12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Construction of 12/111∆phiA
2.3. 12/111phiA Genome Analysis
2.4. Construction of Deletion Mutants
2.5. Construction of In Situ Complemented Mutants
2.6. Construction of Plasmid-Complemented Mutants
2.7. Whole-Genome Sequencing
2.8. Bioinformatics Analyses
2.9. Growth Kinetics
2.10. Microscopic Analysis
2.10.1. Gram Staining
2.10.2. Scanning Electron Microscopy (SEM)
2.10.3. Transmission Electron Microscopy (TEM)
2.11. Biofilm Formation Assay
2.12. Statistical Analysis
3. Results
3.1. Genome Analysis of 12/111phiA
3.2. Construction of Mutants
3.3. Growth Characteristics, Morphology, and Biofilm Formation for 12/111, 12/111ΔphiA, and the Deleted Mutants
3.4. Restoration of the Phenotypic Traits of the Complemented Mutants
3.4.1. In Situ Complemented Mutants
3.4.2. Plasmid Complemented Mutants
3.5. Search for Secondary Mutations in Deleted and In Situ Complemented Mutants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plainvert, C.; El Alaoui, F.; Tazi, A.; Joubrel, C.; Anselem, O.; Ballon, M.; Frigo, A.; Branger, C.; Mandelbrot, L.; Goffinet, F.; et al. Intrapartum group B Streptococcus screening in the labor ward by Xpert(R) GBS real-time PCR. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 265–270. [Google Scholar] [CrossRef]
- Six, A.; Joubrel, C.; Tazi, A.; Poyart, C. Maternal and perinatal infections to Streptococcus agalactiae. Presse Med. 2014, 43, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.; Rosinski-Chupin, I.; Plainvert, C.; Douarre, P.E.; Borrego, M.J.; Poyart, C.; Glaser, P. Parallel evolution of group B Streptococcus hypervirulent clonal complex 17 unveils new pathoadaptive mutations. mSystems 2017, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanduri, S.A.; Petit, S.; Smelser, C.; Apostol, M.; Alden, N.B.; Harrison, L.H.; Lynfield, R.; Vagnone, P.S.; Burzlaff, K.; Spina, N.L.; et al. Epidemiology of invasive early-onset and late-onset group B streptococcal disease in the United States, 2006 to 2015: Multistate laboratory and population-based surveillance. JAMA Pediatr. 2019, 173, 224. [Google Scholar] [CrossRef] [PubMed]
- Romain, A.S.; Cohen, R.; Plainvert, C.; Joubrel, C.; Bechet, S.; Perret, A.; Tazi, A.; Poyart, C.; Levy, C. Clinical and laboratory features of group B Streptococcus meningitis in infants and newborns: Study of 848 cases in France, 2001–2014. Clin. Infect. Dis. 2018, 66, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Wicker, E.; Lander, F.; Weidemann, F.; Hufnagel, M.; Berner, R.; Krause, G. Group B Streptococci: Declining incidence in infants in Germany. Pediatr. Infect. Dis. J. 2019, 38, 516–519. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Seale, A.C.; O’Sullivan, C.; Le Doare, K.; Heath, P.T.; Lawn, J.E.; Bartlett, L.; Cutland, C.; Gravett, M.; Ip, M.; et al. Risk of early-onset neonatal group B streptococcal disease with maternal colonization worldwide: Systematic review and meta-analyses. Clin. Infect. Dis. 2017, 65, S152–S159. [Google Scholar] [CrossRef] [Green Version]
- Argov, T.; Azulay, G.; Pasechnek, A.; Stadnyuk, O.; Ran-Sapir, S.; Borovok, I.; Sigal, N.; Herskovits, A.A. Temperate bacteriophages as regulators of host behavior. Curr. Opin. Microbiol. 2017, 38, 81–87. [Google Scholar] [CrossRef]
