Persistence of Pathogens on Inanimate Surfaces: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Viruses
3.2. DNA Viruses
3.2.1. Adenoviridae
3.2.2. Papillomaviridae
3.2.3. Herpesviridae
Herpes Simplex Virus (HSV)
Cytomegalovirus (CMV)
3.2.4. Poxviridae
Vaccinia Virus
3.3. RNA Viruses
3.3.1. Reoviridae
3.3.2. Picornaviridae
Coxsackie Virus
Echovirus
Poliovirus
Rhinovirus
Hepatitis A-Virus
3.3.3. Caliciviridae
Feline Calicivirus (FCV)
Murine Norovirus
Tulane virus
3.3.4. Flaviviridae
Hepatitis C-Virus (HCV)
3.3.5. Orthomyxoviridae
Influenza A Virus
Influenza B Virus
3.3.6. Paramyxoviridae
Parainfluenza Virus
Henipavirus
Respiratory Syncytial Virus (RSV)
3.3.7. Filoviridae
Ebolavirus
3.3.8. Coronaviridae
HCoV-229E
HCoV-OC43
SARS-CoV-1
MERS-CoV
SARS-CoV-2
3.3.9. Astroviridae
3.3.10. Retroviridae
Human Immunodeficiency Virus (HIV)
3.3.11. Hepadnaviridae
Hepatitis B Virus (HBV)
3.4. Bacteria
3.4.1. Gram-Positive Bacteria
Staphylococci
Streptococci
Enterococci
Clostridioides difficile
Listeria monocytogenes
Other Gram-Positive Bacteria
3.4.2. Gram-Negative Bacteria
Escherichia coli
Klebsiella pneumoniae
Salmonella enterica
Pseudomonas spp.
Acinetobacter spp.
Other Gram-Negative Bacteria
3.4.3. Other Bacteria
3.5. Fungi
3.5.1. Filamentous fungi
3.5.2. Candida spp.
3.5.3. Other Clinically Relevant Yeasts
4. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kanamori, H.; Rutala, W.A.; Weber, D.J. The Role of Patient Care Items as a Fomite in Healthcare-Associated Outbreaks and Infection Prevention. Clin. Infect. Dis. 2017, 65, 1412–1419. [Google Scholar] [CrossRef]
- Allan, M.; Atuhaire, C.; Nathan, M.; Ejobi, F.; Cumber, S.N. Bacterial contamination of Ugandan paper currency notes possessed by food vendors around Mulago Hospital complex, Uganda. Pan Afr. Med. J. 2018, 31, 143. [Google Scholar] [CrossRef]
- Inglis, T.J.J.; Spittle, C.; Carmichael, H.; Downes, J.; Chiari, M.; McQueen-Mason, A.; Merritt, A.J.; Hodge, M.; Murray, R.J.; Dowse, G.K. Legionnaires’ Disease Outbreak on a Merchant Vessel, Indian Ocean, Australia, 2015. Emerging Infect. Dis. 2018, 24, 1345–1348. [Google Scholar] [CrossRef]
- Canales, R.A.; Reynolds, K.A.; Wilson, A.M.; Fankem, S.L.M.; Weir, M.H.; Rose, J.B.; Abd-Elmaksoud, S.; Gerba, C.P. Modeling the role of fomites in a norovirus outbreak. J. Occup. Environ. Hyg. 2019, 16, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Kraay, A.N.M.; Hayashi, M.A.L.; Hernandez-Ceron, N.; Spicknall, I.H.; Eisenberg, M.C.; Meza, R.; Eisenberg, J.N.S. Fomite-mediated transmission as a sufficient pathway: A comparative analysis across three viral pathogens. BMC Infect. Dis. 2018, 18, 540. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.; Li, Y.; Xiao, S.; Lin, C.-H.; Norris, S.L.; Wei, D.; Hu, Z.; Ji, S. Routes of transmission of influenza A H1N1, SARS CoV, and norovirus in air cabin: Comparative analyses. Indoor Air 2018, 28, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, E.S.; Lobaugh-Jin, E.; Smith, B.; Sova, C.; Misuraca, J.; Henshaw, N.; Gray, G.C. Molecular epidemiology of an outbreak of human parainfluenza virus 3 among oncology patients. J. Hosp. Infect. 2019, 103, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Chia, G.; Ho, H.J.; Ng, C.-G.; Neo, F.J.-X.; Win, M.-K.; Cui, L.; Leo, Y.-S.; Chow, A. An unusual outbreak of rotavirus G8P8 gastroenteritis in adults in an urban community, Singapore, 2016. J. Clin. Virol. 2018, 105, 57–63. [Google Scholar] [CrossRef]
