Gabriel, V.; et al. Genome sequences of three Leuconostoc citreum strains, LBAE C10, LBAE C11, and LBAE E16, isolated from wheat sourdoughs. J. Bacteriol. 2012, 194, 1610–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passerini, D.; Vuillemin, M.; Ufarté, L.; Morel, S.; Loux, V.; Fontagné-Faucher, C.; Monsan, P.; Remaud-Siméon, M.; Moulis, C. Inventory of the GH70 enzymes encoded by Leuconostoc citreum NRRL B-1299—Identification of three novel α-transglucosylases. FEBS J. 2015, 282, 2115–2130. [Google Scholar] [CrossRef]
- Passerini, D.; Vuillemin, M.; Laguerre, S.; Amari, M.; Loux, V.; Gabriel, V.; Robert, H.; Morel, S.; Monsan, P.; Gabriel, B.; et al. Complete Genome Sequence of Leuconostoc citreum Strain NRRL B-742. Genome. Announc. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Münkel, F.; Bechtner, J.; Eckel, V.; Fischer, A.; Herbi, F.; Jakob, F.; Wefers, D. Detailed Structural Characterization of Glucans Produced by Glucansucrases from Leuconostoc citreum TMW 2.1194. J. Agric. Food Chem. 2019, 67, 6856–6866. [Google Scholar] [CrossRef]
- Münkel, F.; Wefers, D. Fine structures of different dextrans assessed by isolation and characterization of endo-dextranase liberated isomalto-oligosaccharides. Carbohydr. Polym. 2019, 215, 296–306. [Google Scholar] [CrossRef]
- Wangpaiboon, K.; Waiyaseesang, N.; Panpetch, P.; Charoenwongpaiboon, T.; Nepogodiev, S.A.; Ekgasit, S.; Field, R.A.; Pichayangkura, R. Characterisation of insoluble α-1,3-/α-1,6 mixed linkage glucan produced in addition to soluble α-1,6-linked dextran by glucansucrase (DEX-N) from Leuconostoc citreum ABK-1. Int. J. Biol. Macromol. 2020, 152, 473–482. [Google Scholar] [CrossRef]
- Yan, M.; Wang, B.-H.; Xu, X.; Chang, P.; Hang, F.; Wu, Z.; You, C.; Liu, Z. Molecular and functional study of a branching sucrase-like glucansucrase reveals an evolutionary intermediate between two subfamilies of the GH70 enzymes. Appl. Environ. Microbiol. 2018, 84, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fabre, E.; Bozonnet, S.; Arcache, A.; Willemot, R.-M.; Vignon, M.; Monsan, P.; Remaud-Siméon, M. Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly α-1,2 branched dextran. J. Bacteriol. 2005, 187, 296–303. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Gangoiti, J.; Wang, X.; Grijpstra, P.; van Leeuwen, S.S.; Pijning, T.; Dijkhuizen, L. Biochemical characterization of a GH70 protein from Lactobacillus kunkeei DSM 12361 with two catalytic domains involving branching sucrase activity. Appl. Microbiol. Biotechnol. 2018, 102, 7935–7950. [Google Scholar] [CrossRef] [PubMed]
- Kralj, S.; Stripling, E.; Sanders, P.; van Geel-Schutten, G.H.; Dijkhuizen, L. Highly Hydrolytic Reuteransucrase from Probiotic Lactobacillus reuteri Strain ATCC 55730. Appl. Environ. Microbiol. 2005, 71, 3942–3950. [Google Scholar] [CrossRef] [Green Version]
- Kralj, S.; van Geel-Schutten, G.H.; Rahaoui, H.; Leer, R.J.; Faber, E.J.; van der Maarel, M.; Dijkhuizen, L. Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with alpha-(1 -> 4) and alpha-(1 -> 6) glucosidic bonds. Appl. Environ. Microbiol. 2002, 68, 4283–4291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argüello-Morales, M.A.; Remaud-Simeon, M.; Pizzut, S.; Sarçabal, P.; Willemot, R.; Monsan, P. Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355. FEMS Microbiol. Lett. 2000, 182, 81–85. [Google Scholar] [CrossRef]
- Fujiwara, T.; Terao, Y.; Hoshino, T.; Kawabata, S.; Ooshima, T.; Sobue, S.; Kimura, S.; Hamada, S. Molecular analyses of glucosyltransferase genes among strains of Streptococcus mutans. FEMS Microbiol. Lett. 1998, 161, 331–336. [Google Scholar] [CrossRef]
- Kralj, S.; van Geel-Schutten, G.H.; Dondorff, M.M.G.; Kirsanovs, S.; van der Maarel, M.J.E.C.; Dijkhuizen, L. Glucan synthesis in the genus Lactobacillus: Isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiology 2004, 150, 3681–3690. [Google Scholar] [CrossRef] [Green Version]
- Simpson, C.L.; Cheetham, N.W.H.; Jacques, N.A. Four glucosyltransferases, GtfJ.; GtfK.; GtfL and GtfM, from Streptococcus salivarius ATCC 25975. Microbiology 1995, 141, 1451–1460. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Inoue, M.; Hanada, N.; Aizawa, Y.; Isobe, Y.; Katayama, T. DNA sequence of the glucosyltransferase gene of serotype d Streptococcus sobrinus. Mitochondrial. DNA 1993, 4, 19–27. [Google Scholar] [CrossRef]
- Ferretti, J.J.; Gilpin, M.L.; Russell, R.R. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J. Bacteriol. 1987, 169, 4271–4278. [Google Scholar] [CrossRef] [Green Version]