- Al-Shahib, A.; Underwood, A.; Afshar, B.; Turner, C.E.; Lamagni, T.; Sriskandan, S.; Efstratiou, A. Emergence of a novel lineage containing a prophage in Emm/M3 group A Streptococcus associated with upsurge in invasive disease in the UK. Microb. Genom. 2016, 2. [Google Scholar] [CrossRef] [Green Version]
- Murray, S.; Pascoe, B.; Méric, G.; Mageiros, L.; Yahara, K.; Hitchings, M.D.; Friedmann, Y.; Wilkinson, T.S.; Gormley, F.J.; Mack, D.; et al. Recombination-Mediated host adaptation by avian Staphylococcus aureus. Genome Biol. Evol. 2017, 9, 830–842. [Google Scholar] [CrossRef] [Green Version]
- Spoor, L.E.; McAdam, P.R.; Weinert, L.A.; Rambaut, A.; Hasman, H.; Aarestrup, F.M.; Kearns, A.M.; Larsen, A.R.; Skov, R.L.; Fitzgerald, J.R. Livestock origin for a human pandemic clone of community-associated methicillin-resistant Staphylococcus aureus. mBio 2013, 4, e00356-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, A.J.; Witney, A.A.; Lindsay, J.A. Staphylococcus aureus temperate bacteriophage: Carriage and horizontal gene transfer is lineage associated. Front. Cell. Infect. Microbiol. 2012, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- You, Y.; Davies, M.R.; Protani, M.; McIntyre, L.; Walker, M.J.; Zhang, J. Scarlet fever epidemic in China caused by Streptococcus pyogenes serotype M12: Epidemiologic and molecular analysis. EBioMedicine 2018, 28, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, J.; Kimura, T.; Narita, S.; Tomita, T.; Kamio, Y. Complete nucleotide sequence and molecular characterization of the temperate staphylococcal bacteriophage PhiPVL carrying panton-valentine leukocidin genes. Gene 1998, 215, 57–67. [Google Scholar] [CrossRef]
- Laumay, F.; Corvaglia, A.-R.; Diene, S.M.; Girard, M.; Oechslin, F.; van der Mee-Marquet, N.; Entenza, J.M.; François, P. Temperate prophages increase bacterial adhesin expression and virulence in an experimental model of endocarditis due to Staphylococcus aureus from the CC398 lineage. Front. Microbiol. 2019, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- van der Mee-Marquet, N.; Diene, S.M.; Barbera, L.; Courtier-Martinez, L.; Lafont, L.; Ouachee, A.; Valentin, A.S.; Santos, S.D.; Quentin, R.; Francois, P. Analysis of the prophages carried by human infecting isolates provides new insight into the evolution of group B Streptococcus species. Clin. Microbiol. Infect. 2017, 24, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Lichvariková, A.; Soltys, K.; Szemes, T.; Slobodnikova, L.; Bukovska, G.; Turna, J.; Drahovska, H. Characterization of clinical and carrier Streptococcus agalactiae and prophage contribution to the strain variability. Viruses 2020, 12, 1323. [Google Scholar] [CrossRef]
- Renard, A.; Barbera, L.; Courtier-Martinez, L.; Dos Santos, S.; Valentin, A.S.; Mereghetti, L.; Quentin, R.; van der Mee-Marquet, N.L. PhiD12-like livestock-associated prophages are associated with novel subpopulations of Streptococcus agalactiae Infecting Neonates. Front. Cell. Infect. Microbiol. 2019, 9, 166. [Google Scholar] [CrossRef] [Green Version]