- Chow, N.A.; Gade, L.; Tsay, S.V.; Forsberg, K.; Greenko, J.A.; Southwick, K.L.; Barrett, P.M.; Kerins, J.L.; Lockhart, S.R.; Chiller, T.M.; et al. Multiple introductions and subsequent transmission of multidrug-resistant Candida auris in the USA: A molecular epidemiological survey. Lancet Infect. Dis. 2018, 18, 1377–1384. [Google Scholar] [CrossRef]
- Eyre, D.W.; Sheppard, A.E.; Madder, H.; Moir, I.; Moroney, R.; Quan, T.P.; Griffiths, D.; George, S.; Butcher, L.; Morgan, M.; et al. A Candida auris Outbreak and Its Control in an Intensive Care Setting. N. Engl. J. Med. 2018, 379, 1322–1331. [Google Scholar] [CrossRef]
- Ruiz-GaitáN, A.; Moret, A.M.; Tasias-Pitarch, M.; Aleixandre-López, A.I.; Martínez-Morel, H.; Calabuig, E.; Salavert-Lletí, M.; Ramírez, P.; López-Hontangas, J.L.; Hagen, F.; et al. An outbreak due to Candida auris with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses 2018, 61, 498–505. [Google Scholar] [CrossRef] [Green Version]
- Xiao, S.; Li, Y.; Wong, T.-W.; Hui, D.S.C. Role of fomites in SARS transmission during the largest hospital outbreak in Hong Kong. PLoS ONE 2017, 12, e0181558. [Google Scholar] [CrossRef]
- Xiao, S.; Tang, J.W.; Li, Y. Airborne or Fomite Transmission for Norovirus? A Case Study Revisited. Int. J. Environ. Res. Public Health 2017, 14, 1571. [Google Scholar] [CrossRef] [Green Version]
- Schelenz, S.; Hagen, F.; Rhodes, J.L.; Abdolrasouli, A.; Chowdhary, A.; Hall, A.; Ryan, L.; Shackleton, J.; Trimlett, R.; Meis, J.F.; et al. First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob. Resist. Infect. Control 2016, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Van Schalkwyk, E.; Iyaloo, S.; Naicker, S.D.; Maphanga, T.G.; Mpembe, R.S.; Zulu, T.G.; Mhlanga, M.; Mahlangu, S.; Maloba, M.B.; Ntlemo, G.; et al. Large Outbreaks of Fungal and Bacterial Bloodstream Infections in a Neonatal Unit, South Africa, 2012–2016. Emerging Infect. Dis. 2018, 24, 1204–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, H.; Lee, S.C.; Chan, L.Y.; Li, W.M. Risk assessment of exposure to volatile organic compounds in different indoor environments. Environ. Res. 2004, 94, 57–66. [Google Scholar] [CrossRef]
- Lynch, J.P.; Fishbein, M.; Echavarria, M. Adenovirus. Semin. Respir. Crit. Care Med. 2011, 32, 494–511. [Google Scholar] [CrossRef]
- Gordon, Y.J.; Gordon, R.Y.; Romanowski, E.; Araullo-Cruz, T.P. Prolonged Recovery of Desiccated Adenoviral Serotypes 5, 8, and 19 from Plastic and Metal Surfaces In Vitro. Ophthalmology 1993, 100, 1835–1840. [Google Scholar] [CrossRef]
- Abad, F.X.; Pinto, R.M.; Bosch, A. Survival of Enteric Viruses on Environmental Fomites. Appl. Environ. Microbiol. 1994, 60, 3704–3710. [Google Scholar] [CrossRef] [Green Version]
- Rabenau, H.F.; Cinatl, J.; Morgenstern, B.; Bauer, G.; Preiser, W.; Doerr, H.W. Stability and inactivation of SARS coronavirus. Med. Microbiol. Immunol. 2005, 194, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahl, M.C.; Sadler, C. Virus survival on inanimate surfaces. Can. J. Microbiol. 1975, 19–23. [Google Scholar] [CrossRef]
- Roden, R.; Lowy, D.; Schiller, J. Papillomavirus is Resistant to Desiccation. Appl. Environ. Microbiol. 1997, 176, 1076–1079. [Google Scholar] [CrossRef] [Green Version]
- Firquet, S.; Beaujard, S.; Lobert, P.-E.; Sané, F.; Caloone, D.; Izard, D.; Hober, D. Survival of Enveloped and Non-Enveloped Viruses on Inanimate Surfaces. Microbes Environ. 2015, 30, 140–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nerurkar, L.S.; West, F.; May, M.; Madden, D.L.; Sever, J.L. Survival of Herpes Simplex Virus in Water Specimens Collected from Hot Tubs in Spa Facilities and on Plastic Surfaces. JAMA 1983, 250, 3081–3083. [Google Scholar] [CrossRef]
