Probe-Based Real-Time qPCR Assays for a Reliable Differentiation of Capripox Virus Species
Abstract
:1. Introduction
2. Materials and Methods
15 min | 95 °C | ||
45 s | 95 °C | ||
15 s | 60 °C | 45 cycles | |
15 s | 72 °C |
3 min | 95 °C | ||
15 s | 95 °C | ||
15 s | 60 °C | 45 cycles | |
15 s | 72 °C |
3 min | 95 °C | ||
15 s | 95 °C | ||
5 s | 62 °C | 45 cycles | |
15 s | 72 °C |
3. Results
3.1. Duplex Assays for Detection of Capripox Virus Genomes and Internal Controls
3.2. Species-Specific Duplex Real-Time qPCR Assays
3.3. Combination of Different Methods to a Diagnostic Workflow from the Detection of Capripox Viral Genomes to the Final Genetic and Phylogenetic Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Committee on Taxonomy of Viruses. Virus Taxonomy: 2019 Release. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 9 September 2020).
- Babiuk, S.; Bowden, T.R.; Boyle, D.B.; Wallace, D.B.; Kitching, R.P. Capripoxviruses: An emerging worldwide threat to sheep, goats and cattle. Transbound Emerg. Dis. 2008, 55, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuppurainen, E.S.; Oura, C.A. Review: Lumpy skin disease: An emerging threat to Europe, the Middle East and Asia. Transbound Emerg. Dis. 2012, 59, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Carn, V.M. Control of capripoxvirus infections. Vaccine 1993, 11, 1275–1279. [Google Scholar] [CrossRef]
- Kitching, P. Progress towards sheep and goat pox vaccines. Vaccine 1983, 1, 4–9. [Google Scholar] [CrossRef]
- Bowden, T.R.; Babiuk, S.L.; Parkyn, G.R.; Copps, J.S.; Boyle, D.B. Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats. Virology 2008, 371, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Tuppurainen, E.S.M.; Venter, E.H.; Shisler, J.L.; Gari, G.; Mekonnen, G.A.; Juleff, N.; Lyons, N.A.; De Clercq, K.; Upton, C.; Bowden, T.R.; et al. Review: Capripoxvirus Diseases: Current Status and Opportunities for Control. Transbound Emerg. Dis. 2017, 64, 729–745. [Google Scholar] [CrossRef]
- Hunter, P.; Wallace, D. Lumpy skin disease in southern Africa: A review of the disease and aspects of control. J. S. Afr. Vet. Assoc. 2001, 72, 68–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, K.E. Lumpy skin disease virus. Virol. Monogr. 1968, 3, 111–131. [Google Scholar]
- Tuppurainen, E.S.; Venter, E.H.; Coetzer, J.A. The detection of lumpy skin disease virus in samples of experimentally infected cattle using different diagnostic techniques. Onderstepoort J. Vet. Res. 2005, 72, 153–164. [Google Scholar] [CrossRef]
- OIE. OIE-Listed Diseases, Infections and Infestations in Force in 2020. Available online: https://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2020/ (accessed on 16 October 2020).
- OIE. Sheep pox and goat pox. In OIE Terrestrial Manual; World Organisation for Animal Health: Paris, France, 2017; Chapter 2.7.13. [Google Scholar]
- OIE. Lumpy skin disease. In OIE Terrestrial Manual; World Organisation for Animal Health: Paris, France, 2017; Chapter 2.4.13. [Google Scholar]
- Awad, W.S.; Ibrahim, A.K.; Mahran, K.; Fararh, K.M.; Abdel Moniem, M.I. Evaluation of different diagnostic methods for diagnosis of Lumpy skin disease in cows. Trop. Anim. Health Prod. 2010, 42, 777–783. [Google Scholar] [CrossRef]