- Jamrozy, D.; Bijlsma, M.W.; de Goffau, M.C.; van de Beek, D.; Kuijpers, T.W.; Parkhill, J.; van der Ende, A.; Bentley, S.D. Increasing incidence of group B Streptococcus neonatal infections in The Netherlands is associated with clonal expansion of CC17 and CC23. Sci. Rep. 2020, 10, 9539. [Google Scholar] [CrossRef]
- Domelier, A.S.; van der Mee-Marquet, N.; Sizaret, P.Y.; Hery-Arnaud, G.; Lartigue, M.F.; Mereghetti, L.; Quentin, R. Molecular characterization and lytic activities of Streptococcus agalactiae bacteriophages and determination of lysogenic-strain features. J. Bacteriol. 2009, 191, 4776–4785. [Google Scholar] [CrossRef] [Green Version]
- Song, W.; Sun, H.-X.; Zhang, C.; Cheng, L.; Peng, Y.; Deng, Z.; Wang, D.; Wang, Y.; Hu, M.; Liu, W.; et al. Prophage hunter: An integrative hunting tool for active prophages. Nucleic Acids Res. 2019, 47, W74–W80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucchini, S.; Desiere, F.; Brussow, H. The genetic relationship between virulent and temperate Streptococcus thermophilus bacteriophages: Whole genome comparison of cos-site phages Sfi19 and Sfi21. Virology 1999, 260, 232–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desiere, F.; Lucchini, S.; Canchaya, C.; Ventura, M.; Brussow, H. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek 2002, 82, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Canchaya, C.; Proux, C.; Fournous, G.; Bruttin, A.; Brüssow, H. Prophage genomics. Microbiol. Mol. Biol. Rev. 2003, 67, 238–276. [Google Scholar] [CrossRef] [Green Version]
- Dower, W.J.; Miller, J.F.; Ragsdale, C.W. High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res. 1988, 16, 6127–6145. [Google Scholar] [CrossRef] [Green Version]
- Ricci, M.L.; Manganelli, R.; Berneri, C.; Orefici, G.; Pozzi, G. Electrotransformation of Streptococcus agalactiae with plasmid DNA. FEMS Microbiol. Lett. 1994, 119, 47–52. [Google Scholar] [CrossRef]
- Biswas, I.; Gruss, A.; Ehrlich, S.D.; Maguin, E. High-Efficiency gene inactivation and replacement system for gram-positive bacteria. J. Bacteriol. 1993, 175, 3628–3635. [Google Scholar] [CrossRef] [Green Version]
- Firon, A.; Tazi, A.; Da Cunha, V.; Brinster, S.; Sauvage, E.; Dramsi, S.; Golenbock, D.T.; Glaser, P.; Poyart, C.; Trieu-Cuot, P. The abi-domain protein Abx1 interacts with the CovS histidine kinase to control virulence gene expression in group B Streptococcus. PLoS Pathog. 2013, 9, e1003179. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, D.; Tewhey, R.; Veyrieras, J.-B.; Farinelli, L.; Østerås, M.; François, P.; Schrenzel, J. De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 Bp short and long range paired-end reads. Bioinformatics 2014, 30, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, M.J.; Petty, N.K.; Beatson, S.A. Easyfig: A genome comparison visualizer. Bioinformatics 2011, 27, 1009–1010. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, J.W.; Mittwer, T. The gram stain. Bacteriol. Rev. 1952, 16, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Hussey, M.A. Gram Stain Protocols. Available online: https://www.asmscience.org/content/education/protocol/protocol.2886 (accessed on 2 December 2020).