- Faix, R.G. Survival of cytomegalovirus on environmental surfaces. J. Pediatr. 1984, 106, 649–652. [Google Scholar] [CrossRef]
- Faix, R.G. Comparative Efficacy of Handwashing Agents against Cytomegalovirus. Infect. Control 1987, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.P.; Choi, Y.W.; Wendling, M.Q.; Rogers, J.V.; Chappie, D.J. Environmental persistence of vaccinia virus on materials. Lett. Appl. Microbiol. 2013, 57, 399–404. [Google Scholar] [CrossRef]
- Sattar, S.A.; Lloyd-Evans, N.; Springthorpe, V.S. Institutional outbreaks of rotavirus diarrhoea: Potential role of fomites and environmental surfaces as vehicles for virus transmission. Epidemiol. Infect. 1985, 96, 277–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keswick, B.H.; Pickering, L.; DuPont, H.L.; Woodward, W.E. Survival and Detection of Rotaviruses on Environmental Surfaces in Day Care Centers. Appl. Environ. Microbiol. 1983, 46, 813–816. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.; Shirley, J.A. The Effects of Relative Humidity and Temperature on the Survival of Human Rotavirus in Faeces. Arch. Virol. 1982, 72, 179–186. [Google Scholar] [CrossRef]
- Mocé-Llivina, L.; Papageorgiou, G.T.; Jofre, J. A membrane-based quantitative carrier test to assess the virucidal activity of disinfectants and persistence of viruses on porous fomites. J. Virol. Methods 2006, 135, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Tamrakar, S.B.; Henley, J.; Gurian, P.L.; Gerba, C.P.; Mitchell, J.; Enger, K.; Rose, J.B. Persistence analysis of poliovirus on three different types of fomites. J. Appl. Microbiol. 2017, 122, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Mbithi, J.N.; Springthorpe, V.S.; Sattar, S.A. Effect of Relative Humidity and Air Temperature on Survival of Hepatitis A Virus on Environmental Surfaces. Appl. Environ. Microbiol. 1991, 57, 1394–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattar, S.A.; Karim, Y.G.; Springthorpe, V.S.; Johnson-Lussenburg, C.M. Survival of human rhinovirus type 14 dried onto nonporous inanimate surfaces: Effect of relative humidity and suspending medium. Can. J. Microbiol. 1987, 33, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Si, J.; Lee, J.E.; Ko, G. Temperature and humidity influences on inactivation kinetics of enteric viruses on surfaces. Environ. Sci. Technol. 2012, 46, 13303–13310. [Google Scholar] [CrossRef]
- D’Souza, D.H.; Sair, A.; Williams, K.; Papafragkou, E.; Jean, J.; Moore, C.; Jaykus, L. Persistence of caliciviruses on environmental surfaces and their transfer to food. Int. J. Food Microbiol. 2006, 108, 84–91. [Google Scholar] [CrossRef]
- Clay, S.; Maherchandani, S.; Malik, Y.S.; Goyal, S.M. Survival on uncommon fomites of feline calicivirus, a surrogate of noroviruses. Am. J. Infect. Control 2006, 34, 41–43. [Google Scholar] [CrossRef]
- Arthur, S.E.; Gibson, K.E. Environmental persistence of Tulane virus—A surrogate for human norovirus. Can. J. Microbiol. 2016, 62, 449–454. [Google Scholar] [CrossRef]
- Warnes, S.L.; Keevil, C.W. Inactivation of norovirus on dry copper alloy surfaces. PLoS ONE 2013, 8, e75017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckley, D.; Fraser, A.; Huang, G.; Jiang, X. Recovery Optimization and Survival of the Human Norovirus Surrogates Feline Calicivirus and Murine Norovirus on Carpet. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paintsil, E.; Binka, M.; Patel, A.; Lindenbach, B.D.; Heimer, R. Hepatitis C virus maintains infectivity for weeks after drying on inanimate surfaces at room temperature: Implications for risks of transmission. J. Infect. Dis. 2014, 209, 1205–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerrbecker, J.; Friesland, M.; Ciesek, S.; Erichsen, T.J.; Mateu-Gelabert, P.; Steinmann, J.; Steinmann, J.; Pietschmann, T.; Steinmann, E. Inactivation and survival of hepatitis C virus on inanimate surfaces. J. Infect. Dis. 2011, 204, 1830–1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bean, B.; Moore, B.M.; Sterner, B.; Peterson, L.R.; Gerding, D.N.; Balfour, H.H., Jr. Survival of Influenza Viruses on Environmental Surfaces. J. Infect. Dis. 1982, 146, 47–51. [Google Scholar] [CrossRef]
- Greatorex, J.S.; Digard, P.; Curran, M.D.; Moynihan, R.; Wensley, H.; Wreghitt, T.; Varsani, H.; Garcia, F.; Enstone, J.; Nguyen-Van-Tam, J.S. Survival of influenza A(H1N1) on materials found in households: Implications for infection control. PLoS ONE 2011, 6, e27932. [Google Scholar] [CrossRef] [PubMed]
- Perry, K.A.; Coulliette, A.D.; Rose, L.J.; Shams, A.M.; Edwards, J.R.; Noble-Wang, J.A. Persistence of Influenza A (H1N1) Virus on Stainless Steel Surfaces. Appl. Environ. Microbiol. 2016, 82, 3239–3245. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.-A.; Bennett, A.M. Persistence of influenza on surfaces. J. Hosp. Infect. 2017, 95, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Brady, M.T.; Evans, J.; Cuartes, J. Survival and disinfection of parainfluenza viruses on environmental surfaces. Am. J. Infect. Control 1990, 18, 18–23. [Google Scholar] [CrossRef]
- Fogarty, R.; Halpin, K.; Hyatt, A.D.; Daszak, P.; Mungall, B.A. Henipavirus susceptibility to environmental variables. Virus Res. 2008, 132, 140–144. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.B.; Douglas, R.G., Jr.; Geiman, J.M. Possible Transmission by Fomites of Respiratory Syncytial Virus. J. Infect. Dis. 1980, 141, 98–102. [Google Scholar] [CrossRef]
- Westhoff Smith, D.; Hill-Batorski, L.; N’jai, A.; Eisfeld, A.J.; Neumann, G.; Halfmann, P.; Kawaoka, Y. Ebola Virus Stability Under Hospital and Environmental Conditions. J. Infect. Dis. 2016, 214, S142–S144. [Google Scholar] [CrossRef] [PubMed]
- Sizun, J.e.a. Survival of human coronaviruses 229E and OC43 in suspension and after drying on surfaces: A possible source of hospital-acquired infections. J. Hosp. Infect. 2000, 46, 55–60. [Google Scholar] [CrossRef]
- Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.Y.; Seto, W.H. The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2011, 734690. [Google Scholar] [CrossRef]
- van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Lai, M.Y.Y.; Cheng, P.K.C.; Lim, W.W.L. Survival of Severe Acute Respiratory Syndrome Coronavirus. Clin. Infect. Dis. 2005, 41, e67–e71. [Google Scholar] [CrossRef] [Green Version]
- Casanova, L.M.; Jeon, S.; Rutala, W.A.; Weber, D.J.; Sobsey, M.D. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl. Environ. Microbiol. 2010, 76, 2712–2717. [Google Scholar] [CrossRef] [Green Version]
- Van Doremalen, N.; Bushmaker, T.; Munster, V.J. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Eurosurveillance 2013, 18, 590. [Google Scholar] [CrossRef] [Green Version]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, e10. [Google Scholar] [CrossRef]
- Kratzel, A.; Steiner, S.; Todt, D.; V’kovski, P.; Brueggemann, Y.; Steinmann, J.; Steinmann, E.; Thiel, V.; Pfaender, S. Temperature-dependent surface stability of SARS-CoV-2. J. Infect. 2020, 81, 452–482. [Google Scholar] [CrossRef]