- Carn, V.M. An antigen trapping ELISA for the detection of capripoxvirus in tissue culture supernatant and biopsy samples. J. Virol. Methods 1995, 51, 95–102. [Google Scholar] [CrossRef]
- Rao, T.V.; Malik, P.; Nandi, S.; Negi, B.S. Evaluation of immunocapture ELISA for diagnosis of goat pox. Acta Virol. 1997, 41, 345–348. [Google Scholar]
- Davies, F.G. Lumpy skin disease, an African capripox virus disease of cattle. Br. Vet. J. 1991, 147, 489–503. [Google Scholar] [CrossRef]
- Oğuzoğlu, T.Ç.; Alkan, F.; Özkul, A.; Vural, S.A.; Güngör, A.B.; Burgu, I. A Sheeppox Virus Outbreak in Central Turkey in 2003: Isolation and Identification of Capripoxvirus Ovis. Vet. Res. Commun. 2006, 30, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Haegeman, A.; De Vleeschauwer, A.; De Leeuw, I.; Vidanović, D.; Šekler, M.; Petrović, T.; Demarez, C.; Lefebvre, D.; De Clercq, K. Overview of diagnostic tools for Capripox virus infections. Prev. Vet. Med. 2020, 181, 104704. [Google Scholar] [CrossRef] [PubMed]
- Haegeman, A.; Zro, K.; Sammin, D.; Vandenbussche, F.; Ennaji, M.M.; De Clercq, K. Investigation of a Possible Link Between Vaccination and the 2010 Sheep Pox Epizootic in Morocco. Transbound Emerg. Dis. 2016, 63, e278. [Google Scholar] [CrossRef] [PubMed]
- Ireland, D.C.; Binepal, Y.S. Improved detection of capripoxvirus in biopsy samples by PCR. J. Virol. Methods 1998, 74, 1–7. [Google Scholar] [CrossRef]
- Das, A.; Babiuk, S.; McIntosh, M.T. Development of a loop-mediated isothermal amplification assay for rapid detection of capripoxviruses. J. Clin. Microbiol. 2012, 50, 1613–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Fan, B.; Wu, G.; Yan, X.; Li, Y.; Zhou, X.; Yue, H.; Dai, X.; Zhu, H.; Tian, B.; et al. Development of loop-mediated isothermal amplification assay for specific and rapid detection of differential goat pox virus and sheep pox virus. BMC Microbiol. 2014, 14, 10. [Google Scholar] [CrossRef] [Green Version]
- Chibssa, T.R.; Settypalli, T.B.K.; Berguido, F.J.; Grabherr, R.; Loitsch, A.; Tuppurainen, E.; Nwankpa, N.; Tounkara, K.; Madani, H.; Omani, A.; et al. An HRM Assay to Differentiate Sheeppox Virus Vaccine Strains from Sheeppox Virus Field Isolates and other Capripoxvirus Species. Sci. Rep. 2019, 9, 6646. [Google Scholar] [CrossRef] [Green Version]
- Agianniotaki, E.I.; Chaintoutis, S.C.; Haegeman, A.; Tasioudi, K.E.; De Leeuw, I.; Katsoulos, P.D.; Sachpatzidis, A.; De Clercq, K.; Alexandropoulos, T.; Polizopoulou, Z.S.; et al. Development and validation of a TaqMan probe-based real-time PCR method for the differentiation of wild type lumpy skin disease virus from vaccine virus strains. J. Virol. Methods 2017, 249, 48–57. [Google Scholar] [CrossRef]
- Möller, J.; Moritz, T.; Schlottau, K.; Krstevski, K.; Hoffmann, D.; Beer, M.; Hoffmann, B. Experimental lumpy skin disease virus infection of cattle: Comparison of a field strain and a vaccine strain. Arch. Virol. 2019, 164, 2931–2941. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, V.; Jayappa, K.D.; Hosamani, M.; Bhanuprakash, V.; Venkatesan, G.; Singh, R.K. Comparative efficacy of conventional and taqman polymerase chain reaction assays in the detection of capripoxviruses from clinical samples. J. Vet. Diagn. Invest. 