- Shiroza, T.; Ueda, S.; Kuramitsu, H.K. Sequence analysis of the gtfB gene from Streptococcus mutans. J. Bacteriol. 1987, 169, 4263–4270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinozaki-Kuwahara, N.; Takada, K.; Hirasawa, M. Sequence and phylogenetic analyses of novel glucosyltransferase genes of mutans streptococci isolated from pig oral cavity. J. Microbiol. 2008, 46, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Ajdić, D.; McShan, W.M.; McLaughlin, R.E.; Savić, G.; Chang, J.; Carson, M.B.; Primeaux, C.; Tian, R.; Kenton, S.; Jia, H.; et al. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 2002, 99, 14434–14439. [Google Scholar] [CrossRef] [Green Version]
- Yi, A.-R.; Lee, S.-R.; Jang, M.-U.; Park, J.-M.; Eom, H.-J.; Han, N.-S.; Kim, T.-J. Cloning of Dextransucrase Gene from Leuconostoc citreum HJ-P4 and Its High-Level Expression in, E. coli by Low Temperature Induction. J. Microbiol. Biotechnol. 2009, 19, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Hanada, N.; Fukushima, K.; Nomura, Y.; Senpuku, H.; Hayakawa, M.; Mukasa, H.; Shiroza, T.; Abiko, Y. Cloning and nucleotide sequence analysis of the Streptococcus sobrinus gtfU gene that produces a highly branched water-soluble glucan. Biochim. Biophys. Acta 2002, 1570, 75–79. [Google Scholar] [CrossRef]
- Gilmore, K.S.; Russell, R.R.; Ferretti, J.J. Analysis of the Streptococcus downei gtfS gene, which specifies a glucosyltransferase that synthesizes soluble glucans. Infect. Immun. 1990, 58, 2452–2458. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, T.; Hoshino, T.; Ooshima, T.; Sobue, S.; Hamada, S. Purification, characterization, and molecular analysis of the gene encoding glucosyltransferase from Streptococcus oralis. Infect. Immun. 2000, 68, 2475–2483. [Google Scholar] [CrossRef] [Green Version]
- Kralj, S.; van Geel-Schutten, G.H.; van der Maarel, M.; Dijkhuizen, L. Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiol. Sgm 2004, 150, 2099–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, T.; Fujiwara, T.; Kawabata, S. Evolution of Cariogenic Character in Streptococcus mutans: Horizontal Transmission of Glycosyl Hydrolase Family 70 Genes. Sci. Rep. 2012, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Vickerman, M.M.; Sulavik, M.C.; Nowak, J.D.; Gardner, N.M.; Jones, G.W.; Clewell, D.B. Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG. DNA Seq. J. DNA Seq. Map 1997, 7, 83–95. [Google Scholar] [CrossRef]
- Shimamura, A.; Nakano, Y.J.; Mukasa, H.; Kuramitsu, H.K. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product. J. Bacteriol. 1994, 176, 4845–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalin, Y.; Jin, L.; Jianhua, W.; Da, T.; Zigang, T. Expression and characterization of dextransucrase gene dsrX from Leuconostoc mesenteroides in Escherichia coli. J. Biotechnol. 2008, 133, 505–512. [Google Scholar] [CrossRef]
- Kang, H.-K.; Oh, J.-S.; Kim, D. Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a alpha(1-->6) glucan. FEMS Microbiol. Lett. 2009, 292, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Funane, K.; Mizuno, K.; Takahara, H.; Kobayashi, M. Gene encoding a dextransucrase-like protein in Leuconostoc mesenteroides NRRL B-512F. Biosci. Biotechnol. Biochem. 2000, 64, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monchois, V.; Remaud-Simeon, M.; Russell, R.R.B.; Monsan, P.; Willemot, R.-M. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl. Microbiol. Biotechnol. 1997, 48, 465–472. [Google Scholar] [CrossRef]
- Olvera, C.; Fernández-Vázquez, J.L.; Ledezma-Candanoza, L.; López-Munguía, A. Role of the C-terminal region of dextransucrase from Leuconostoc mesenteroides IBT-PQ in cell anchoring. Microbiol. Read. Engl. 2007, 153, 3994–4002. [Google Scholar] [CrossRef] [Green Version]
- Fraga Vidal, R.; Moulis, C.; Escalier, P.; Remaud-Siméon, M.; Monsan, P. Isolation of a Gene from Leuconostoc citreum B/110-1-2 Encoding a Novel Dextransucrase Enzyme. Curr. Microbiol. 2011, 62, 1260–1266. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, H.; Bauché, A.; Mollet, B. Molecular characterization and expression analysis of the dextransucrase DsrD of Leuconostoc mesenteroides Lcc4 in homologous and heterologous Lactococcus lactis cultures. Microbiology 2003, 149, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.-K.; Kim, Y.-M.; Kim, D.-M. Functional, genetic, and bioinformatic characterization of dextransucrase (DSRBCB4) gene in Leuconostoc mesenteroides B-1299CB4. J. Microbiol. Biotechnol. 2008, 18, 1050–1058. [Google Scholar] [PubMed]
- Kim, H.; Kim, D.; Ryu, H.J.; Robyt, J.F. Cloning and sequencing of the alpha-1 -> 6 dextransucrase gene from Leuconostoc mensenteroides B-742C. B. J. Microbiol. Biotechnol. 2000, 10, 559–563. [Google Scholar]
- Monchois, V.; Remaud-Siméon, M.; Monsan, P.; Willemot, R.-M. Cloning and sequencing of a gene coding for an extracellular dextransucrase (DSRB) from Leuconostoc mesenteroides NRRL B-1299 synthesizing only a α(1–6) glucan. FEMS Microbiol. Lett. 1998, 159, 307–315. [Google Scholar] [CrossRef]
