Combinatorial Effects of Protective Agents on Survival Rate of the Yeast Starter, Saccharomyces cerevisiae 88-4, after Freeze-Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Inoculum Preparation
2.2. Addition of Protective Agents and Freeze-Drying Process
2.3. Evaluation of Additives as a Protective Agent against Freeze-Drying
2.4. Measurement of Survival Rate of Freeze-Dried Yeast Cells
number before freeze-drying (CFU/mL) × 100
2.5. Measurement of Cell Growth Rate and Ethanol Production of Freeze-Dried Yeast Cells
2.6. Optimization of Protective Agents Using Response Surface Methodology
2.7. Statistical Analysis
3. Results
3.1. Evaluation of Additives as a Protective Agent against Freeze-Drying
3.2. Effect of Skim Milk Concentration on Survival Rate of Freeze-Dried Yeast Cells
3.3. Combinatorial Effect of Protectants on Survival Rate of Freeze-Dried Yeast Cells
3.4. Investigation of Optimal Combination of Protectants against Freeze-Drying
3.5. Stability of Freeze-Dried Yeast Cells in Long-Term Storage
3.6. ANOVA Results of Central Composite Design and Response Surface Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polo, L.; Mañes-Lázaro, R.; Olmeda, I.; Cruz-Pio, L.; Medina, Á.; Ferrer, S.; Pardo, I. Influence of freezing temperatures prior to freeze-drying on viability of yeasts and lactic acid bacteria isolated from wine. J. Appl. Microbiol. 2017, 122, 1603–1614. [Google Scholar] [CrossRef] [Green Version]
- Miyamoto-Shinohara, Y.; Sukenobe, J.; Imaizumi, T.; Nakahara, T. Survival curves for microbial species stored by freeze-drying. Cryobiology 2006, 52, 27–32. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Lymnaiou, P.; Koutinas, A.A. Freeze-dried Saccharomyces cerevisiae cells immobilized on potato pieces for low-temperature winemaking. Appl. Biochem. Biotechnol. 2014, 173, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Berny, J.-F.; Hennebert, G. Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates. Mycologia 1991, 83, 805–815. [Google Scholar] [CrossRef]
- Lodato, P.; De Huergo, M.S.; Buera, M. Viability and thermal stability of a strain of Saccharomyces cerevisiae freeze-dried in different sugar and polymer matrices. Appl. Microbiol. Biotechnol. 1999, 52, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Abadias, M.; Benabarre, A.; Teixido, N.; Usall, J.; Vinas, I. Effect of freeze drying and protectants on viability of the biocontrol yeast Candida sake. Int. J. Food Microbiol. 2001, 65, 173–182. [Google Scholar] [CrossRef]
- Blanquet, S.; Garrait, G.; Beyssac, E.; Perrier, C.; Denis, S.; Hébrard, G.; Alric, M. Effects of cryoprotectants on the viability and activity of freeze dried recombinant yeasts as novel oral drug delivery systems assessed by an artificial digestive system. Eur. J. Pharm. Biopharm. 2005, 61, 32–39. [Google Scholar] [CrossRef]
