In Vitro Reassortment between Endemic Bluetongue Viruses Features Global Shifts in Segment Frequencies and Preferred Segment Combinations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses
2.2. Cell Culture
2.3. Growth Curves
2.4. Viral Passages
2.5. TCID50
2.6. RT-PCR
2.7. Whole Genome Sequencing
2.8. BTV Analysis Pipeline and Bioinformatics
2.9. Plaque Isolation
2.10. Amplicon Assay
2.11. Amplicon Assay Bioinformatics
2.12. Relative Diversity
2.13. Statistics
3. Results
3.1. Viral Growth Curves
3.2. Whole Genome Sequencing
3.3. Amplicon-Based Sequencing
3.4. Simpson’s Diversity Index
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maclachlan, N.J.; Mayo, C.E.; Daniels, P.W.; Savini, G.; Zientara, S.; Gibbs, E.P.J. Bluetongue. Rev. Sci. Tech. 2015, 34, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Maclachlan, N.J.; Zientara, S.; Wilson, W.C.; Richt, J.A.; Savini, G. Bluetongue and epizootic hemorrhagic disease viruses: Recent developments with these globally re-emerging arboviral infections of ruminants. Curr. Opin. Virol. 2019, 34, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Paul, E.; Gibbs, J.; Greiner, E.C. The epidemiology of bluetongue. Comp. Immun. Microbiol. Infect. Dis. 1994, 17, 207–220. [Google Scholar]
- Baylis, M.; O’Connel, L.; Mellor, P.S. Rates of bluetongue virus transmission between Culicoides sonorensis and sheep. Med. Vet. Entomol. 2008, 22, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Niedbalski, W. The evolution of bluetongue virus: Genetic and phenotypic diversity of field strains. Pol. J. Vet. Sci. 2013, 16, 611–616. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.; Mellor, P. Bluetongue in Europe: Vectors, epidemiology and climate change. Parasitol. Res. 2009, 103, S69–S77. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, E.; Roy, P. Bluetongue virus VP1 polymerase activity in vitro: Template dependency, dinucleotide priming and cap dependency. PLoS ONE 2011, 6, e27702. [Google Scholar] [CrossRef] [Green Version]
- Lauring, A.S.; Frydman, J.; Andino, R. The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 2013, 11, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.C. The not-so-infinite malleability of RNA viruses: Viral and cellular determinants of RNA virus mutation rates. PLoS Pathog. 2017, 13, e1006254. [Google Scholar] [CrossRef] [Green Version]
- Lauring, A.S.; Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010, 6, e1001005. [Google Scholar] [CrossRef]
- Ciota, A.T.; Kramer, L.D. Insights into arbovirus evolution and adaptation from experimental studies. Viruses 2010, 2, 2594–2617. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, G.M.; Rambaut, A.; Pybus, O.G.; Holmes, E.C. Rates of molecular evolution in RNA viruses: A quantitative phylogenetic analysis. J. Mol. Evol. 2002, 54, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Bonneau, K.R.; Mullens, B.A.; Maclachlan, N.J. Occurrence of genetic drift and founder effect during quasispecies evolution of the VP2 and NS3/NS3A genes of bluetongue virus upon passage between sheep, cattle, and Culicoides sonorensis. J. Virol. 2001, 75, 8298–8305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporale, M.; Di Gialleonorado, L.; Janowicz, A.; Wilkie, G.; Shaw, A.; Savini, G.; Van Rijn, P.A.; Mertens, P.; Di Ventura, M.; Palmarini, M. Virus and host factors affecting the clinical outcome of bluetongue virus infection. J. Virol. 2014, 881, 10399–10411. [Google Scholar] [CrossRef] [Green Version]