2009, 21, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, G.; Balamurugan, V.; Bhanuprakash, V. TaqMan based real-time duplex PCR for simultaneous detection and quantitation of capripox and orf virus genomes in clinical samples. J. Virol. Methods 2014, 201, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Lamien, C.E.; Lelenta, M.; Goger, W.; Silber, R.; Tuppurainen, E.; Matijevic, M.; Luckins, A.G.; Diallo, A. Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses. J. Virol. Methods 2011, 171, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Gelaye, E.; Lamien, C.E.; Silber, R.; Tuppurainen, E.S.; Grabherr, R.; Diallo, A. Development of a cost-effective method for capripoxvirus genotyping using snapback primer and dsDNA intercalating dye. PLoS ONE 2013, 8, e75971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietze, K.; Moritz, T.; Alexandrov, T.; Krstevski, K.; Schlottau, K.; Milovanovic, M.; Hoffmann, D.; Hoffmann, B. Suitability of group-level oral fluid sampling in ruminant populations for lumpy skin disease virus detection. Vet. Microbiol. 2018, 221, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, B.; Depner, K.; Schirrmeier, H.; Beer, M. A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J. Virol. Methods 2006, 136, 200–209. [Google Scholar] [CrossRef]
- Wernike, K.; Hoffmann, B.; Kalthoff, D.; König, P.; Beer, M. Development and validation of a triplex real-time PCR assay for the rapid detection and differentiation of wild-type and glycoprotein E-deleted vaccine strains of Bovine herpesvirus type 1. J. Virol. Methods 2011, 174, 77–84. [Google Scholar] [CrossRef]
- Wolff, J.; Abd El Rahman, S.; King, J.; El-Beskawy, M.; Pohlmann, A.; Beer, M.; Hoffmann, B. Establishment of a Challenge Model for Sheeppox Virus Infection. Microorganisms 2020, 8, 2001. [Google Scholar] [CrossRef]
- Wolff, J.; King, J.; Moritz, T.; Pohlmann, A.; Hoffmann, D.; Beer, M.; Hoffmann, B. Experimental Infection and Genetic Characterization of Two Different Capripox Virus Isolates in Small Ruminants. Viruses 2020, 12, 1098. [Google Scholar] [CrossRef]
- Wolff, J.; Krstevski, K.; Beer, M.; Hoffmann, B. Minimum Infective Dose of a Lumpy Skin Disease Virus Field Strain from North Macedonia. Viruses 2020, 12, 768. [Google Scholar] [CrossRef] [PubMed]
- Wolff, J.; Moritz, T.; Schlottau, K.; Hoffmann, D.; Beer, M.; Hoffmann, B. Development of a Safe and Highly Efficient Inactivated Vaccine Candidate against Lumpy Skin Disease Virus. Vaccines 2020, 9, 4. [Google Scholar] [CrossRef]
- Adedeji, A.J.; Möller, J.; Meseko, C.A.; Adole, J.A.; Tekki, I.S.; Shamaki, D.; Hoffmann, B. Molecular characterization of Capripox viruses obtained from field outbreaks in Nigeria between 2000 and 2016. Transbound Emerg. Dis. 2019, 66, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Heine, H.G.; Stevens, M.P.; Foord, A.J.; Boyle, D.B. A capripoxvirus detection PCR and antibody ELISA based on the major antigen P32, the homolog of the vaccinia virus H3L gene. J. Immunol. Methods 1999, 227, 187–196. [Google Scholar] [CrossRef]
- Hosamani, M.; Mondal, B.; Tembhurne, P.A.; Bandyopadhyay, S.K.; Singh, R.K.; Rasool, T.J. Differentiation of sheep pox and goat poxviruses by sequence analysis and PCR-RFLP of P32 gene. Virus Genes 2004, 29, 73–80. [Google Scholar] [CrossRef]