- Monchois, V.; Willemot, R.-M.; Remaud-Simeon, M.; Croux, C.; Monsan, P. Cloning and sequencing of a gene coding for a novel dextransucrase from Leuconostoc mesenteroides NRRL B-1299 synthesizing only α(1–6) and α(1–3) linkages. Gene 1996, 182, 23–32. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Y.; Zhu, C.; Zhu, B.; Wang, Y. Cloning, sequencing and expression of a dextransucrase gene (dexYG) from Leuconostoc mesenteroides. Biotechnol. Lett. 2008, 30, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Hanada, N.; Isobe, Y.; Aizawa, Y.; Katayama, T.; Sato, S.; Inoue, M. Nucleotide sequence analysis of the gtfT gene from Streptococcus sobrinus OMZ176. Infect. Immun. 1993, 61, 2096–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rühmkorf, C.; Bork, C.; Mischnick, P.; Rübsam, H.; Becker, T.; Vogel, R.F. Identification of Lactobacillus curvatus TMW 1.624 dextransucrase and comparative characterization with Lactobacillus reuteri TMW 1.106 and Lactobacillus animalis TMW 1.971 dextransucrases. Food Microbiol. 2013, 34, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Brison, Y.; Fabre, E.; Moulis, C.; Portais, J.-C.; Monsan, P.; Remaud-Siméon, M. Synthesis of dextrans with controlled amounts of α-1,2 linkages using the transglucosidase GBD–CD2. Appl. Microbiol. Biotechnol. 2009, 86, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Mooser, G.; Hefta, S.A.; Paxton, R.J.; Shively, J.E.; Lee, T.D. Isolation and sequence of an active-site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus alpha-glucosyltransferases. J. Biol. Chem. 1991, 266, 8916–8922. [Google Scholar] [CrossRef]
- Mooser, G.; Iwaoka, K.R. Sucrose 6-alpha-D-glucosyltransferase from Streptococcus sobrinus: Characterization of a glucosyl-enzyme complex. Biochemistry 1989, 28, 443–449. [Google Scholar] [CrossRef]
- Koshland, D.E. Stereochemistry and the Mechanism of Enzymatic Reactions. Biol. Rev. 1953, 28, 416–436. [Google Scholar] [CrossRef]
- Davies, G.J.; Wilson, K.S.; Henrissat, B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem. J. 1997, 321, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Luzio, G.A.; Mayer, R.M. The hydrolysis of sucrose by dextransucrase. Carbohydr. Res. 1983, 111, 311–318. [Google Scholar] [CrossRef]
- Daudé, D.; Remaud-Siméon, M.; André, I. Sucrose analogs: An attractive (bio)source for glycodiversification. Nat. Prod. Rep. 2012, 29, 945–960. [Google Scholar] [CrossRef]
- Moulis, C.; Joucla, G.; Harrison, D.; Fabre, E.; Potocki-Veronese, G.; Monsan, P.; Remaud-Siméon, M. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J. Biol. Chem. 2006, 281, 31254–31267. [Google Scholar] [CrossRef]
- Cheetham, N.W.H.; Slodki, M.E.; Walker, G.J. Structure of the linear, low molecular weight dextran synthesized by a D-glucosyltransferase (GTF-S3) of Streptococcus sobrinus. Carbohydr. Polym. 1991, 16, 341–353. [Google Scholar] [CrossRef]
- Dobruchowska, J.M.; Meng, X.; Leemhuis, H.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P. Gluco-oligomers initially formed by the reuteransucrase enzyme of Lactobacillus reuteri 121 incubated with sucrose and malto-oligosaccharides. Glycobiology 2013, 23, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Côté, G.L.; Skory, C.D. Isomelezitose formation by glucansucrases. Carbohydr. Res. 2017, 439, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Joucla, G.; Pizzut-Serin, S.; Monsan, P.; Remaud-Siméon, M. Construction of a fully active truncated alternansucrase partially deleted of its carboxy-terminal domain. FEBS Lett. 2006, 580, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.; Moulis, C.; Monties, N.; Pizzut-Serin, S.; Guieysse, D.; Morel, S.; Cioci, G.; Remaud Siméon, M. Deciphering an undecided enzyme: Investigations of the structural determinants involved in the linkage specificity of alternansucrase. ACS Catal. 2019, 9, 2222–2237. [Google Scholar] [CrossRef]
- Komatsu, H.; Abe, Y.; Eguchi, K.; Matsuno, H.; Matsuoka, Y.; Sadakane, T.; Inoue, T.; Fukui, K.; Kodama, T. Kinetics of dextran-independent α-(1→3)-glucan synthesis by Streptococcus sobrinus glucosyltransferase I. FEBS J. 2011, 278, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Bivolarski, V.; Vasileva, T.; Gabriel, V.; Iliev, I. Synthesis of glucooligosaccharides with prebiotic potential by glucansucrase URE 13–300 acceptor reactions with maltose, raffinose and lactose. Eng. Life Sci. 2018, 18, 904–913. [Google Scholar] [CrossRef] [Green Version]