- Kopanke, J.H.; Lee, J.S.; Stenglein, M.D.; Mayo, C.E. The genetic diversification of a single bluetongue virus strain using an in vitro model of alternating-host transmission. Viruses 2020, 12, 1038. [Google Scholar] [CrossRef]
- Samal, S.K.; Livingston, C.W.; Mcconnell, S.; Ramig, R.F. Analysis of mixed infection of sheep with bluetongue virus serotypes 10 and 17: Evidence for genetic reassortment in the vertebrate host. J. Virol. 1987, 61, 1086–1091. [Google Scholar] [CrossRef] [Green Version]
- Samal, B.K.; El-Hussein, A.; Holbrook, F.R.; Beaty, B.J.; Ramig, R.F. Mixed infection of Culicoides variipennis with bluetongue virus serotypes 10 and 17: Evidence for high frequency reassortment in the vector. J. Gen. Virol. 1987, 68, 2319–2329. [Google Scholar] [CrossRef]
- Ramig, R.F.; Garrison, C.; Chen, D.; Bell-Robinson, D. Analysis of reassortment and superinfection during mixed infectino of Vero cells with bluetongue virus serotypes 10 and 17. J. Gen. Virol. 1989, 70, 2595–2603. [Google Scholar] [CrossRef]
- Shaw, A.E.; Brüning-Richardson, A.; Morrison, E.E.; Bond, J.; Simpson, J.; Ross-Smith, N.; Alpar, O.; Mertens, P.P.; Monaghan, P. Bluetongue virus infection induces aberrant mitosis in mammalian cells. Virol. J. 2013, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- El Husse1n, A.; Ramig, R.F.; Holbrook, F.R.; Beaty, B.J. Asynchronous mixed infection of Culicoides variipennis with bluetongue virus serotypes 10 and 17. J. Gen. Virol. 1989, 70, 3355–3362. [Google Scholar] [CrossRef]
- Nomikou, K.; Hughes, J.; Wash, R.; Kellam, P.; Breard, E.; Zientara, S.; Palmarini, M.; Biek, R.; Mertens, P. Widespread reassortment shapes the evolution and epidemiology of bluetongue virus following European invasion. PLoS Pathog. 2015, 11, e1005056. [Google Scholar] [CrossRef] [PubMed]
- Schirtzinger, E.E.; Jasperson, D.C.; Ostlund, E.N.; Johnson, D.J.; Wilson, W.C. Recent US bluetongue virus serotype 3 isolates found outside of Florida indicate evidence of reassortment with co-circulating endemic serotypes. J. Gen. Virol. 2018, 99, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Greenbaum, B.D.; Li, O.; Poon, L.; Levine, A.J.; Rabadan, R. Viral reassortment as an information exchange between viral segments. Proc. Natl. Acad. Sci. USA 2012, 109, 3341–3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mecham, J.O.; Johnson, D.J. Persistence of bluetongue virus serotype 2 (BTV-2) in the southeast United States. Virus Res. 2005, 113, 116–122. [Google Scholar] [CrossRef]