- Venkatesan, G.; Balamurugan, V.; Yogisharadhya, R.; Kumar, A.; Bhanuprakash, V. Differentiation of sheeppox and goatpox viruses by polymerase Chain reaction-restriction fragment length polymorphism. Virol. Sin. 2012, 27, 352–358. [Google Scholar] [CrossRef]
- Lamien, C.E.; Le Goff, C.; Silber, R.; Wallace, D.B.; Gulyaz, V.; Tuppurainen, E.; Madani, H.; Caufour, P.; Adam, T.; El Harrak, M.; et al. Use of the Capripoxvirus homologue of Vaccinia virus 30 kDa RNA polymerase subunit (RPO30) gene as a novel diagnostic and genotyping target: Development of a classical PCR method to differentiate Goat poxvirus from Sheep poxvirus. Vet. Microbiol. 2011, 149, 30–39. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, G.; Yan, X.; Zhu, X.; Li, J.; Zhu, H.; Zhang, Z.; Zhang, Q. Development of duplex PCR for differential detection of goatpox and sheeppox viruses. BMC Vet. Res. 2017, 13, 278. [Google Scholar] [CrossRef] [Green Version]
- Stram, Y.; Kuznetzova, L.; Friedgut, O.; Gelman, B.; Yadin, H.; Rubinstein-Guini, M. The use of lumpy skin disease virus genome termini for detection and phylogenetic analysis. J. Virol. Methods 2008, 151, 225–229. [Google Scholar] [CrossRef]
- Tageldin, M.H.; Wallace, D.B.; Gerdes, G.H.; Putterill, J.F.; Greyling, R.R.; Phosiwa, M.N.; Al Busaidy, R.M.; Al Ismaaily, S.I. Lumpy skin disease of cattle: An emerging problem in the Sultanate of Oman. Trop. Anim. Health Prod. 2014, 46, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agianniotaki, E.I.; Tasioudi, K.E.; Chaintoutis, S.C.; Iliadou, P.; Mangana-Vougiouka, O.; Kirtzalidou, A.; Alexandropoulos, T.; Sachpatzidis, A.; Plevraki, E.; Dovas, C.I.; et al. Lumpy skin disease outbreaks in Greece during 2015–16, implementation of emergency immunization and genetic differentiation between field isolates and vaccine virus strains. Vet. Microbiol. 2017, 201, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Erster, O.; Rubinstein, M.G.; Menasherow, S.; Ivanova, E.; Venter, E.; Šekler, M.; Kolarevic, M.; Stram, Y. Importance of the lumpy skin disease virus (LSDV) LSDV126 gene in differential diagnosis and epidemiology and its possible involvement in attenuation. Arch. Virol. 2019, 164, 2285–2295. [Google Scholar] [CrossRef]
- Menasherow, S.; Erster, O.; Rubinstein-Giuni, M.; Kovtunenko, A.; Eyngor, E.; Gelman, B.; Khinich, E.; Stram, Y. A high-resolution melting (HRM) assay for the differentiation between Israeli field and Neethling vaccine lumpy skin disease viruses. J. Virol. Methods 2016, 232, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Menasherow, S.; Rubinstein-Giuni, M.; Kovtunenko, A.; Eyngor, Y.; Fridgut, O.; Rotenberg, D.; Khinich, Y.; Stram, Y. Development of an assay to differentiate between virulent and vaccine strains of lumpy skin disease virus (LSDV). J. Virol. Methods 2014, 199, 95–101. [Google Scholar] [CrossRef]
- Vidanović, D.; Šekler, M.; Petrović, T.; Debeljak, Z.; Vasković, N.; Matović, K.; Hoffmann, B. Real-Time PCR Assays for the Specific Detection of Field Balkan Strains of Lumpy Skin Disease Virus. Acta Vet. 2016, 66, 444–454. [Google Scholar] [CrossRef]