- Díez-Municio, M.; Montilla, A.; Jimeno, M.L.; Corzo, N.; Olano, A.; Moreno, F.J. Synthesis and Characterization of a Potential Prebiotic Trisaccharide from Cheese Whey Permeate and Sucrose by Leuconostoc mesenteroides Dextransucrase. J. Agric. Food Chem. 2012, 60, 1945–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, H.T.T.; Dijkhuizen, L.; van Leeuwen, S.S. Structural characterization of glucosylated lactose derivatives synthesized by the Lactobacillus reuteri GtfA and Gtf180 glucansucrase enzymes. Carbohydr. Res. 2017, 449, 59–64. [Google Scholar] [CrossRef]
- Robyt, J.F.; Eklund, S.H. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 1983, 121, 279–286. [Google Scholar] [CrossRef]
- Shi, Q.; Juvonen, M.; Hou, Y.; Kajala, I.; Nyyssölä, A.; Maina, N.H.; Maaheimo, H.; Virkki, L.; Tenkanen, M. Lactose- and cellobiose-derived branched trisaccharides and a sucrose-containing trisaccharide produced by acceptor reactions of Weissella confusa dextransucrase. Food Chem. 2016, 190, 226–236. [Google Scholar] [CrossRef]
- Bertrand, A.; Morel, S.; Lefoulon, F.; Rolland, Y.; Monsan, P.; Remaud-Siméon, M. Leuconostoc mesenteroides glucansucrase synthesis of flavonoid glucosides by acceptor reactions in aqueous-organic solvents. Carbohydr. Res. 2006, 341, 855–863. [Google Scholar] [CrossRef]
- Seo, E.-S.; Lee, J.-H.; Park, J.-Y.; Kim, D.; Han, H.-J.; Robyt, J.F. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J. Biotechnol. 2005, 117, 31–38. [Google Scholar] [CrossRef]
- Te Poele, E.M.; Grijpstra, P.; van Leeuwen, S.S.; Dijkhuizen, L. Glucosylation of Catechol with the GTFA Glucansucrase Enzyme from Lactobacillus reuteri and Sucrose as Donor Substrate. Bioconjug. Chem. 2016, 27, 937–946. [Google Scholar] [CrossRef]
- Gerwig, G.J.; te Poele, E.M.; Dijkhuizen, L.; Kamerling, J.P. Structural analysis of rebaudioside A derivatives obtained by Lactobacillus reuteri 180 glucansucrase-catalyzed trans-α-glucosylation. Carbohydr. Res. 2017, 440–441. [Google Scholar] [CrossRef] [PubMed]
- Te Poele, E.M.; Devlamynck, T.; Jäger, M.; Gerwig, G.J.; de Walle, D.V.; Dewettinck, K.; Hirsch, A.K.H.; Kamerling, J.P.; Soetaert, W.; Dijkhuizen, L. Glucansucrase (mutant) enzymes from Lactobacillus reuteri 180 efficiently transglucosylate Stevia component rebaudioside A, resulting in a superior taste. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Richard, G.; Morel, S.; Willemot, R.-M.; Monsan, P.; Remaud-Siméon, M. Glucosylation of α-butyl- and α-octyl-D-glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides. Carbohydr. Res. 2003, 338, 855–864. [Google Scholar] [CrossRef]
- Benkoulouche, M.; Ben Imeddourene, A.; Barel, L.-A.; Le Heiget, G.; Pizzut, S.; Kulyk, H.; Bellvert, F.; Bozonnet, S.; Mulard, L.A.; Remaud-Siméon, M.; et al. Redirecting substrate regioselectivity using engineered ΔN 123 -GBD-CD2 branching sucrases for the production of pentasaccharide repeating units of Shigella flexneri 3a, 4a and 4b haptens. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Benkoulouche, M.; Barel, L.-A.; Le Heiget, G.; Ben Imeddourene, A.; Le Guen, Y.; Monties, N.; Guerreiro, C.; Remaud-Siméon, M.; Moulis, C.; et al. Convergent Chemoenzymatic Strategy to Deliver a Diversity of Shigella flexneri Serotype-Specific O-Antigen Segments from a Unique Lightly Protected Tetrasaccharide Core. J. Org. Chem. 2021, 86, 2058–2075. [Google Scholar] [CrossRef]
- Salamone, S.; Guerreiro, C.; Cambon, E.; André, I.; Remaud-Siméon, M.; Mulard, L.A. Programmed chemo-enzymatic synthesis of the oligosaccharide component of a carbohydrate-based antibacterial vaccine candidate. Chem. Commun. 2015, 51, 2581–2584. [Google Scholar] [CrossRef] [PubMed]
- Pucci, M.J.; Jones, K.R.; Kuramitsu, H.K.; Macrina, F.L. Molecular cloning and characterization of the glucosyltransferase C gene (gtfC) from Streptococcus mutans LM7. Infect. Immun. 1987, 55, 2176–2182. [Google Scholar] [CrossRef] [Green Version]
- MacGregor, E.A.; Jespersen, H.M.; Svensson, B. A circularly permuted α-amylase-type α/β-barrel structure in glucan-synthesizing glucosyltransferases. FEBS Lett. 1996, 378, 263–266. [Google Scholar] [CrossRef] [Green Version]
- Janeček, S. How many conserved sequences regions are there in the α-amylase family? Biologia 2002, 57, 29–41. [Google Scholar]
- Janeček, S. α-amylase family: Molecular biology and evolution. Prog. Biophys. Mol. Biol. 1997, 67, 67–97. [Google Scholar] [CrossRef]
- Janeček, Š.; Svensson, B.; MacGregor, E.A. α-Amylase: An enzyme specificity found in various families of glycoside hydrolases. Cell Mol. Life Sci. 2014, 71, 1149–1170. [Google Scholar] [CrossRef] [PubMed]
- Jespersen, H.M.; Ann MacGregor, E.; Henrissat, B.; Sierks, M.R.; Svensson, B. Starch- and glycogen-debranching and branching enzymes: Prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 1993, 12, 791–805. [Google Scholar] [CrossRef]