- Gaudreault, N.N.; Mayo, C.E.; Jasperson, D.C.; Crossley, B.M.; Breitmeyer, R.E.; Johnson, D.J.; Ostlund, E.N.; MacLachlan, N.J.; Wilson, W.C. Whole genome sequencing and phylogenetic analysis of bluetongue virus serotype 2 strains isolated in the Americas including a novel strain from the western United States. J. Vet. Diagn. Investig. 2014, 26, 553–557. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, E.P.; Greiner, E.C.; Taylor, W.P.; Barber, T.L.; House, J.A.; Pearson, J.E. Isolation of bluetongue virus serotype 2 from cattle in Florida: Serotype of bluetongue virus hitherto unrecognized in the Western Hemisphere. Am. J. Vet. Res. 1983, 44, 2226–2228. [Google Scholar]
- Barber, T.; Collisson, E. Implications of a new bluetongue serotype for the U.S. livestock industry. Proc. Annu. Meet US Anim. Health Assoc. 1983, 87, 90–104. [Google Scholar]
- McKercher, D.G.; McGowan, B.; Howarth, J.A.; Saito, J.K. A preliminary report on the isolation and identification of the bluetongue virus from sheep in California. J. Am. Vet. Med. Assoc. 1953, 122, 300–301. [Google Scholar]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Ortega, J.; Crossley, B.; Dechant, J.E.; Drew, C.P.; James MacLachlan, N. Fatal bluetongue virus infection in an alpaca (Vicugna pacos) in California. J. Vet. Diagn. Investig. 2010, 22, 134–136. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.; Renzullo, S.; Mader, M.; Chaignat, V.; Worwa, G.; Thuer, B. Genetic characterization of toggenburg orbivirus, a new bluetongue virus, from goats, Switzerland. Emerg. Infect. Dis. 2008, 14, 1855–1861. [Google Scholar] [CrossRef] [PubMed]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Niu, B.; Zhu, Z.; Wu, S.; Li, W. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galan, M.; Pons, J.-B.; Tournayre, O.; Pierre, É.; Leuchtmann, M.; Pontier, D.; Charbonnel, N. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 2018, 18, 474–489. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.N. BARCRAWL and BARTAB: Software tools for the design and implementation of barcoded primers for highly multiplexed DNA sequencing. BMC Bioinform. 2009, 10, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Illumina. bcl2fastq2 Conversion Software v2.20. Available online: http://support.illumina.com/downloads/bcl2fastq-conversion-software-v2-20.html (accessed on 1 January 2019).
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and evenness: A unifying notation and its consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Richard, M.; Herfst, S.; Tao, H.; Jacobs, N.T.; Lowen, A.C. Influenza A virus reassortment Is limited by anatomical compartmentalization following coinfection via distinct routes. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Otsuki, K.; Yamamoto, H.; Tsubokura, M. Studies on avian infectious bronchitis virus. Arch. Virol. 1979, 60, 25–32. [Google Scholar] [CrossRef]
- Zeldovich, K.B.; Liu, P.; Renzette, N.; Foll, M.; Pham, S.T.; Venev, S.V.; Gallagher, G.R.; Bolon, D.N.; Kurt-Jones, E.A.; Jensen, J.D.; et al. Positive selection drives preferred segment combinations during influenza virus reassortment. Mol. Biol. Evol. 2015, 32, 1519–1532. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.E.; Ratinier, M.; Nunes, S.F.; Nomikou, K.; Caporale, M.; Golder, M.; Allan, K.; Hamers, C.; Hudelet, P.; Zientara, S.; et al. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J. Virol. 2013, 87, 543–557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kar, A.; Bhattacharya, B.; Roy, P. Bluetongue virus RNA binding protein NS2 is a modulator of viral replication and assembly. BMC Mol. Biol. 2007, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Lymperopoulos, K.; Noad, R.; Tosi, S.; Nethisinghe, S.; Brierley, I.; Roy, P. Specific binding of bluetongue virus NS2 to different viral plus-strand RNAs. Virology 2006, 353, 17–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, M.; Celma, C.C.P.; Roy, P. Bluetongue virus non-structural protein 1 is a positive regulator of viral protein synthesis. Virol. J. 2012, 9, 178. [Google Scholar] [CrossRef] [Green Version]
- Mertens, P.P.; Pedley, S.; Cowley, J.; Burroughs, J.N.; Corteyn, A.H.; Jeggo, M.H.; Jennings, D.M.; Gorman, B.M. Analysis of the roles of bluetongue virus outer capsid proteins VP2 and VP5 in determination of virus serotype. Virology 1989, 170, 561–565. [Google Scholar] [CrossRef]
- Sung, P.-Y.; Vaughan, R.; Rahman, S.K.; Yi, G.; Kerviel, A.; Kao, C.C.; Roy, P. The interaction of bluetongue virus VP6 and genomic RNA is essential for genome packaging. J. Virol. 2019, 93, e02023-18. [Google Scholar] [CrossRef] [Green Version]
- Ratinier, M.; Shaw, A.E.; Barry, G.; Gu, Q.; Di Gialleonardo, L.; Janowicz, A.; Varela, M.; Randall, R.E.; Caporale, M.; Palmarini, M.; et al. Bluetongue virus NS4 protein is an interferon antagonist and a determinant of virus virulence. J. Virol. 2016, 90, 5427–5439. [Google Scholar] [CrossRef] [Green Version]
- Sexton, N.; Bellis, E.; Murrieta, R.; Spangler, M.; Cline, P.; Weger-Lucarelli, J.; Ebel, G. Genome number and size polymorphism in Zika virus infectious units. J. Virol 2020, JVI.00787-20. [Google Scholar] [CrossRef] [PubMed]
- Santiana, M.; Ghosh, S.; Ho, B.; Rajasekaran, V.; Du, W.; Musafi, Y.; De Jesus-Diaz, D.; Sosnovtsev, S.; Levenson, E.; Parra, G.; et al. Vesicle-cloaked virus clusters are optimal units for inter-organismal viral transmission. Cell Host Microbe 2018, 24, 208–220. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Harty, R.N. The NS3 protein of bluetongue virus exhibits viroporin-like properties. J. Biol. Chem. 2004, 279, 43092–43097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ftaich, N.; Ciancia, C.; Viarouge, C.; Barry, G.; Ratinier, M.; van Rijn, P.A.; Breard, E.; Vitour, D.; Zientara, S.; Palmarini, M.; et al. Turnover rate of NS3 proteins modulates bluetongue virus replication kinetics in a host-specific manner. J. Virol. 2015, 89, 10467–10481. [Google Scholar] [CrossRef] [Green Version]
- Marshall, N.; Priyamvada, L.; Ende, Z.; Steel, J.; Lowen, A.C. Influenza virus reassortment occurs with high frequency in the absence of segment mismatch. PLoS Pathog. 2013, 9, e1003421. [Google Scholar] [CrossRef] [Green Version]
- Collisson, E.W.; Barber, T.L.; Paul, E.; Gibbs, J.; Greiner, E.C. Two electropherotypes of bluetongue virus serotype 2 from naturally infected calves. J. Gen. Virol. 1985, 66, 1279–1286. [Google Scholar] [CrossRef]