- Koshkin, A.A.; Singh, S.K.; Nielsen, P.; Rajwanshi, V.K.; Kumar, R.; Meldgaard, M.; Olsen, C.E.; Wengel, J. LNA (Locked Nucleic Acids): Synthesis of the adenine, cytosine, guanine, 5-methylcytosine, thymine and uracil bicyclonucleoside monomers, oligomerisation, and unprecedented nucleic acid recognition. Tetrahedron 1998, 54, 3607–3630. [Google Scholar] [CrossRef]
- Suresh, G.; Priyakumar, U.D. Structures, dynamics, and stabilities of fully modified locked nucleic acid (β-D-LNA and α-L-LNA) duplexes in comparison to pure DNA and RNA duplexes. J. Phys. Chem. B 2013, 117, 5556–5564. [Google Scholar] [CrossRef]
- Kutyavin, I.V.; Afonina, I.A.; Mills, A.; Gorn, V.V.; Lukhtanov, E.A.; Belousov, E.S.; Singer, M.J.; Walburger, D.K.; Lokhov, S.G.; Gall, A.A.; et al. 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res. 2000, 28, 655–661. [Google Scholar] [CrossRef]
- Haegeman, A.; Zro, K.; Vandenbussche, F.; Demeestere, L.; Van Campe, W.; Ennaji, M.M.; De Clercq, K. Development and validation of three Capripoxvirus real-time PCRs for parallel testing. J. Virol. Methods 2013, 193, 446–451. [Google Scholar] [CrossRef]
- Tulman, E.R.; Afonso, C.L.; Lu, Z.; Zsak, L.; Sur, J.H.; Sandybaev, N.T.; Kerembekova, U.Z.; Zaitsev, V.L.; Kutish, G.F.; Rock, D.L. The genomes of sheeppox and goatpox viruses. J. Virol. 2002, 76, 6054–6061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, S.; Noyce, R.S.; Babiuk, L.A.; Lung, O.; Bulach, D.M.; Bowden, T.R.; Boyle, D.B.; Babiuk, S.; Evans, D.H. Extended sequencing of vaccine and wild-type capripoxvirus isolates provides insights into genes modulating virulence and host range. Transbound Emerg. Dis. 2020, 67, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Balinsky, C.A.; Delhon, G.; Afonso, C.L.; Risatti, G.R.; Borca, M.V.; French, R.A.; Tulman, E.R.; Geary, S.J.; Rock, D.L. Sheeppox virus kelch-like gene SPPV-019 affects virus virulence. J. Virol. 2007, 81, 11392–11401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Assay | Designation of Oligo | Sequence of Oligo 5′–3′ | Amplicon Length |
---|---|---|---|
Capri-p32-Mix1-Taq-FAM [6,31] | Capri-P32for | AAA ACG GTA TAT GGA ATA GAG TTG GAA | 89 bp |
Capri-P32-rev | AAA TGA AAC CAA TGG ATG GGA TA | ||
Capri-P32-FAM-Taq | FAM-ATG GAT GGC TCA TAG ATT TCC TGA T-BHQ1 | ||
EGFP-Mix 1 (limit5) HEX [32] | EGFP1-F | GAC CAC TAC CAG CAG AAC AC | 132 bp |
EGFP2-R | GAA CTC CAG CAG GAC CAT G | ||
EGFP-Probe 1 | HEX-AGC ACC CAG TCC GCC CTG AGC A-BHQ1 | ||
β-Actin-DNA-Mix2-HEX [33] | ACT2-1030-F | AGC GCA AGT ACT CCG TGT G | 96 bp |
ACT-1135-R | CGG ACT CAT CGT ACT CCT GCT T | ||
ACT-1081-HEX | HEX-TCGCTGTCCACCTTCCAGCAGATGT-BHQ1 | ||
LSDfield-ORF126-Mix11-Taq-FAM | LSDfield-LD126-341F | GTG AAG AAA ATT TAA TTT GGG AYG A | 80 bp |
LSDfield-LD126-420R | GTT AGG TGG TAA ATC ATA AAC ACT A | ||
LSDfield-LD126-368FAM | FAM-ACA ACG TTT ATG ATT TAC CRC CTA ATG-BHQ1 | ||
LSDvac-Mix5-Taq-HEX [26] | LSDvac-136790-F | TCT TGG ACA ACT TTG ATG CAT C | 127 bp |
LSDvac-136916-R | CTT CAT AGC CTA TTC CGA GAG | ||
LSDvac-136891-HEXas | HEX-ACT TGC GTA ACT AAT TCC ACC CAC AA-BHQ1 | ||
SPPV-ORF041-Mix1-MGB-FAM | SPPV-ORF041-53F | AGG TAC AAA ATA ATA CCA ACG ATT C | 109 bp |
SPPV-ORF041-161R | GTT GAT TTT TCA ACA TTT ATG TAT TGG | ||