- Deynoux, M.; Sunter, N.; Ducrocq, E.; Dakik, H.; Guibon, R.; Burlaud-Gaillard, J.; Brisson, L.; Rouleux-Bonnin, F.; Le Nail, L.-R.; Hérault, O.; et al. A comparative study of the capacity of mesenchymal stromal cell lines to form spheroids. PLoS ONE 2020, 15, e0225485. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH image to imagej: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Konto-Ghiorghi, Y.; Mairey, E.; Mallet, A.; Dumenil, G.; Caliot, E.; Trieu-Cuot, P.; Dramsi, S. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 2009, 5, e1000422. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, G.A. Microtiter dish biofilm formation assay. J. Vis. Exp. 2011, 40, 2437. [Google Scholar] [CrossRef] [PubMed]
- Naves, P.; del Prado, G.; Huelves, L.; Gracia, M.; Ruiz, V.; Blanco, J.; Rodriguez-Cerrato, V.; Ponte, M.C.; Soriano, F. Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J. Appl. Microbiol. 2008, 105, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Kaliniene, L.; Šimoliūnas, E.; Truncaitė, L.; Zajančkauskaitė, A.; Nainys, J.; Kaupinis, A.; Valius, M.; Meškys, R. Molecular analysis of arthrobacter myovirus VB_ArtM-ArV1: We blame it on the tail. J. Virol. 2017, 91, e00023-17. [Google Scholar] [CrossRef] [Green Version]
- Katsura, I.; Hendrix, R.W. Length determination in bacteriophage lambda tails. Cell 1984, 39, 691–698. [Google Scholar] [CrossRef]
- Davidson, A.R.; Cardarelli, L.; Pell, L.G.; Radford, D.R.; Maxwell, K.L. Long noncontractile tail machines of bacteriophages. In Viral Molecular Machines; Advances in Experimental Medicine and Biology; Rossmann, M.G., Rao, V.B., Eds.; Springer: Boston, MA, USA, 2012; Volume 726, pp. 115–142. ISBN 978-1-4614-0979-3. [Google Scholar]
- Yadav, M.K.; Chae, S.W.; Song, J.J. Effect of 5-azacytidine on in vitro biofilm formation of Streptococcus pneumoniae. Microb. Pathog. 2012, 53, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Behiels, E.; Devreese, B. Toxin-Antitoxin systems: Their role in persistence, biofilm formation, and pathogenicity. Pathog. Dis. 2014, 70, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.T.; Domenech, M.; Moreno-Cordoba, I.; Navarro-Martinez, V.; Nieto, C.; Moscoso, M.; Garcia, E.; Espinosa, M. The Streptococcus pneumoniae yefM-yoeB and relBE Toxin-antitoxin operons participate in oxidative stress and biofilm formation. Toxins 2018, 10, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gotfredsen, M.; Gerdes, K. The Escherichia coli RelBE genes belong to a new toxin-antitoxin gene family. Mol. Microbiol. 1998, 29, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.T.; Espinosa, M.; Yeo, C.C. Keeping the wolves at bay: Antitoxins of prokaryotic type II toxin-antitoxin systems. Front. Mol. Biosci. 2016, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parungao, G.G.; Zhao, M.; Wang, Q.; Zano, S.P.; Viola, R.E.; Blumenthal, R.M. Complementation of a MetK-deficient E. coli strain with heterologous AdoMet synthetase genes. Microbiology 2017, 163, 1812–1821. [Google Scholar] [CrossRef] [PubMed]
- Motiejunaite, R.; Armalyte, J.; Markuckas, A.; Suziedeliene, E. Escherichia coli DinJ-YafQ genes act as a toxin-antitoxin module. FEMS Microbiol. Lett. 2007, 268, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Armalyte, J.; Jurenaite, M.; Beinoraviciute, G.; Teiserskas, J.; Suziedeliene, E. Characterization of Escherichia coli DinJ-YafQ toxin-antitoxin system using insights from mutagenesis data. J. Bacteriol. 2012, 194, 1523–1532. [Google Scholar] [CrossRef] [Green Version]