- Abad, F.X.; Villena, C.; Guix, S.; Caballero, S.; Pintó, R.M.; Bosch, A. Potential role of fomites in the vehicular transmission of human astroviruses. Appl. Environ. Microbiol. 2001, 67, 3904–3907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barre-Sinoussi, F.; Nugeyre, M.T.; Chermann, J.C. Resistance of AIDS virus at room temperature. Lancet 1985, 2, 721–722. [Google Scholar] [CrossRef]
- Tjotta, E.; Hungnes, O.; Grinde, B. Survival of HIV-1 activity after disinfection, temperature and pH changes, or drying. J. Med. Virol. 1991, 35, 223–227. [Google Scholar] [CrossRef]
- Bond, W.W.; Favero, M.S.; Petersen, N.J.; Gravelle, C.R.; Ebert, J.W.; Maynard, J.E. Survival of Hepatitis B-Virus after drying and storage for one week. Lancet 1981, 1, 550–551. [Google Scholar] [CrossRef]
- Favero, M.S.; Bond, W.W.; Petersen, N.J.; Berquist, K.R.; Maynard, J.E. Detection Methods for Study of the Stabillity of Hepatitis B Antigen on Surfaces. J. Infect. Dis. 1974, 129, 210–212. [Google Scholar] [CrossRef]
- Diovert, M.V.; Razonable, R.R. Cytomegalovirus. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Levin, M.J.; Weinberg, A.; Schmid, D.S. Herpes Simplex Virus and Varicella-Zoster Virus. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed]
- Nowalk, A.; Green, M. Epstein-Barr Virus. Microbiol. Spectr. 2016, 4, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, A.; Bostan, N.; Yinda, K.C.; Naseem, S.; Sattar, S. Rotavirus: Genetics, pathogenesis and vaccine advances. Rev. Med. Virol. 2018, 28, e2003. [Google Scholar] [CrossRef]
- Zell, R. Picornaviridae-the ever-growing virus family. Arch. Virol. 2018, 163, 299–317. [Google Scholar] [CrossRef]
- Vandini, S.; Viagi, C.; Fischer, M.; Lanari, M. Impact of Rhinovirus Infections in Children. Viruses 2019, 11, 521. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.E.; Lamson, D.M.; George, K.S.; Walsh, T.J. Human rhinoviruses. Clin. Microbiol. Rev. 2013, 26, 135–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, J.L.; Pham, S.; Borish, L. Rhinovirus and Asthma Exacerbations. Immunol. Allergy Clin. N. Am. 2019, 39, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Stuart, D.I.; Ren, J.; Wang, X.; Rao, Z.; Fry, E.E. Hepatitis A Virus Capsid Structure. Cold Spring Harb. Perspect. Med. 2019, 9. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.C.; Jeong, S.H. Natural History, Clinical Manifestations, and Pathogenesis of Hepatitis A. Cold Spring Harb. Perspect. Med. 2018, 8. [Google Scholar] [CrossRef] [PubMed]
- Estes, M.K.; Parashar, U.D. Viral gastroenteritis. Lancet 2018, 392, 175–186. [Google Scholar] [CrossRef]
- Robilotti, E.; Deresinki, S.; Pinsky, B.A. Norovirus. Clin. Microbiol. Rev. 2015, 28, 134–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorne, L.G.; Goodfellow, I.G. Norovirus gene expression and replication. J. Gen. Virol. 2014, 95, 278–291. [Google Scholar] [CrossRef]
- Kawaoka, Y.; Neumann, G. Influenza viruses: An introduction. Methods Mol. Biol. 2012, 865, 1–9. [Google Scholar] [CrossRef]
- Pleschka, S. Overview of influenza viruses. Swine Influenza 2013, 370, 1–20. [Google Scholar] [CrossRef]
- Paules C, S.K. Influenza. Lancet 2017, 390, 697–708. [Google Scholar] [CrossRef]
- Hutchinson, E.C. Influenza Virus. Trends Microbiol. 2018, 26, 809–810. [Google Scholar] [CrossRef]
- Xie, M.; Chen, Q. Insight into 2019 novel coronavirus—An updated interim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis. 2020, 94, 119–124. [Google Scholar] [CrossRef]
- Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: Current knowledge. Virol. J. 2019, 16, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, S.; Wong, G.; Shi, W.; Liu, J.; Lai, A.C.K.; Zhou, J.; Liu, W.; Bi, Y.; Gao, G.F. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses. Trends Microbiol. 2016, 24, 490–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016, 14, 523. [Google Scholar] [CrossRef]
- Warnes, S.L.; Little, Z.R.; Keevil, C.W. Human Coronavirus 229E Remains Infectious on Common Touch Surface Materials. mBio 2015, 6, e01697-15. [Google Scholar] [CrossRef] [Green Version]
- Zeidler, S.; Müller, V. The role of compatible solutes in desiccation resistance of Acinetobacter baumannii. Microbiologyopen 2019, 8, e00740. [Google Scholar] [CrossRef] [Green Version]
- Otter, J.A.; French, G.L. Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor. J. Clin. Microbiol. 2009, 47, 205–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jump, R.L.P.; Pultz, M.J.; Donskey, C.J. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: A potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob. Agents Chemother. 2007, 51, 2883–2887. [Google Scholar] [CrossRef] [Green Version]
- Buggy, B.P.; Wilson, K.H.; Fekety, R. Comparison of Methods for Recovery of Clostridium difficile from an Environmental Surface. J. Clin. Microbiol. 1983, 18, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Crosbie, W.E.; Wright, H.D. Diphtheria bacilli in floor dust. Lancet 1941, 237, 656–659. [Google Scholar] [CrossRef]
- Neely, A.N.; Maley Matthew, P. Survival of Enterococci and Staphylococci on Hospital Fabrics and Plastic. J. Clin. Microbiol. 2000, 38, 724–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koca, O.; Altoparlak, U.; Ayyildiz, A.; Kaynar, H. Persistence of nosocomial pathogens on various fabrics. Eurasian J. Med. 2012, 44, 28–31. [Google Scholar] [CrossRef]
- Bale, M.J.; Bennett, P.M.; Beringer, J.E.; Hinton, M. The survival of bacteria exposed to desiccation on surfaces associated with farm buildings. J. Appl. Bacteriol. 1993, 75, 519–528. [Google Scholar] [CrossRef]
- Wendt, C.; Wiesenthal, B.; Dietze, E.; Rüden, H. Survival of Vancomycin-Resistant and Vancomycin-Susceptible Enterococci on Dry Surfaces. J. Clin. Microbiol. 1998, 36, 3734–3736. [Google Scholar] [CrossRef] [Green Version]
- Noskin, G.A.; Stosor, V.; Cooper, I.; Peterson, L.R. Recovery of Vancomycin-Resistant Enterococci on Fingertips and Environmental Surfaces. Infect. Control Hosp. Epidemiol. 1995, 16, 577. [Google Scholar] [CrossRef]
- Hirai, Y. Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J. Infect. Dis. 1991, 19, 191–200. [Google Scholar] [CrossRef]
- Esteves, D.C.; Pereira, V.C.; Souza, J.M.; Keller, R.; Simões, R.D.; Winkelstroter Eller, L.K.; Rodrigues, M.V.P. Influence of biological fluids in bacterial viability on different hospital surfaces and fomites. Am. J. Infect. Control 2016, 44, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Helke, D.M.; Wong, A.C.L. Survival and Growth Characteristics of Listeria monocytogenes and Salmonella typhimurium on Stainless Steel and Buna-N Rubber. J. Food Prot. 1994, 57, 963–968. [Google Scholar] [CrossRef]
- Hansen, L.T.; Vogel, B.F. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products. Int. J. Food Microbiol. 2011, 146, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Vogel, B.F.; Hansen, L.T.; Mordhorst, H.; Gram, L. The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material. Int. J. Food Microbiol. 2010, 140, 192–200. [Google Scholar] [CrossRef]
- Daneshvar Alavi, H.E.; Truelstrup Hansen, L. Kinetics of biofilm formation and desiccation survival of Listeria monocytogenes in single and dual species biofilms with Pseudomonas fluorescens, Serratia proteamaculans or Shewanella baltica on food-grade stainless steel surfaces. Biofouling 2013, 29, 1253–1268. [Google Scholar] [CrossRef] [PubMed]