SPPV-ORF041-98FAM-MGB | FAM-TGG TAA AAT CAA CAA ATA ATT TTA TTG-MGB | ||
GTPV-ORF095-Mix1-MGB-HEX | GTPV-ORF095-325F | CAT TTG TTG ATA TAA ACG TTC TTT ACC | 140 bp |
GTPV-ORF095-464R | CTA RAG ATT TAG AAA CRA CGG TAA AA | ||
GTPV-ORF095-378HEX-MGB | HEX-ATG TAA CAG ATT TGT TTT TAA TT-MGB |
Assay | Forward/Reverse Primer | Probe | 0.1× TE bufer pH 8.0 |
---|---|---|---|
Capri-p32-Mix1-Taq-FAM | 7.5 µL | 2.5 µL | 82.5 µL |
EGFP-Mix 1 (limit 5) HEX | 2.5 µL | 2.5 µL | 92.5 µL |
β-Actin-DNA-Mix2-HEX | 2.5 µL | 2.5 µL | 92.5 µL |
LSDfield-ORF126-Mix11-Taq-FAM | 7.5 µL | 2.5 µL | 82.5 µL |
LSDvac-Mix5-Taq-HEX | 5.0 µL | 2.5 µL | 87.5 µL |
SPPV-ORF041-Mix1-MGB-FAM | 7.5 µL | 2.5 µL | 82.5 µL |
GTPV-ORF095-Mix1-MGB-HEX | 7.5 µL | 2.5 µL | 82.5 µL |
Dilution Step of LSDV-“Macedonia2016” | PerfeCTa qPCR ToughMix | QuantiTect Multiplex-PCR Kit No ROX | ||||
---|---|---|---|---|---|---|
Cq-Value of | Cq-Value of | |||||
Pan Capripox Assay (No IC) | Pan Capripox Assay/EGFP Mix 1 (Limit 5) HEX | PAN Capripox Assay/β-Actin-DNA-Mix-HEX | Pan Capripox Assay (No IC) | Pan Capripox Assay/EGFP Mix 1 (Limit 5) HEX | Pan Capripox Assay/β-Actin-DNA-Mix-HEX | |
10-1 | 17.96 | 17.88/29.5 | 18.01/26.10 | 18.38 | 18.29/25.61 | 18.18/25.10 |
10-2 | 21.27 | 21.25/29.1 | 21.32/27.34 | 21.77 | 21.53/25.65 | 21.61/26.24 |
10-3 | 24.51 | 24.6/29.00 | 24.59/27.32 | 25.2 | 25.03/26.09 | 25.04/27.04 |
10-4 | 28.02 | 27.94/29.10 | 27.84/27.63 | 28.6 | 28.33/26.26 | 28.32/27.41 |
10-5 | 31.41 | 30.91/28.80 | 30.71/27.74 | 31.98 | 31.10/26.14 | 31.38/27.61 |
10-6 | 35.54 | 33.73/29.04 | 33.94/27.69 | 34.5 | 34.01/26.34 | 34.25/27.69 |
10-7 | 37.37 | 38.87/28.65 | 38.04/27.56 | no Cq | 37.30/26.08 | 37.58/27.56 |
10-8 | no Cq | no Cq/29.27 | no Cq/27.70 | no Cq | no Cq/26.21 | no Cq/27.63 |
Genome Equivalents Per µL DNA | Number of Positive Replicates/Number of Overall Replicates | ||||
---|---|---|---|---|---|
Capri-p32-Mix1-Taq-FAM | LSD-field-ORF126-Mix11-Taq-FAM | LSDvac-Mix5-HEX | SPPV-ORF041-Mix1-MGB-FAM | GTPV-ORF095-Mix1-MGB-HEX | |
104 | 7/7 | 15/15 | 15/15 | 15/15 | 15/15 |
103 | 7/7 | 15/15 | 15/15 | 15/15 | 15/15 |
102 | 7/7 | 15/15 | 15/15 | 15/15 | 15/15 |
101 | 7/7 | 15/15 | 15/15 | 15/15 | 15/15 |
100 | 7/7 | 15/15 | 11/15 | 13/15 | 15/15 |
Sample | Sample Matrix [Reference] | Capri-p32 | LSDfield | LSDvac | SPPV | GTPV | |
---|---|---|---|---|---|---|---|
LSDV field | V/96 | cell culture | 24.7 | 26.1 | no Cq | no Cq | no Cq |
V/101 | cell culture | 14.7 | 16.1 | no Cq | no Cq | no Cq | |
V/107 | cell culture | 15.3 | 17.2 | no Cq | no Cq | no Cq | |
V/281 | cell culture | 13.9 | 15.4 | no Cq | no Cq | no Cq | |
BH 50/19-07 | proficiency test sample EU 2019 | 35.8 | 37.1 * | no Cq | no Cq | no Cq | |
BH 24/20-13 | proficiency test sample EU 2020 | 28.0 | 29.4 | no Cq | no Cq | no Cq | |
BH 24/20-17 | proficiency test sample EU 2020 | 33.6 | 34.8 | no Cq | no Cq | no Cq | |
R/921 EDTA blood 10 dpi | EDTA blood [36] | 28.3 | 30.1 | no Cq | no Cq | no Cq | |
R/276 EDTA blood 10 dpi | EDTA blood [36] | 23.9 | 25.2 | no Cq | no Cq | no Cq | |
R/988 EDTA blood 10 dpi | EDTA blood [36] | 27.6 | 29.1 | no Cq | no Cq | no Cq | |
R/988 serum 11 dpi | serum [36] | 27.9 | 28.9 | no Cq | no Cq | no Cq | |