- Rezaei Javan, R.; Ramos-Sevillano, E.; Akter, A.; Brown, J.; Brueggemann, A.B. Prophages and satellite prophages are widespread in Streptococcus and may play a role in pneumococcal pathogenesis. Nat. Commun. 2019, 10, 4852. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, L.; Huang, Y.; Huang, T.; Tang, J.; Xie, T.; Lei, A.; Luo, F.; Li, J.; Huang, Y.; et al. Pathogenicity of human ST23 Streptococcus agalactiae to fish and genomic comparison of pathogenic and non-pathogenic isolates. Front. Microbiol. 2017, 8, 1933. [Google Scholar] [CrossRef]
- Haas, W.; Sublett, J.; Kaushal, D.; Tuomanen, E.I. Revising the role of the pneumococcal Vex-VncRS locus in vancomycin tolerance. J. Bacteriol. 2004, 186, 8463–8471. [Google Scholar] [CrossRef] [Green Version]
- Novak, R.; Charpentier, E.; Braun, J.S.; Tuomanen, E. Signal transduction by a death signal peptide: Uncovering the mechanism of bacterial killing by penicillin. Mol. Cell 2000, 5, 49–57. [Google Scholar] [CrossRef]
- Yang, M.; Aamodt, R.M.; Dalhus, B.; Balasingham, S.; Helle, I.; Andersen, P.; Tonjum, T.; Alseth, I.; Rognes, T.; Bjoras, M. The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage. DNA Repair 2011, 10, 595–602. [Google Scholar] [CrossRef]
- Samartzidou, H.; Mehrazin, M.; Xu, Z.; Benedik, M.J.; Delcour, A.H. Cadaverine inhibition of porin plays a role in cell survival at acidic PH. J. Bacteriol. 2003, 185, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ware, D.; Jiang, Y.; Lin, W.; Swiatlo, E. Involvement of PotD in Streptococcus pneumoniae polyamine transport and pathogenesis. Infect. Immunol. 2006, 74, 352–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crestani, C.; Forde, T.L.; Zadoks, R.N. Development and application of a prophage integrase typing scheme for group B Streptococcus. Front. Microbiol. 2020, 11, 1993. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.H.; Fang, G. Conserved DNA methyltransferases: A window into fundamental mechanisms of epigenetic regulation in bacteria. Trends Microbiol. 2021, 29, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Van Melderen, L.; Saavedra De Bast, M. Bacterial toxin–antitoxin systems: More than selfish entities? PLoS Genet. 2009, 5, e1000437. [Google Scholar] [CrossRef] [PubMed]
- Peltier, J.; Hamiot, A.; Garneau, J.R.; Boudry, P.; Maikova, A.; Hajnsdorf, E.; Fortier, L.-C.; Dupuy, B.; Soutourina, O. Type I toxin-antitoxin systems contribute to the maintenance of mobile genetic elements in clostridioides difficile. Commun. Biol. 2020, 3, 718. [Google Scholar] [CrossRef] [PubMed]
- Vasu, K.; Nagaraja, V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol. Mol. Biol. Rev. 2013, 77, 53–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wood, T.K. Toxin-Antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol. 2011, 77, 5577–5583. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Wang, X.; Ma, Q.; Zhang, X.-S.; Wood, T.K. Toxin-Antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. 2009, 191, 1258–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parveen, N.; Cornell, K.A. Methylthioadenosine/S-Adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism: Involvement of MTA/SAH nucleosidase in bacterial metabolism. Mol. Microbiol. 2011, 79, 7–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.-R.; Yeon, K.-M. Quorum sensing as language of chemical signals. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 81, pp. 57–94. ISBN 978-0-444-64064-2. [Google Scholar]