- Collisson, E.W.; Barber, T.L. Isolation and identification of bluetongue virus: A serotype new to the U.S. Prog. Clin. Biol. Res. 1985, 178, 319–327. [Google Scholar] [PubMed]
- Maclachlan, N.J.; Wilson, W.C.; Crossley, B.M.; Mayo, C.E.; Jasperson, D.C.; Breitmeyer, R.E.; Whiteford, A.M. Novel serotype of bluetongue virus, western North America. Emerg. Infect. Dis. 2013, 19, 665–666. [Google Scholar] [CrossRef]
- Tanya, V.N.; Greiner, E.C.; Shroyer, D.A.; Gibbs, E.P.J. Vector competence parameters of Culicoides variipennis (Diptera: Ceratopogonidae) for bluetongue virus serotype 2. J. Med. Entomol. 1993, 30, 204–208. [Google Scholar] [CrossRef]
- Firth, C.; Blasdell, K.R.; Amos-Ritchie, R.; Sendow, I.; Agnihotri, K.; Boyle, D.B.; Daniels, P.; Kirkland, P.D.; Walker, P.J. Genomice analysis of bluetongue virus episystems in Australia and Indonesia. Vet. Res. 2017, 48, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | S10 | |
---|---|---|---|---|---|---|---|---|---|---|
% Nucleotide Identity | 89.2% | 52.4% | 93.2% | 89.7% | 91.6% | 69.4% | 93.7% | 89.3% | 88.1% | 81.9% |
% Amino acid Identity | 97.8% | 40.9% | 99.6% | 96.4% | 97.3% | 77.9% | 100% | 90.4% | 86.9% | 93.9% |
% CDS Coverage, BTV-2 | % CDS Coverage, BTV-10 | Total Reads, BTV-2 | Total Reads, BTV-10 | Mean CDS Depth, BTV-2 | Mean CDS Depth, BTV-10 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Passage | Segment | 2 + 10 A | 2 + 10 B | 2 + 10 C | 2 + 10 A | 2 + 10 B | 2 + 10 C | 2 + 10 A | 2 + 10 B | 2 + 10 C | 2 + 10 A | 2 + 10 B | 2 + 10 C | 2 + 10 A | 2 + 10 B | 2 + 10 C | 2 + 10 A | 2 + 10 B | 2 + 10C |
1 | 1 | 100% | 100% | 100% | 100% | 100% | 100% | 3655 | 2466 | 3461 | 1851 | 1240 | 1966 | 119 | 81 | 116 | 60 | 41 | 65 |
2 | 100% | 100% | 100% | 100% | 100% | 100% | 2822 | 2023 | 4236 | 1509 | 1025 | 2190 | 124 | 90 | 192 | 66 | 47 | 99 | |
3 | 100% | 100% | 100% | 100% | 100% | 100% | 2677 | 1962 | 2661 | 1455 | 1104 | 1795 | 126 | 93 | 128 | 68 | 53 | 86 | |
4 | 99.9% | 99.9% | 99.5% | 99.8% | 99.7% | 99.9% | 1866 | 1392 | 1800 | 915 | 610 | 762 | 121 | 92 | 119 | 59 | 41 | 51 | |
5 | 100% | 100% | 100% | 100% | 100% | 100% | 3966 | 3046 | 4805 | 2129 | 1848 | 2512 | 299 | 259 | 368 | 161 | 141 | 193 | |
6 | 100% | 100% | 100% | 100% | 100% | 100% | 2697 | 2015 | 3793 | 1482 | 1153 | 1274 | 214 | 163 | 310 | 119 | 94 | 105 | |
7 | 100% | 100% | 100% | 100% | 100% | 100% | 2724 | 2371 | 2744 | 930 | 865 | 1191 | 323 | 282 | 329 | 110 | 105 | 144 | |
8 | 100% | 100% | 100% | 100% | 100% | 100% | 4028 | 3481 | 4660 | 1772 | 1414 | 1841 | 466 | 408 | 555 | 207 | 171 | 223 | |
9 | 100% | 100% | 100% | 100% | 100% | 100% | 4492 | 3474 | 4862 | 2324 | 1667 | 2256 | 550 | 430 | 621 | 282 | 208 | 286 | |
10 | 100% | 100% | 100% | 100% | 100% | 100% | 1577 | 1243 | 2036 | 1014 | 836 | 1156 | 274 | 221 | 371 | 188 | 158 | 217 | |
3 | 1 | 100% | 99.9% | 100% | 99.8% | 97.8% | 99.9% | 1640 | 1453 | 1253 | 345 | 325 | 262 | 53 | 47 | 41 | 11 | 10 | 9 |
2 | 100% | 100% | 100% | 99.97% | 99.9% | 100% | 1083 | 1024 | 921 | 355 | 309 | 246 | 48 | 45 | 41 | 16 | 14 | 11 | |
3 | 99.8% | 100% | 100% | 99.90% | 100% | 100% | 1093 | 1000 | 835 | 266 | 247 | 165 | 51 | 46 | 39 | 12 | 11 | 8 | |