R/792 serum 9 dpi | serum [37] | 31.9 | 33.0 | no Cq | no Cq | no Cq | |
R/280 nasal swab 13 dpi | nasal swab [36] | 30.0 | 31.3 | no Cq | no Cq | no Cq | |
R/981 nasal swab 11 dpi | nasal swab [36] | 23.6 | 25.0 | no Cq | no Cq | no Cq | |
R/988 nasal swab 11 dpi | nasal swab [36] | 22.9 | 24.1 | no Cq | no Cq | no Cq | |
LSDV vaccine | V/100 | cell culture | 14.4 | no Cq | 13.5 | no Cq | no Cq |
V/102 | cell culture | 18.3 | no Cq | 17.8 | no Cq | no Cq | |
V/106 | cell culture | 14.1 | no Cq | 13.3 | no Cq | no Cq | |
V/122 | cell culture | 16.5 | no Cq | 15.7 | no Cq | no Cq | |
V/126 | cell culture | 15.5 | no Cq | 14.8 | no Cq | no Cq | |
BH 50/19-03 | proficiency test sample EU 2019 | 29.9 | no Cq | 28.8 | no Cq | no Cq | |
BH 50/19-06 | proficiency test sample EU 2019 | 27.4 | no Cq | 26.4 | no Cq | no Cq | |
BH 24/20-15 | proficiency test sample EU 2020 | 30.4 | no Cq | 29.6 | no Cq | no Cq | |
R/129 nasal swab 7 dpi | nasal swab [26] | 33.1 | no Cq | 32.1 | no Cq | no Cq | |
SPPV | V/104 | cell culture | 14.8 | no Cq | no Cq | 15.7 | no Cq |
V/123 | cell culture | 17.6 | no Cq | no Cq | 18.4 | no Cq | |
V/293 | cell culture | 18.3 | no Cq | no Cq | 19.2 | no Cq | |
BH 50/19-01 | proficiency test sample EU 2019 | 27.1 | no Cq | no Cq | 27.9 | no Cq | |
BH 24/20-18 | proficiency test sample EU 2020 | 25.6 | no Cq | no Cq | 26.2 | no Cq | |
S-02 EDTA blood 14 dpi | EDTA blood [34] | 27.0 | no Cq | no Cq | 28.3 | no Cq | |
S-09 EDTA blood 12 dpi | EDTA blood [34] | 28.9 | no Cq | no Cq | 30.0 | no Cq | |
S-13 EDTA blood 10 dpi | EDTA blood [34] | 26.9 | no Cq | no Cq | 28.1 | no Cq | |
S-02 serum 14 dpi | serum [34] | 30.4 | no Cq | no Cq | 33.0 | no Cq | |
S-13 serum 10 dpi | serum [34] | 33.1 | no Cq | no Cq | 34.6 | no Cq | |
S-05 nasal swab 12 dpi | nasal swab [34] | 14.1 | no Cq | no Cq | 15.1 | no Cq | |
S-12 nasal swab 14 dpi | nasal swab [34] | 18.9 | no Cq | no Cq | 19.6 | no Cq | |
S-06 oral swab 12 dpi | oral swab [34] | 24.1 | no Cq | no Cq | 25.1 | no Cq | |
S-12 oral swab 10 dpi | oral swab [34] | 27.3 | no Cq | no Cq | 28.3 | no Cq | |
S-11 lung | organ sample [34] | 23.1 | no Cq | no Cq | 23.8 | no Cq | |
S-15 skin lesion prepuce | organ sample [34] | 16.5 | no Cq | no Cq | 17.6 | no Cq | |
S-04 nasal septum | organ sample [34] | 20.4 | no Cq | no Cq | 21.5 | no Cq | |
S-03 crust | organ sample [34] | 13.9 | no Cq | no Cq | 14.8 | no Cq | |
GTPV | V/103 | cell culture | 16.2 | no Cq | no Cq | no Cq | 16.8 |
V/279 | cell culture | 23.9 | no Cq | no Cq | no Cq | 24.4 | |
BH 24/20-11 | proficiency test sample EU 2020 | 31.7 | no Cq | no Cq | no Cq | 33.4 | |
BH 24/20-12 | proficiency test sample EU 2020 | 34.9 | no Cq | no Cq | no Cq | 36.6 | |
Z/254 EDTA blood 7 dpi | EDTA blood [35] | 26.1 | no Cq | no Cq | no Cq | 27.4 | |
Z/254 EDTA blood 10 dpi | EDTA blood [35] | 24.7 | no Cq | no Cq | no Cq | 25.9 | |
Z/256 EDTA blood 13 dpi | EDTA blood [35] | 28.1 | no Cq | no Cq | no Cq | 29.0 | |
Z/254 serum 10 dpi | serum [35] | 34.7 | no Cq | no Cq | no Cq | 37.7 | |
Z/256 serum 13 dpi | serum [35] | 36.3 | no Cq | no Cq | no Cq | 36.9 | |
Z/259 serum 23 dpi | serum [35] | 30.6 | no Cq | no Cq | no Cq | 32.4 | |