- Laganenka, L.; Colin, R.; Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 2016, 7, 12984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laganenka, L.; Sourjik, V. Autoinducer 2-Dependent Escherichia coli biofilm formation is enhanced in a dual-species coculture. Appl. Environ. Microbiol. 2017, 84, e02638-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, S.; Wood, T.K. The primary physiological roles of autoinducer 2 in Escherichia coli are chemotaxis and biofilm formation. Microorganisms 2021, 9, 386. [Google Scholar] [CrossRef] [PubMed]
- Remmington, A.; Haywood, S.; Edgar, J.; Green, L.R.; de Silva, T.; Turner, C.E. Cryptic prophages within a Streptococcus pyogenes genotype Emm4 lineage. Microb. Genom. 2020, 7. [Google Scholar] [CrossRef]
- Wang, X.; Kim, Y.; Ma, Q.; Hong, S.H.; Pokusaeva, K.; Sturino, J.M.; Wood, T.K. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 2010, 1, 147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadulghani, M.; Ogura, Y.; Ooka, T.; Itoh, T.; Sawaguchi, A.; Iguchi, A.; Nakayama, K.; Hayashi, T. The defective prophage pool of Escherichia coli O157: Prophage-Prophage interactions potentiate horizontal transfer of virulence determinants. PLoS Pathog. 2009, 5, e1000408. [Google Scholar] [CrossRef] [Green Version]
- Bobay, L.M.; Touchon, M.; Rocha, E.P. Pervasive domestication of defective prophages by bacteria. Proc. Natl. Acad. Sci. USA 2014, 111, 12127–12132. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Ma, S.; Hu, H.; Ding, L.; Ren, H. The biological role of N-Acyl-Homoserine lactone-based Quorum Sensing (QS) in EPS production and microbial community assembly during anaerobic granulation process. Sci. Rep. 2018, 8, 15793. [Google Scholar] [CrossRef] [Green Version]
- Matysik, A.; Ho, F.K.; Ler Tan, A.Q.; Vajjala, A.; Kline, K.A. Cellular chaining influences biofilm formation and structure in group A Streptococcus. Biofilm 2020, 2, 100013. [Google Scholar] [CrossRef]
- Arrigucci, R.; Pozzi, G. Identification of the chain-dispersing peptidoglycan hydrolase LytB of Streptococcus gordonii. PLoS ONE 2017, 12, e0176117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domenech, M.; García, E. The N-acetylglucosaminidase LytB of Streptococcus pneumoniae is involved in the structure and formation of biofilms. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef]
- Moscoso, M.; García, E.; López, R. Biofilm formation by Streptococcus pneumoniae: Role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J. Bacteriol. 2006, 188, 7785–7795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobot, J.A. Bacterial ultrastructure. In Molecular Medical Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 7–32. ISBN 978-0-12-397169-2. [Google Scholar]
- Kolodkin-Gal, I.; Verdiger, R.; Shlosberg-Fedida, A.; Engelberg-Kulka, H. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS ONE 2009, 4, e6785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Tan, M.; Zhang, C.; Xu, Z.; Li, L.; Zhou, R. Functional characterization of MurB-PotABCD Operon for polyamine uptake and peptidoglycan synthesis in Streptococcus suis. Microbiol. Res. 2018, 207, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Ware, D.; Watt, J.; Swiatlo, E. Utilization of putrescine by Streptococcus pneumoniae during growth in choline-limited medium. J. Microbiol. 2005, 43, 398–405. [Google Scholar] [PubMed]
- Ou, M.; Ling, J. Norspermidine changes the basic structure of S. mutans biofilm. Mol. Med. Rep. 2017, 15, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.; Swiatlo, E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 2008, 68, 4–16. [Google Scholar] [CrossRef]
- Corno, G.; Coci, M.; Giardina, M.; Plechuk, S.; Campanile, F.; Stefani, S. Antibiotics promote aggregation within aquatic bacterial communities. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef]