- Guowei, S.; Yang, X.; Li, C.; Huang, D.; Lei, Z.; He, C. Comprehensive optimization of composite cryoprotectant for Saccharomyces boulardii during freeze-drying and evaluation of its storage stability. Prep. Biochem. Biotechnol. 2019, 49, 846–857. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Xiong, S.; Li, X.; Yu, J.; Huang, Y.; Liu, Y. Cryoprotective effect of silver carp muscle hydrolysate on baker's yeast Saccharomyces cerevisiae and its underlying mechanism. Food Sci. Nutr. 2020, 8, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Santivarangkna, C.; Higl, B.; Foerst, P. Protection mechanisms of sugars during different stages of preparation process of dried lactic acid starter cultures. Food Microbiol. 2008, 25, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Tian, F.; Liu, X.; Zhao, J.; Zhang, H.; Chen, W. Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Appl. Microbiol. Biotechnol. 2011, 92, 609–616. [Google Scholar] [CrossRef]
- Teng, D.; Kawai, K.; Mikajiri, S.; Hagura, Y. Stabilization of freeze-dried Lactobacillus paracasei subsp. paracasei JCM 8130T with the addition of disaccharides, polymers, and their mixtures. Biosci. Biotechnol. Biochem. 2017, 81, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Haiping, L.; Pei, Z.; Shuhai, Z.; Dengyun, Z.; Herong, F.; Yi, S.; Xinqian, W. Protective effect of polysaccharides from Pholiota nameko on Lactobacillus casei ATCC 334 subjected to freeze-drying. LWT 2019, 115, 108463. [Google Scholar] [CrossRef]
- Lee, A.R.; Kang, S.H.; Kim, H.R.; Lee, J.E.; Lee, E.J.; Kim, T.W. Quality characteristics of distilled spirits by different nuruk-derived yeast. Korean J. Food Sci. Technol. 2017, 49, 383–389. [Google Scholar]
- Karam, M.C.; Hosri, C.; Hussain, R.; Barbar, R.; Gaiani, C.; Scher, J. Effect of whey powder rehydration and dry-denaturation state on acid milk gels characteristics. J. Food Process. Preserv. 2017, 41, e13200. [Google Scholar] [CrossRef]
- Argüelles, J.-C. Why can’t vertebrates synthesize trehalose? J. Mol. Evol. 2014, 79, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Morgan, C.A.; Herman, N.; White, P.; Vesey, G. Preservation of micro-organisms by drying; a review. J. Microbiol. Meth. 2006, 66, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Kadoya, S.; Fujii, K.; Izutsu, K.-I.; Yonemochi, E.; Terada, K.; Yomota, C.; Kawanishi, T. Freeze-drying of proteins with glass-forming oligosaccharide-derived sugar alcohols. Int. J. Pharm. 2010, 389, 107–113. [Google Scholar] [CrossRef]
- Shu, G.W.; Hu, M.; Qin, T.; Chen, H.; Ma, Q. Effect of fructo-oligosaccharide, isomalto-oligosaccharide, inulin and xylo-oligosaccharide on survival of B. bifidum during freeze-drying. Adv. Mat. Res. 2011, 382, 454–457. [Google Scholar] [CrossRef]
- Miao, Z.; Zhao, Y.; Huo, X. Assessment and determination of lyoprotectant for survival of freeze-dried Lactobacillus rhamnosus. Acta Univ. Cibiniensis Ser. E Food Technol. 2016, 20, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Hillgren, A.; Lindgren, J.; Aldén, M. Protection mechanism of Tween 80 during freeze–thawing of a model protein, LDH. Int. J. Pharm. 2002, 237, 57–69. [Google Scholar] [CrossRef]
- Ji, C.; Sun, M.; Yu, J.; Wang, Y.; Zheng, Y.; Wang, H.; Niu, R. Trehalose and Tween 80 improve the stability of marine lysozyme during freeze-drying. Biotechnol. Biotechnol. Equip. 2009, 23, 1351–1354. [Google Scholar] [CrossRef] [Green Version]
- Ravuri, K.S. Polysorbate degradation and quality. In Challenges in Protein Product Development; Springer: Berlin/Heidelberg, Germany, 2018; pp. 25–62. [Google Scholar]