- Ak, N.O.; Cliver, D.O.; Kaspar, C.W. Decontamination of Plastic and Wooden Cutting Boards for Kitchen Use. J. Food Prot. 1994, 57, 23–30. [Google Scholar] [CrossRef]
- Siroli, L.; Patrignani, F.; Serrazanetti, D.I.; Chiavari, C.; Benevelli, M.; Grazia, L.; Lanciotti, R. Survival of Spoilage and Pathogenic Microorganisms on Cardboard and Plastic Packaging Materials. Front. Microbiol. 2017, 8, 2606. [Google Scholar] [CrossRef] [Green Version]
- Scott, E.; Bloomfield, S.F. The survival and transfer of microbial contamination via cloths, hands and utensils. J. Appl. Bacteriol. 1990, 68, 271–278. [Google Scholar] [CrossRef]
- Kampf, G.; Dietze, B.; Grobe-Siestrup, C.; Wendt, C.; Martiny, H. Microbicidal Activity of a New Silver-Containing Polymer, SPI-ARGENT II. Antimicrob. Agents Chemother. 1998, 42, 2440–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagenvoort, J.H.; Penders, R.J. Long-term in-vitro survival of an epidemic MRSA phage-group III-29 strain. J. Hosp. Infect. 1997, 35, 322–325. [Google Scholar] [CrossRef]
- Wagenvoort, J.H.; Sluijsmans, W.; Penders, R.J. Better environmental survival of outbreak vs. sporadic MRSA isolates. J. Hosp. Infect. 2000, 45, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Chaibenjawong, P.; Foster, S.J. Desiccation tolerance in Staphylococcus aureus. Arch. Microbiol. 2011, 193, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Noyce, J.O.; Michels, H.; Keevil, C.W. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J. Hosp. Infect. 2006, 63, 289–297. [Google Scholar] [CrossRef]
- Webster, C.; Towner, K.J.; Humphreys, H. survival of acinetobacter on three clinically related inanimate surfaces. Infect. Control Hosp. Epidemiol. 2000, 21, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jawad, A.; Heritage, J.; Snelling, A.M.; Gascoyne-Binzi, D.M.; Hawkey, P.M. Influence of Relative Humidity and Suspending Menstrua on Survival of Acinetobacter spp. on Dry Surfaces. J. Clin. Microbiol. 1996, 34, 2881–2887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weese, J.S.; Jarlot, C.; Morley, P.S. Survival of Streptococcus equi on surfaces in an outdoor environment. Can. Vet. J. 2009, 50, 968–970. [Google Scholar]
- Durham, A.E.; Hall, Y.S.; Kulp, L.; Underwood, C. A study of the environmental survival of Streptococcus equi subspecies equi. Equine Vet. J. 2018, 50, 861–864. [Google Scholar] [CrossRef] [Green Version]
- Marks, L.R.; Reddinger, R.M.; Hakansson, A.P. Biofilm formation enhances fomite survival of Streptococcus pneumoniae and Streptococcus pyogenes. Infect. Immun. 2014, 82, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Ingham, S.C.; Wadhera, R.K.; Chu, C.-H.; DeVita, M.D. Survival of Streptococcus pyogenes on foods and food contact surfaces. J. Food Prot. 2006, 69, 1159–1163. [Google Scholar] [CrossRef]
- Tagg, J.R.; Ragland, N.L. Applications of BLIS typing to studies of the survival on surfaces of salivary streptococci and staphylococci. J. Appl. Bacteriol. 1991, 71, 339–342. [Google Scholar] [CrossRef]
- Marshall, B.; Levy, S. Microbial contamination of musical wind instruments. Int. J. Environ. Health Res. 2011, 21, 275–285. [Google Scholar] [CrossRef]
- Jawad, A.; Snelling, A.M.; Heritage, J.; Hawkey, P.M. Exceptional desiccation tolerance of Acinetobacter radioresistens. J. Hosp. Infect. 1998, 39, 235–240. [Google Scholar] [CrossRef]