- Klebensberger, J.; Lautenschlager, K.; Bressler, D.; Wingender, J.; Philipp, B. Detergent-Induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy. Environ. Microbiol. 2007, 9, 2247–2259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trunk, T.; Khalil, H.S.; Leo, J.C. Bacterial Autoaggregation. AIMS Microbiol. 2018, 4, 140–164. [Google Scholar] [CrossRef] [PubMed]
- Hardy, L.; Cerca, N.; Jespers, V.; Vaneechoutte, M.; Crucitti, T. Bacterial biofilms in the vagina. Res. Microbiol. 2017, 168, 865–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craft, K.M.; Townsend, S.D. 1-Amino-2′-Fucosyllactose inhibits biofilm formation by Streptococcus agalactiae. J. Antibiot. 2019, 72, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, K.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob. Agents Chemother. 2013, 57, 5572–5579. [Google Scholar] [CrossRef] [Green Version]
- Welin-Neilands, J.; Svensäter, G. Acid tolerance of biofilm cells of Streptococcus mutans. Appl. Environ. Microbiol. 2007, 73, 5633–5638. [Google Scholar] [CrossRef] [Green Version]
- Bremer, E.; Krämer, R. Responses of microorganisms to osmotic stress. Annu. Rev. Microbiol. 2019, 73, 313–334. [Google Scholar] [CrossRef]
- Domenech, M.; Ramos-Sevillano, E.; García, E.; Moscoso, M.; Yuste, J. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect. Immun. 2013, 81, 2606–2615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, P.; Verma, S.; Bauer, R.; Kumari, M.; Dua, M.; Johri, A.K.; Yadav, V.; Spellerberg, B. Deciphering streptococcal biofilms. Microorganisms 2020, 8, 1835. [Google Scholar] [CrossRef]
- Silvestre, I.; Borrego, M.J.; Jordão, L. Biofilm formation by ST17 and ST19 strains of Streptococcus agalactiae. Res. Microbiol. 2020, 171, 311–318. [Google Scholar] [CrossRef]
- Rosini, R.; Margarit, I. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factors. Front. Cell. Infect. Microbiol. 2015, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Doare, K.; Heath, P.T. An overview of global GBS epidemiology. Vaccine 2013, 31 (Suppl. S4), D7–D12. [Google Scholar] [CrossRef]
- Amabebe, E.; Anumba, D.O.C. The vaginal microenvironment: The physiologic role of lactobacilli. Front. Med. 2018, 5, 181. [Google Scholar] [CrossRef] [Green Version]
- Vecino, X.; Rodriguez-Lopez, L.; Ferreira, D.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Bioactivity of glycolipopeptide cell-bound biosurfactants against skin pathogens. Int. J. Biol. Macromol. 2018, 109, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Shima, H.; Matsumoto, M.; Ishigami, Y.; Ebina, M.; Muto, A.; Sato, Y.; Kumagai, S.; Ochiai, K.; Suzuki, T.; Igarashi, K. S-Adenosylmethionine synthesis is regulated by selective N6-adenosine Methylation and MRNA degradation involving METTL16 and YTHDC1. Cell Rep. 2017, 21, 3354–3363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surette, M.G.; Bassler, B.L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 1998, 95, 7046–7050. [Google Scholar] [CrossRef] [Green Version]
- Han, X.G.; Lu, C.P. Detection of autoinducer-2 and analysis of the profile of LuxS and Pfs transcription in Streptococcus suis serotype 2. Curr. Microbiol. 2009, 58, 146–152. [Google Scholar] [CrossRef]
Strains | Culture Aspect | Gram Stanning | Maximal Growth | Biofilm Formation Index | SEM | TEM | ||
---|---|---|---|---|---|---|---|---|
Cluster Appearance | Cocci Morphology | Wall Thickness (in nm) | Glycocalyx Frequency | |||||
12/111 | C | G1 | 100 | 100 | R | R | 14.0 (SD = 4.41) | 23% |
12/111∆phiA | T | G2 | 73.8 (p < 0.0001) | 39.8 (p < 0.0001) | I | R | 14.3 (SD = 1.88) | 5% |
Deleted mutants | ||||||||