- Mensink, M.A.; Van Bockstal, P.-J.; Pieters, S.; De Meyer, L.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L.; De Beer, T. In-line near infrared spectroscopy during freeze-drying as a tool to measure efficiency of hydrogen bond formation between protein and sugar, predictive of protein storage stability. Int. J. Pharm. 2015, 496, 792–800. [Google Scholar] [CrossRef] [Green Version]
- Mensink, M.A.; Frijlink, H.W.; van der Voort Maarschalk, K.; Hinrichs, W.L. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Vaessen, E.M.; den Besten, H.M.; Esveld, E.D.; Schutyser, M.A. Accumulation of intracellular trehalose and lactose in Lactobacillus plantarum WCFS1 during pulsed electric field treatment and subsequent freeze and spray drying. LWT 2019, 115, 108478. [Google Scholar] [CrossRef]
- Stefanello, R.F.; Machado, A.A.R.; Cavalheiro, C.P.; Santos, M.L.B.; Nabeshima, E.H.; Copetti, M.V.; Fries, L.L.M. Trehalose as a cryoprotectant in freeze-dried wheat sourdough production. LWT 2018, 89, 510–517. [Google Scholar] [CrossRef]
- Yokota, H.; Kadowaki, M.; Matsuura, T.; Imanaka, H.; Ishida, N.; Imamura, K. The use of a combination of a sugar and surfactant to stabilize Au nanoparticle dispersion against aggregation during freeze-drying. Langmuir 2020, 36, 6698–6705. [Google Scholar] [CrossRef]
- Bialik, M.; Wiktor, A.; Witrowa-Rajchert, D.; Samborska, K.; Gondek, E.; Findura, P. Osmotic dehydration and freezing pretreatment for vacuum dried of kiwiberry: Drying kinetics and microstructural changes. Int. Agrophys. 2020, 34, 265–272. [Google Scholar] [CrossRef]
- Meng-Lund, H.; Holm, T.P.; Poso, A.; Jorgensen, L.; Rantanen, J.; Grohganz, H. Exploring the chemical space for freeze-drying excipients. Int. J. Pharm. 2019, 566, 254–263. [Google Scholar] [CrossRef]
Protectantive Agents | Conc. (%) | Protectantive Agents | Conc. (%) | Protectantive Agents | Conc. (%) |
---|---|---|---|---|---|
Monosaccharides | Isomaltooligosaccharide (IMOS) | 1 | l-Isoleucine | 1 | |
l-Arabinose | 10 | Maltodextrin | 5 | l-Leucine | 1 |
d-Fructose | 10 | Mannan | 0.5 | Sodium glutamate (MSG) | 10 |
l-Fucose | 10 | d-Raffinose | 10 | l-Phenylalanine | 1 |
d-Galactose | 10 | Starch | 10 | l-Threonine | 1 |
d-Glucose | 10 | Xanthan gum | 10 | l-Tryptophan | 1 |
d-Mannose | 10 | Sugar alcohols | l-Tyrosine | 1 | |
l-Rhamnose | 10 | Adonitol | 10 | l-Valine | 1 |
d-Ribose | 10 | Erythritol | 10 | ETC | |
d-Xylose | 10 | Glycerol | 10 | Adenosine | 0.1 |
Disaccharides | Maltitol | 10 | l-Ascorbic acid | 2.5 | |
d-Lactose | 10 | d-Mannitol | 10 | Betaine | 15 |
d-Maltose | 10 | d-Sorbitol | 10 | β-Carotene | 1 |
Sucrose | 10 | Xylitol | 10 | l-Carnitine | 2.5 |
d-Trehalose | 10 | Proteins | Choline chloride | 1 | |
Oligosaccharides | Bovine serum albumin (BSA) | 10 | Magnesium sulfate heptahydrate (MSH) | 0.75 | |
Alginate | 2 | Casein | 10 | Polyvinylpyrrolidone (PVP) | 5 |
Amylopectin | 10 | Gelatin | 3 | Skim milk | 10 |
Chitosan | 0.5 | Peptone | 10 | Sucralose | 10 |
β-Cyclodextrin | 5 | Yeast extract | 4 | Taurine | 7.5 |
Dextran | 10 | Amino acids | d-Tocopherol | 0.3 | |
Dextrin | 10 | l-Arginine | 1 | Tween 80 | 1 |
Fructooligosaccharide (FOS) | 1 | l-Glutamic acid | 1 | Tween 40 | 1 |
Guar gum | 10 | l-Histidine | 1 |
Weeks | Combinations of Protectants | ||