- Swistowska, A.M.; Gronert, S.; Wittrock, S.; Collisi, W.; Hecht, H.-J.; Hofer, B. Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. FEBS Lett. 2007, 581, 4036–4042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsumori, H.; Minami, T.; Kuramitsu, H.K. Identification of essential amino acids in the Streptococcus mutans glucosyltransferases. J. Bacteriol. 1997, 179, 3391–3396. [Google Scholar] [CrossRef] [Green Version]
- Monchois, V.; Vignon, M.; Escalier, P.-C.; Svensson, B.; Russell, R.R.B. Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization. Eur. J. Biochem. 2000, 267, 4127–4136. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, H.-B.; Li, M.-Q.; Hu, X.-Q.; Li, Y. Functional analysis of truncated and site-directed mutagenesis dextransucrases to produce different type dextrans. Enzyme Microb. Technol. 2017, 102, 26–34. [Google Scholar] [CrossRef]
- Wittrock, S.; Swistowska, A.M.; Collisi, W.; Hofmann, B.; Hecht, H.-J.; Hofer, B. Re- or displacement of invariant residues in the C-terminal half of the catalytic domain strongly affects catalysis by glucosyltransferase R. FEBS Lett. 2008, 582, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Pijning, T.; Dobruchowska, J.M.; Gerwig, G.J.; Dijkhuizen, L. Characterization of the functional roles of amino acid residues in acceptor binding subsite +1 in the active site of the glucansucrase GTF180 enzyme of Lactobacillus reuteri 180. J. Biol. Chem. 2015, 290, 30131–30141. [Google Scholar] [CrossRef] [Green Version]
- Brison, Y.; Pijning, T.; Malbert, Y.; Fabre, É.; Mourey, L.; Morel, S.; Potocki-Véronèse, G.; Monsan, P.; Tranier, S.; Remaud-Siméon, M.; et al. Functional and structural characterization of α-(1->2) branching sucrase derived from DSR-E glucansucrase. J. Biol. Chem. 2012, 287, 7915–7924. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Cioci, G.; Guionnet, M.; Schörghuber, J.; Lichtenecker, R.; Moulis, C.; Remaud-Siméon, M.; Lippens, G. Futile Encounter Engineering of the DSR-M Dextransucrase Modifies the Resulting Polymer Length. Biochemistry 2019, 58, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Pijning, T.; Tietema, M.; Dobruchowska, J.M.; Yin, H.; Gerwig, G.J.; Kralj, S.; Dijkhuizen, L. Characterization of the glucansucrase GTF180 W1065 mutant enzymes producing polysaccharides and oligosaccharides with altered linkage composition. Food Chem. 2017, 217, 81–90. [Google Scholar] [CrossRef]
- Wangpaiboon, K.; Sitthiyotha, T.; Chunsrivirot, S.; Charoenwongpaiboon, T.; Pichyangkura, R. Unravelling Regioselectivity of Leuconostoc citreum ABK-1 Alternansucrase by Acceptor Site Engineering. Int. J. Mol. Sci. 2021, 22, 3229. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Ito, S.; Shimamura, T.; Weyand, S.; Kawarasaki, Y.; Misaka, T.; Abe, K.; Kobayashi, T.; Cameron, A.D.; Iwata, S. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 2011, 408, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Vujičić-Žagar, A.; Pijning, T.; Kralj, S.; López, C.A.; Eeuwema, W.; Dijkhuizen, L.; Dijkstra, B.W. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc. Natl. Acad. Sci. USA 2010, 107, 21406–21411. [Google Scholar] [CrossRef] [Green Version]
- Pijning, T.; Vujičić-Žagar, A.; Kralj, S.; Dijkhuizen, L.; Dijkstra, B.W. Flexibility of truncated and full-length glucansucrase GTF180 enzymes from Lactobacillus reuteri 180. FEBS J. 2014, 281, 2159–2171. [Google Scholar] [CrossRef] [Green Version]
- Pijning, T.; Vujičić-Žagar, A.; Kralj, S.; Dijkhuizen, L.; Dijkstra, B.W. Structure of the α-1,6/α-1,4-specific glucansucrase GTFA from Lactobacillus reuteri 121. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. 2012, 68, 1448–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio, M.I.; Zúñiga, M.A.; Mendoza, F.; Jaña, G.A.; Jiménez, V.A. Modulation of glucan-enzyme interactions by domain V in GTF-SI from Streptococcus mutans. Proteins Struct. Funct. Bioinforma. 2019, 87, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Ben Imeddourene, A.; Esque, J.; André, I. Combining multi-scale modelling methods to decipher molecular motions of a branching sucrase from glycoside-hydrolase family 70. PLoS ONE 2018, 13, e0201323. [Google Scholar] [CrossRef]
- Meng, X.; Dobruchowska, J.M.; Pijning, T.; López, C.A.; Kamerling, J.P.; Dijkhuizen, L. Residue Leu940 has a crucial role in the linkage and reaction specificity of the glucansucrase GTF180 of the probiotic bacterium Lactobacillus reuteri 180. J. Biol. Chem. 2014, 289, 32773–32782. [Google Scholar] [CrossRef] [Green Version]
- Côté, G.L.; Dunlap, C.A.; Vermillion, K.E.; Skory, C.D. Production of isomelezitose from sucrose by engineered glucansucrases. Amylase 2017, 1, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Molina, M.; Moulis, C.; Monties, N.; Guieysse, D.; Morel, S.; Cioci, G.; Remaud-Siméon, M. A specific oligosaccharide-binding site in the alternansucrase catalytic domain mediates alternan elongation. J. Biol. Chem. 2020, 295, 9474–9489. [Google Scholar] [CrossRef]