12/111∆relB-metK n°1 | T | G2 | 73.9 (p < 0.0001) | 47.2 (p < 0.0001) | - | - | - | - |
12/111∆relB-metK n°2 | T | G2 | 77.7 (p < 0.0001) | 50.1 (p < 0.0001) | R/I | R | 13.4 (SD = 1.84) | 3.5% |
12/111∆relB-yafQ | T | G2 | 74.8 (p < 0.0001) | 49.0 (p < 0.0001) | - | - | - | - |
12/111∆metK | T | G2 | 78.4 (p < 0.0001) | 57.9 (p < 0.001) | - | - | - | - |
12/111∆endonuclease | T | G2 | 76.1 (p < 0.0001) | 46.6 (p < 0.0001) | - | - | - | - |
12/111∆endonuclease-metK | T | G2 | 79.2 (p < 0.0001) | 47.6 (p < 0.0001) | - | - | - | - |
in situ complemented mutants | ||||||||
12/111ΔrelB-metK::relB-metK n°1 | T | G2 | 74.9 (p < 0.0001) | 47.6 (p < 0.0001) | - | - | - | - |
12/111ΔrelB-metK::relB-metK n°2 | C | G1 | 95.5 (ns) | 93.0 (ns) | R/I | R | 13.5 (SD = 1.20) | 21.5% |
12/111∆relB-yafQ::relB-yafQ | T | G2 | 76.2 (p < 0.0001) | 64.1 (p < 0.05) | - | - | - | - |
12/111∆metK::metK | T | G2 | 79.8 (p < 0.0001) | 45.3 (p < 0.0001) | - | - | - | - |
12/111∆endonuclease::endonuclease | T | G2 | 73.0 (p < 0.0001) | 46.2 (p < 0.0001) | - | - | - | - |
12/111∆endonuclease-metK::endonuclease-metK | T | G2 | 76.2 (p < 0.0001) | 37.2 (p < 0.0001) | - | - | - | - |
12/111 pTCV-PTet n°1 | T | G2 | 100 | 100 | - | - | - | - |
12/111 pTCV-PTet n°2 | T | G2 | 100.2 (ns) | 87.1 (ns) | - | - | - | - |
12/111∆phiA pTCV-PTet | T | G2 | 99.4 (ns) | 61.5 (p < 0.01) | R/I | R | 13.4 (SD = 4.06) | 2% |
12/111∆phiA plasmidic complemented mutants | ||||||||
12/111∆phiA pTCV-PTet::relB-yafQ | T | G2 | 96.5 (ns) | 65.8 (p < 0.05) | - | - | - | - |
12/111∆phiA pTCV-PTet::metK | C | G1 | 97.9 (ns) | 66.0 (p < 0.05) | R/I | I | 12.3 (SD = 3.07) | 6% |
12/111∆phiA pTCV-PTet::endonuclease | T | G2 | 93.3 (ns) | 58.3 (p < 0.001) | - | - | - | - |
12/111∆phiA pTCV-PTet::endonuclease-metK | C | G1 | 91.1 (ns) | 54.0 (p < 0.0001) | R/I | I | 11.5 (SD = 1.53) | 3% |
12/111ΔrelB-metK pTCV-PTet | T | G2 | 95.6 (ns) | 79.5 (ns) | R/I | R | 13.5(SD = 3.86) | 4% |
12/111∆relB-metK plasmidic complemented mutants | ||||||||
12/111∆relB-metK pTCV-PTet::relB-yafQ | T | G2 | 100.0 (ns) | 62.8 (p < 0.01) | - | - | - | - |
12/111∆relB-metK pTCV-PTet::metK | C | G1 | 91.2 (ns) | 51.3 (p < 0.0001) | R/I | I | 10.9 (SD = 0.93) | 12.5% |
12/111∆relB-metK pTCV-PTet::endonuclease | T | G2 | 99.2 (ns) | 61.3 (p < 0.01) | - | - | - | - |
12/111∆relB-metK pTCV-PTet::endonuclease-metK | C | G1 | 102.1(ns) | 71.4 (ns) | R/I | I | 11.3 (SD = 1.93) | 4% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renard, A.; Diene, S.M.; Courtier-Martinez, L.; Gaillard, J.B.; Gbaguidi-Haore, H.; Mereghetti, L.; Quentin, R.; Francois, P.; Van Der Mee-Marquet, N. 12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021, 9, 1112. https://doi.org/10.3390/microorganisms9061112
Renard A, Diene SM, Courtier-Martinez L, Gaillard JB, Gbaguidi-Haore H, Mereghetti L, Quentin R, Francois P, Van Der Mee-Marquet N. 12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms. 2021; 9(6):1112. https://doi.org/10.3390/microorganisms9061112
Chicago/Turabian StyleRenard, Adélaïde, Seydina M. Diene, Luka Courtier-Martinez, Julien Burlaud Gaillard, Houssein Gbaguidi-Haore, Laurent Mereghetti, Roland Quentin, Patrice Francois, and Nathalie Van Der Mee-Marquet. 2021. "12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae" Microorganisms 9, no. 6: 1112. https://doi.org/10.3390/microorganisms9061112
APA StyleRenard, A., Diene, S. M., Courtier-Martinez, L., Gaillard, J. B., Gbaguidi-Haore, H., Mereghetti, L., Quentin, R., Francois, P., & Van Der Mee-Marquet, N. (2021). 12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms, 9(6), 1112. https://doi.org/10.3390/microorganisms9061112