Z/253 nasal swab 10 dpi | nasal swab [35] | 25.7 | no Cq | no Cq | no Cq | 27.0 | |
Z/256 nasal swab 10 dpi | nasal swab [35] | 18.5 | no Cq | no Cq | no Cq | 19.3 | |
Z/257 nasal swab 13 dpi | nasal swab [35] | 18.0 | no Cq | no Cq | no Cq | 18.6 | |
Z/259 nasal swab 21 dpi | nasal swab [35] | 23.3 | no Cq | no Cq | no Cq | 24.0 | |
Z/256 oral swab 15 dpi | oral swab [35] | 24.4 | no Cq | no Cq | no Cq | 25.1 | |
Z/257 oral swab 13 dpi | oral swab [35] | 28.3 | no Cq | no Cq | no Cq | 29.4 | |
Z/259 cervical lymph node | organ sample [35] | 20.2 | no Cq | no Cq | no Cq | 22.4 | |
Z/255 lung | organ sample [35] | 23.8 | no Cq | no Cq | no Cq | 25.3 | |
Z/260 skin chest | organ sample [35] | 18.8 | no Cq | no Cq | no Cq | 19.4 | |
Z/254 skin nose | organ sample [35] | 20.7 | no Cq | no Cq | no Cq | 22.0 | |
Z/253 trachea | organ sample [35] | 19.8 | no Cq | no Cq | no Cq | 20.4 |
Sample | Capri-p32 | LSD-Field-ORF126-Mix11-Taq-FAM | LSDvac-Mix5-HEX | ||
---|---|---|---|---|---|
Single | Duplex | Single | Duplex | ||
V101 undil. + V100 undil. | 22.5 | 24.6 | 24.2 | 22.2 | 22.2 |
V101 dil. 1:100 + V100 undil. | 23.6 | 31.2 | 30.9 | 22.1 | 22.1 |
V101 undil. + V100 dil. 1:100 | 23.4 | 24.2 | 24.1 | 28.9 | 28.3 |
V107 undil. + V106 undil. | 23.3 | 25.1 | 24.9 | 23.0 | 23.1 |
V107 dil. 1:100 + V106 undil. | 24.4 | 31.9 | 31.5 | 23.1 | 23.1 |
V107 undil. + V106 dil. 1:100 | 24.2 | 25.2 | 24.9 | 30.2 | 29.4 |
V281 undil. + V122 undil. | 21.1 | 23.6 | 23.4 | 20.6 | 20.7 |
V281 dil. 1:100 + V122 undil. | 21.8 | 30.3 | 30.6 | 20.6 | 20.7 |
V281 undil. + V122 dil. 1:100 | 22.3 | 23.4 | 23.5 | 27.7 | 27.4 |
V96 undil. + V102 undil. | 24.8 | 26.2 | 26.3 | 25.2 | 25.1 |
V96 dil. 1:100 + V102 undil. | 26.3 | 32.8 | 33.3 | 25.2 | 25.2 |
V96 undil. + V102 dil. 1:100 | 25.3 | 26.1 | 26.4 | 32.0 | 31.5 |
Sample | Capri-p32 | SPPV-ORF041-Mix1-MGB-FAM | GTPV-ORF095-Mix1-MGB-HEX | ||
---|---|---|---|---|---|
Single | Duplex | Single | Duplex | ||
V103 undil. + V104 undil. | 21.6 | 24.8 | 24.9 | 24.3 | 24.6 |
V103 dil. 1:100 + V104 undil. | 23.3 | 24.6 | 24.8 | 31.4 | 34.3 |
V103 undil. + V104 dil. 1:100 | 22.1 | 31.6 | 31.6 | 24.2 | 24.3 |
V279 undil. + V123 undil. | 24.6 | 27.4 | 27.3 | 26.8 | 26.6 |
V279 dil. 1:100 + V123 undil. | 26.1 | 27.3 | 27.4 | 33.6 | 35.7 |
V279 undil. + V123 dil. 1:100 | 25.2 | 34.5 | 34.2 | 26.4 | 26.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolff, J.; Beer, M.; Hoffmann, B. Probe-Based Real-Time qPCR Assays for a Reliable Differentiation of Capripox Virus Species. Microorganisms 2021, 9, 765. https://doi.org/10.3390/microorganisms9040765
Wolff J, Beer M, Hoffmann B. Probe-Based Real-Time qPCR Assays for a Reliable Differentiation of Capripox Virus Species. Microorganisms. 2021; 9(4):765. https://doi.org/10.3390/microorganisms9040765
Chicago/Turabian StyleWolff, Janika, Martin Beer, and Bernd Hoffmann. 2021. "Probe-Based Real-Time qPCR Assays for a Reliable Differentiation of Capripox Virus Species" Microorganisms 9, no. 4: 765. https://doi.org/10.3390/microorganisms9040765
APA StyleWolff, J., Beer, M., & Hoffmann, B. (2021). Probe-Based Real-Time qPCR Assays for a Reliable Differentiation of Capripox Virus Species. Microorganisms, 9(4), 765. https://doi.org/10.3390/microorganisms9040765