- Giffard, P.M.; Jacques, N.A. Definition of a fundamental repeating unit in streptococcal glucosyltransferase glucan-binding regions and related sequences. J. Dent. Res. 1994, 73, 1133–1141. [Google Scholar] [CrossRef]
- Monchois, V.; Arguello-Morales, M.; Russell, R.R.B. Isolation of an Active Catalytic Core of Streptococcus downei MFe28 GTF-I Glucosyltransferase. J. Bacteriol. 1999, 181, 2290–2292. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Cioci, G.; Vuillemin, M.; Bondy, P.; Remaud-Simeon, M.; Moulis, C. Processivity of dextransucrases synthesizing very high molar mass dextran is mediated by sugar-binding pockets in domain V. J. Biol. Chem. 2020, 295, 5602–5613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giffard, P.M.; Allen, D.M.; Milward, C.P.; Simpson, C.L.; Jacques, N.A. Sequence of the gtfK gene of Streptococcus salivarius ATCC 25975 and evolution of the gtf genes of oral Streptococci. J. Gen. Microbiol. 1993, 139, 1511–1522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monchois, V.; Vignon, M.; Russell, R.R.B. Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I. Appl. Microbiol. Biotechnol. 1999, 52, 660–665. [Google Scholar] [CrossRef]
- Komatsu, H.; Katayama, M.; Sawada, M.; Hirata, Y.; Mori, M.; Inoue, T.; Fukui, K.; Fukada, H.; Kodama, T. Thermodynamics of the Binding of the C-Terminal Repeat Domain of Streptococcus sobrinus Glucosyltransferase-I to Dextran. Biochemistry 2007, 46, 8436–8444. [Google Scholar] [CrossRef] [PubMed]
- Lis, M.; Shiroza, T.; Kuramitsu, H.K. Role of C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase-S in glucan binding. Appl. Environ. Microbiol. 1995, 61, 2040–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Funane, K.; Ishii, T.; Terasawa, K.; Yamamoto, T.; Kobayashi, M. Construction of Chimeric Glucansucrases for Analyzing Substrate-binding Regions That Affect the Structure of Glucan Products. Biosci. Biotechnol. Biochem. 2004, 68, 1912–1920. [Google Scholar] [CrossRef]
- Suwannarangsee, S.; Moulis, C.; Potocki-Veronese, G.; Monsan, P.; Remaud-Simeon, M.; Chulalaksananukul, W. Search for a dextransucrase minimal motif involved in dextran binding. FEBS Lett. 2007, 581, 4675–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, D.S.H.; Joucla, G.; Remaud-Simeon, M.; Russell, R.R.B. Conserved Repeat Motifs and Glucan Binding by Glucansucrases of Oral Streptococci and Leuconostoc mesenteroides. J. Bacteriol. 2004, 186, 8301–8308. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Hefta, S.A.; Paxton, R.J.; Shively, J.E.; Mooser, G. Size and subdomain architecture of the glucan-binding domain of sucrose:3-alpha-D-glucosyltransferase from Streptococcus sobrinus. Infect. Immun. 1990, 58, 2165–2170. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.S.; Taylor, K.G.; Doyle, R.J. Essential amino acids involved in glucan-dependent aggregation of Streptococcus sobrinus. Carbohydr. Res. 1993, 244, 137–147. [Google Scholar] [CrossRef]
- Wren, B.W.; Russell, R.R.; Tabaqchali, S. Antigenic cross-reactivity and functional inhibition by antibodies to Clostridium difficile toxin, A.; Streptococcus mutans glucan-binding protein, and a synthetic peptide. Infect. Immun. 1991, 59, 3151–3155. [Google Scholar] [CrossRef] [Green Version]
- Monchois, V.; Willemot, R.M.; Monsan, P. Glucansucrases: Mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 1999, 23, 131–151. [Google Scholar] [CrossRef]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2021, 60, 88–119. [Google Scholar] [CrossRef]
- Joucla, G. Caractérisation de l’alternane-Saccharase de Leuconostoc Mesenteroides NRRL B-1355: Approche Rationnelle et al.Éatoire Pour La Conception de Nouvelles Glucane-Saccharases. Ph.D. Thesis, INSA/Toulouse University, Toulouse, France, 2003. [Google Scholar]
- Li, M.; Zhang, H.; Li, Y.; Hu, X.; Yang, J. The thermoduric effects of site-directed mutagenesis of proline and lysine on dextransucrase from Leuconostoc mesenteroides 0326. Int. J. Biol. Macromol. 2018, 107, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Pucci, M.J.; Macrina, F.L. Molecular organization and expression of the gtfA gene of Streptococcus mutans LM7. Infect. Immun. 1986, 54, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Pucci, M.J.; Macrina, F.L. Cloned gtfA gene of Streptococcus mutans LM7 alters glucan synthesis in Streptococcus sanguis. Infect. Immun. 1985, 48, 704–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robeson, J.P.; Barletta, R.G.; Curtiss, R. Expression of a Streptococcus mutans glucosyltransferase gene in Escherichia coli. J. Bacteriol. 1983, 153, 211–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, R.R.B.; Gilpin, M.L.; Mukasa, H.; Dougan, G.Y. Characterization of Glucosyltransferase Expressed from a Streptococcus sobrinus Gene Cloned in Escherichia Coli. Microbiology 1987, 133, 935–944. [Google Scholar] [CrossRef] [Green Version]