4 | 99.8% | 99.7% | 99.0% | 99.4% | 95.8% | 99.5% | 903 | 952 | 795 | 138 | 146 | 129 | 59 | 62 | 52 | 9 | 10 | 9 | |
5 | 100% | 100% | 100% | 99.4% | 99.7% | 100% | 1718 | 1818 | 1589 | 914 | 1040 | 779 | 130 | 136 | 120 | 67 | 76 | 59 | |
6 | 100% | 100% | 100% | 100% | 100% | 97.7% | 1349 | 1575 | 1377 | 285 | 250 | 215 | 106 | 124 | 110 | 23 | 20 | 18 | |
7 | 100% | 100% | 100% | 97% | 100% | 79.6% | 1433 | 1824 | 1352 | 32 | 30 | 25 | 168 | 217 | 159 | 4 | 4 | 3 | |
8 | 100% | 100% | 100% | 83.1% | 71.5% | 93.2% | 2600 | 3081 | 2517 | 32 | 23 | 32 | 303 | 355 | 298 | 4 | 3 | 4 | |
9 | 100% | 100% | 100% | 100% | 100% | 100% | 2610 | 3123 | 2372 | 655 | 934 | 634 | 318 | 380 | 297 | 78 | 113 | 78 | |
10 | 100% | 100% | 100% | 100% | 100% | 100% | 596 | 725 | 593 | 331 | 435 | 327 | 102 | 127 | 106 | 62 | 82 | 59 | |
7 | 1 | 100% | 100% | 98.6% | 98.9% | 99.9% | 84% | 664 | 1389 | 307 | 153 | 298 | 69 | 22 | 45 | 10 | 5 | 10 | 2 |
2 | 100% | 100% | 100% | 98% | 97.8% | 79.4% | 509 | 961 | 216 | 112 | 223 | 65 | 22 | 42 | 10 | 5 | 10 | 3 | |
3 | 100% | 100% | 100% | 80.9% | 95.6% | 57.9% | 590 | 1099 | 231 | 61 | 108 | 37 | 28 | 51 | 11 | 3 | 5 | 2 | |
4 | 100% | 100% | 99.7% | 91.3% | 91.6% | 48.7% | 450 | 886 | 181 | 50 | 65 | 17 | 30 | 58 | 11 | 3 | 4 | 1 | |
5 | 99.6% | 100% | 100% | 100% | 100% | 100% | 357 | 645 | 157 | 455 | 706 | 184 | 26 | 48 | 11 | 34 | 53 | 14 | |
6 | 100% | 100% | 100% | 100% | 100% | 100% | 300 | 565 | 121 | 153 | 426 | 107 | 24 | 44 | 9 | 13 | 34 | 9 | |
7 | 100% | 100% | 100% | ND | 21.7% | ND | 538 | 852 | 261 | ND | 2 | ND | 59 | 97 | 28 | ND | 0 | ND | |
8 | 100% | 100% | 100% | ND | ND | ND | 1018 | 1792 | 448 | ND | ND | ND | 118 | 210 | 50 | ND | ND | ND | |
9 | 99.8% | 100% | 100% | 99.8% | 100% | 99.8% | 224 | 537 | 105 | 207 | 479 | 111 | 27 | 65 | 13 | 25 | 59 | 13 | |
10 | 100% | 100% | 100% | 100% | 100% | 99.4% | 278 | 532 | 153 | 42 | 94 | 35 | 49 | 90 | 24 | 8 | 17 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopanke, J.; Lee, J.; Stenglein, M.; Mayo, C. In Vitro Reassortment between Endemic Bluetongue Viruses Features Global Shifts in Segment Frequencies and Preferred Segment Combinations. Microorganisms 2021, 9, 405. https://doi.org/10.3390/microorganisms9020405
Kopanke J, Lee J, Stenglein M, Mayo C. In Vitro Reassortment between Endemic Bluetongue Viruses Features Global Shifts in Segment Frequencies and Preferred Segment Combinations. Microorganisms. 2021; 9(2):405. https://doi.org/10.3390/microorganisms9020405
Chicago/Turabian StyleKopanke, Jennifer, Justin Lee, Mark Stenglein, and Christie Mayo. 2021. "In Vitro Reassortment between Endemic Bluetongue Viruses Features Global Shifts in Segment Frequencies and Preferred Segment Combinations" Microorganisms 9, no. 2: 405. https://doi.org/10.3390/microorganisms9020405
APA StyleKopanke, J., Lee, J., Stenglein, M., & Mayo, C. (2021). In Vitro Reassortment between Endemic Bluetongue Viruses Features Global Shifts in Segment Frequencies and Preferred Segment Combinations. Microorganisms, 9(2), 405. https://doi.org/10.3390/microorganisms9020405