---|---|---|---|
ST | SMM | SMT | |
0 | 83.56 ± 2.78 Ab | 94.70 ± 2.86 Aa | 96.97 ± 4.92 Aa |
4 | 84.00 ± 4.81 Aa | 97.35 ± 6.56 Aa | 93.51 ± 7.23 ABa |
8 | 82.67 ± 3.53 Ab | 92.80 ± 2.37 ABa | 83.12 ± 2.25 BCb |
12 | 72.44 ± 2.04 Bb | 90.91 ± 3.94 ABa | 80.09 ± 6.66 CDb |
16 | 64.00 ± 1.33 BCDc | 89.39 ± 3.47 ABa | 80.95 ± 0.75 CDb |
20 | 68.89 ± 2.78 BCb | 84.85 ± 11.15 ABCa | 83.98 ± 1.98 BCa |
24 | 72.44 ± 2.78 Ba | 78.00 ± 10.20 BCDa | 77.92 ± 9.09 CDa |
28 | 68.0 ± 1.33 BCa | 77.27 ± 13.78 BCDa | 70.50 ± 6.14 Da |
32 | 60.0 ± 7.06 CDb | 72.35 ± 4.73 CDEa | 56.71 ± 3.75 Eb |
36 | 63.11 ± 6.16 BCDa | 69.50 ± 7.57 CDEa | 55.84 ± 10.14 Ea |
40 | 55.11 ± 8.68 Da | 65.40 ± 15.30 DEa | 40.26 ± 7.23 Fa |
42 | 31.11 ± 10.01 Eb | 60.70 ± 4.80 Ea | 30.67 ± 5.77 Fb |
Run | Skim Milk (A, %) | Maltose (B, %) | Maltitol (C, %) | Survival Rate (%) |
---|---|---|---|---|
1 | 5 | 15 | 5 | 84.00 |
2 | 10 | 10 | 10 | 95.60 |
3 | 10 | 10 | 10 | 81.20 |
4 | 10 | 10 | 10 | 84.62 |
5 | 10 | 10 | 18.4 | 86.96 |
6 | 5 | 15 | 15 | 31.25 |
7 | 15 | 15 | 5 | 57.14 |
8 | 10 | 10 | 10 | 76.32 |
9 | 15 | 15 | 15 | 22.73 |
10 | 15 | 5 | 5 | 55.17 |
11 | 5 | 5 | 15 | 85.20 |
12 | 5 | 5 | 5 | 60.71 |
13 | 15 | 5 | 15 | 62.97 |
14 | 18.4 | 10 | 10 | 36.36 |
15 | 1.6 | 10 | 10 | 50.00 |
16 | 10 | 1.6 | 10 | 75.86 |
17 | 10 | 18.4 | 10 | 44.00 |
18 | 10 | 10 | 1.6 | 77.41 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|
Model | 7082.08 | 9 | 786.90 | 8.44 | 0.0031 | ** |
A | 542.82 | 1 | 542.82 | 5.82 | 0.0423 | * |
B | 1098.84 | 1 | 1098.84 | 11.78 | 0.0089 | ** |
C | 110.44 | 1 | 110.44 | 1.18 | 0.3082 | |
A*B | 7.22 | 1 | 7.22 | 0.0774 | 0.7879 | |
A*C | 0.3362 | 1 | 0.3362 | 0.0036 | 0.9536 | |
B*C | 1783.24 | 1 | 1783.24 | 19.12 | 0.0024 | ** |
A2 | 2935.81 | 1 | 2935.81 | 31.48 | 0.0005 | *** |
B2 | 1097.00 | 1 | 1097.00 | 11.76 | 0.0090 | ** |
C2 | 26.32 | 1 | 26.32 | 0.2823 | 0.6096 | |
Residual | 745.97 | 8 | 93.25 | |||
Lack of fit | 544.96 | 5 | 108.99 | 1.63 | 0.3655 | |
Pure error | 201.01 | 3 | 67.00 | |||
R2 | 0.9047 | |||||
Adjust R2 | 0.7975 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chin, Y.-W.; Lee, S.; Yu, H.H.; Yang, S.J.; Kim, T.-W. Combinatorial Effects of Protective Agents on Survival Rate of the Yeast Starter, Saccharomyces cerevisiae 88-4, after Freeze-Drying. Microorganisms 2021, 9, 613. https://doi.org/10.3390/microorganisms9030613
Chin Y-W, Lee S, Yu HH, Yang SJ, Kim T-W. Combinatorial Effects of Protective Agents on Survival Rate of the Yeast Starter, Saccharomyces cerevisiae 88-4, after Freeze-Drying. Microorganisms. 2021; 9(3):613. https://doi.org/10.3390/microorganisms9030613
Chicago/Turabian StyleChin, Young-Wook, Saerom Lee, Hwan Hee Yu, Seung Jae Yang, and Tae-Wan Kim. 2021. "Combinatorial Effects of Protective Agents on Survival Rate of the Yeast Starter, Saccharomyces cerevisiae 88-4, after Freeze-Drying" Microorganisms 9, no. 3: 613. https://doi.org/10.3390/microorganisms9030613
APA StyleChin, Y.-W., Lee, S., Yu, H. H., Yang, S. J., & Kim, T.-W. (2021). Combinatorial Effects of Protective Agents on Survival Rate of the Yeast Starter, Saccharomyces cerevisiae 88-4, after Freeze-Drying. Microorganisms, 9(3), 613. https://doi.org/10.3390/microorganisms9030613