- Abo, H.; Matsumura, T.; Kodama, T.; Ohta, H.; Fukui, K.; Kato, K.; Kagawa, H. Peptide sequences for sucrose splitting and glucan binding within Streptococcus sobrinus glucosyltransferase (water-insoluble glucan synthetase). J. Bacteriol. 1991, 173, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Moulis, C. Ingénierie rationnelle de la dextrane-saccharase DSR-S: Compréhension du mécanisme de polymérisation pour la synthèse de dextranes de taille contrôlée. Ph.D. Thesis, INSA/Toulouse University, Toulouse, France, 2006. [Google Scholar]
- Monchois, V.; Reverte, A.; Remaud-Simeon, M.; Monsan, P.; Willemot, R.-M. Effect of Leuconostoc mesenteroides NRRL B-512F Dextransucrase Carboxy-Terminal Deletions on Dextran and Oligosaccharide Synthesis. Appl. Environ. Microbiol. 1998, 64, 1644–1649. [Google Scholar] [CrossRef] [Green Version]
- Kralj, S.; van Leeuwen, S.S.; Valk, V.; Eeuwema, W.; Kamerling, J.P.; Dijkhuizen, L. Hybrid reuteransucrase enzymes reveal regions important for glucosidic linkage specificity and the transglucosylation/hydrolysis ratio. FEBS J. 2008, 275, 6002–6010. [Google Scholar] [CrossRef] [Green Version]
- Hellmuth, H.; Wittrock, S.; Kralj, S.; Dijkhuizen, L.; Hofer, B.; Seibel, J. Engineering the glucansucrase GTFR enzyme reaction and glycosidic bond specificity: Toward tailor-made polymer and oligosaccharide products. Biochemistry 2008, 47, 6678–6684. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.K.; Kimura, A.; Kim, D. Bioengineering of Leuconostoc mesenteroides Glucansucrases That Gives Selected Bond Formation for Glucan Synthesis and/or Acceptor-Product Synthesis. J. Agric. Food Chem. 2011, 59, 4148–4155. [Google Scholar] [CrossRef]
- van Leeuwen, S.S.; Kralj, S.; Eeuwema, W.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P. Structural characterization of bioengineered α-D-glucans produced by mutant glucansucrase GTF180 enzymes of Lactobacillus reuteri strain 180. Biomacromolecules 2009, 10, 580–588. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, S.S.; Kralj, S.; Gerwig, G.J.; Dijkhuizen, L.; Kamerling, J.P. Structural Analysis of Bioengineered α-d-Glucan Produced by a Triple Mutant of the Glucansucrase GTF180 Enzyme from Lactobacillus reuteri Strain 180: Generation of (α1→4) Linkages in a Native (1→3)(1→6)-α-d-Glucan. Biomacromolecules 2008, 9, 2251–2258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.Y.; Gänzle, M.G. Site Directed Mutagenesis of Dextransucrase DsrM from Weissella cibaria: Transformation to a Reuteransucrase. J. Agric. Food Chem. 2016, 64, 6848–6855. [Google Scholar] [CrossRef]
- Kralj, S.; van Geel-Schutten, I.G.H.; Faber, E.J.; van der Maarel, M.J.E.C.; Dijkhuizen, L. Rational Transformation of Lactobacillus reuteri 121 Reuteransucrase into a Dextransucrase. Biochemistry 2005, 44, 9206–9216. [Google Scholar] [CrossRef] [Green Version]
- Côté, G.L.; Skory, C.D. Effects of mutations at threonine-654 on the insoluble glucan synthesized by Leuconostoc mesenteroides NRRL B-1118 glucansucrase. Appl. Microbiol. Biotechnol. 2014, 98, 6651–6658. [Google Scholar] [CrossRef]
- Münkel, F.; Fischer, A.; Wefers, D. Structural characterization of mixed-linkage α-glucans produced by mutants of Lactobacillus reuteri TMW 1.106 dextransucrase. Carbohydr. Polym. 2020, 231, 115697. [Google Scholar] [CrossRef] [PubMed]
- Irague, R.; Tarquis, L.; André, I.; Moulis, C.; Morel, S.; Monsan, P.; Potocki-Véronèse, G.; Remaud-Siméon, M. Combinatorial Engineering of Dextransucrase Specificity. PLoS ONE 2013, 8, e77837. [Google Scholar] [CrossRef] [Green Version]
- Irague, R.; Massou, S.; Moulis, C.; Saurel, O.; Milon, A.; Monsan, P.; Remaud-Siméon, M.; Portais, J.-C.; Potocki-Véronèse, G. NMR-Based Structural Glycomics for High-Throughput Screening of Carbohydrate-Active Enzyme Specificity. Anal. Chem. 2011, 83, 1202–1206. [Google Scholar] [CrossRef]
- Meng, X.; Dobruchowska, J.M.; Pijning, T.; Gerwig, G.J.; Dijkhuizen, L. Synthesis of New Hyperbranched α-Glucans from Sucrose by Lactobacillus reuteri 180 Glucansucrase Mutants. J. Agric. Food Chem. 2016, 64, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, S.; Zhang, H.; Li, Y.; Hu, X. Characterization of the inserted mutagenesis dextransucrases from Leuconostoc mesenteroides 0326 to produce hyperbranched dextran. Int. J. Biol. Macromol. 2018, 112, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Bender, B.J.; Cisneros, A.; Duran, A.M.; Finn, J.A.; Fu, D.; Lokits, A.D.; Mueller, B.K.; Sangha, A.K.; Sauer, M.F.; Sevy, A.M.; et al. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016, 55, 4748–4763. [Google Scholar] [CrossRef]
- Marques, S.M.; Planas-Iglesias, J.; Damborsky, J. Web-based tools for computational enzyme design. Curr. Opin. Struct. Biol. 2021, 69, 19–34. [Google Scholar] [CrossRef] [PubMed]
- Planas-Iglesias, J.; Marques, S.M.; Pinto, G.P.; Musil, M.; Stourac, J.; Damborsky, J.; Bednar, D. Computational design of enzymes for biotechnological applications. Biotechnol. Adv. 2021, 47, 107696. [Google Scholar] [CrossRef] [PubMed]
- Devlamynck, T.; Te Poele, E.M.; Meng, X.; van Leeuwen, S.S.; Dijkhuizen, L. Glucansucrase Gtf180-ΔN of Lactobacillus reuteri 180: Enzyme and reaction engineering for improved glycosylation of non-carbohydrate molecules. Appl. Microbiol. Biotechnol. 2016, 100, 7529–7539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devlamynck, T.; Te Poele, E.M.; Quataert, K.; Gerwig, G.J.; van de Walle, D.; Dewettinck, K.; Kamerling, J.P.; Soetaert, W.; Dijkhuizen, L. Trans-α-glucosylation of stevioside by the mutant glucansucrase enzyme Gtf180-ΔN-Q1140E improves its taste profile. Food Chem. 2019, 272, 653–662. [Google Scholar] [CrossRef]
- Klingel, T.; Hadamjetz, M.; Fischer, A.; Wefers, D. Glucosylation of flavonoids and flavonoid glycosides by mutant dextransucrase from Lactobacillus reuteri TMW 1.106. Carbohydr. Res. 2019, 483, 107741. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.-H.; Lee, J.-H.; Jhon, D.-Y.; Jun, W.-J.; Kang, S.-S.; Sim, J.; Choi, H.; Moon, J.-H.; Kim, D. Synthesis and characterization of novel quercetin-α-d-glucopyranosides using glucansucrase from Leuconostoc mesenteroides. Enzyme Microb. Technol. 2007, 40, 1124–1129. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, Y.; Jia, Y.; Wang, W.; Li, Y.; Lu, S.; Jin, J.-M.; Tang, S.-Y. Engineering a Carbohydrate-processing Transglycosidase into Glycosyltransferase for Natural Product Glycodiversification. Sci. Rep. 2016, 6, 21051. [Google Scholar] [CrossRef]
- Mazurenko, S.; Prokop, Z.; Damborsky, J. Machine Learning in Enzyme Engineering. ACS Catal. 2020, 10, 1210–1223. [Google Scholar] [CrossRef]
- Hofmann, J.; Pagel, K. Glycan Analysis by Ion Mobility–Mass Spectrometry. Angew. Chem. Int. Ed. 2017, 56, 8342–8349. [Google Scholar] [CrossRef]
- Ollivier, S.; Tarquis, L.; Fanuel, M.; Li, A.; Durand, J.; Laville, E.; Potocki-Veronese, G.; Ropartz, D.; Rogniaux, H. Anomeric Retention of Carbohydrates in Multistage Cyclic Ion Mobility (IMSn): De Novo Structural Elucidation of Enzymatically Produced Mannosides. Anal. Chem. 2021, 93, 6254–6261. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Delbianco, M.; Anggara, K.; Michnowicz, T.; Pardo-Vargas, A.; Bharate, P.; Sen, S.; Pristl, M.; Rauschenbach, S.; Schlickum, U.; et al. Imaging single glycans. Nature 2020, 582, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Vuillemin, M.; Malbert, Y.; Laguerre, S.; Remaud-Siméon, M.; Moulis, C. Optimizing the production of an α-(1→2) branching sucrase in Escherichia coli using statistical design. Appl. Microbiol. Biotechnol. 2014, 98, 5173–5184. [Google Scholar] [CrossRef] [Green Version]
- Malten, M.; Hollmann, R.; Deckwer, W.-D.; Jahn, D. Production and secretion of recombinant Leuconostoc mesenteroides dextransucrase DsrS in Bacillus megaterium. Biotechnol. Bioeng. 2005, 89, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Skory, C.D.; Côté, G.L. Secreted expression of Leuconostoc mesenteroides glucansucrase in Lactococcus lactis for the production of insoluble glucans. Appl. Microbiol. Biotechnol. 2015, 99, 10001–10010. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina, M.; Cioci, G.; Moulis, C.; Séverac, E.; Remaud-Siméon, M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure–Function Relationship Studies and Engineering. Microorganisms 2021, 9, 1607. https://doi.org/10.3390/microorganisms9081607
Molina M, Cioci G, Moulis C, Séverac E, Remaud-Siméon M. Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure–Function Relationship Studies and Engineering. Microorganisms. 2021; 9(8):1607. https://doi.org/10.3390/microorganisms9081607
Chicago/Turabian StyleMolina, Manon, Gianluca Cioci, Claire Moulis, Etienne Séverac, and Magali Remaud-Siméon. 2021. "Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure–Function Relationship Studies and Engineering" Microorganisms 9, no. 8: 1607. https://doi.org/10.3390/microorganisms9081607
APA StyleMolina, M., Cioci, G., Moulis, C., Séverac, E., & Remaud-Siméon, M. (2021). Bacterial α-Glucan and Branching Sucrases from GH70 Family: Discovery, Structure–Function Relationship Studies and Engineering. Microorganisms, 9(8), 1607. https://doi.org/10.3390/microorganisms9081607