- Jawad, A.; Seifert, H.; Snelling, A.M.; Heritage, J.; Hawkey, P.M. Survival of Acinetobacter baumanii in Dry Surfaces: Comparison of Outbreak and Sporadic Isolates. J. Clin. Microbiol. 1998, 36, 1938–1941. [Google Scholar] [CrossRef] [Green Version]
- Antunes, L.C.S.; Imperi, F.; Carattoli, A.; Visca, P. Deciphering the multifactorial nature of Acinetobacter baumannii pathogenicity. PLoS ONE 2011, 6, e22674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinal, P.; Martí, S.; Vila, J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect. 2012, 80, 56–60. [Google Scholar] [CrossRef]
- Giannouli, M.; Antunes, L.C.S.; Marchetti, V.; Triassi, M.; Visca, P.; Zarrili, R. Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infect. Dis. 2013, 13, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrow, J.M.; Wells, G.; Pesci, E.C. Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS ONE 2018, 13, e0205638. [Google Scholar] [CrossRef]
- Greene, C.; Vadlamudi, G.; Newton, D.; Foxman, B.; Xi, C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am. J. Infect. Control 2016, 44, e65–e71. [Google Scholar] [CrossRef]
- Tipton, K.A.; Chin, C.-Y.; Farokhyfar, M.; Weiss, D.S.; Rather, P.N. Role of Capsule in Resistance to Disinfectants, Host Antimicrobials, and Desiccation in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, C.Y.; Tipton, K.A.; Farokhyfar, M.; Burd, E.M.; Weiss, D.S.; Rather, P.N. A high-frequency phenotypic switch links bacterial virulence and environmental survival in Acinetobacter baumannii. Nat. Microbiol. 2018, 3, 563–569. [Google Scholar] [CrossRef]
- Musa, E.K.; Desai, N.; Casewell, M.W. The survival of Acinetobacter calcoaceticus inoculated on fingertips and on formica. J. Hosp. Infect. 1989, 15, 219–227. [Google Scholar] [CrossRef]
- Getchell-White, S.; Donowitz, L.; Groschel, D. The Inanimate Environment of an Intensive Care Unit as a Potential Source of Nosocomial Bacteria: Evidence for Long Survival of Acinetobacter calcoaceticus. Infect. Control Hosp. Epidemiol. 1989, 10, 402–407. [Google Scholar] [PubMed]
- Neely, A.N. A Survey of Gram-Negative Bacteria Survival on Hospital Fabrics and Plastics. J. Burn Care Rehabil. 2000, 21, 523–527. [Google Scholar] [CrossRef]
- Hahn, H.; Janßen, U. Bordetellen. In Medizinische Mikrobiologie; Springer: Berlin/Heidelberg, Germany, 1991; ISBN 978-3-662-08626-1. [Google Scholar]
- Luechtefeld, N.W.; Wang, W.-L.L.; Blaser, M.J.; Reller, L.B. Evaluation of Transport and Storage Techniques for Isolation of Campylobacter fetus subsp. jejuni from Turkey Cecal Specimens. J. Clin. Microbiol. 1981, 13, 438–443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oosterom, J.G.J.A.; De Wilde, G.J.A.; De Boer, E.; De Blaauw, L.H.; Karman, H. Survival of Campylobacter jejuni during Poultry Processing and Pig Slaughtering. J. Food Prot. 1983, 46, 702–706. [Google Scholar] [CrossRef]
- Abrishami, S.; Tall, B.; Bruursema, T.; Epstein, P.; Shah, D. Bacterial Adherence and Viability on cutting board surfaces. J. Food Saf. 1994, 14, 153–172. [Google Scholar] [CrossRef]
- Maule, A. Survival of verocytotoxigenic Escherichia coli O157 in soil, water and on surfaces. J. Appl. Microbiol. 2000, 88, 71S–78S. [Google Scholar] [CrossRef] [PubMed]
- Hokunan, H.; Koyama, K.; Hasegawa, M.; Kawamura, S.; Koseki, S. Survival Kinetics of Salmonella enterica and Enterohemorrhagic Escherichia coli on a Plastic Surface at Low Relative Humidity and on Low-Water Activity Foods. J. Food Prot. 2016, 79, 1680–1692. [Google Scholar] [CrossRef] [PubMed]
- Wilks, S.A.; Michels, H.; Keevil, C.W. The survival of Escherichia coli O157 on a range of metal surfaces. Int. J. Food Microbiol. 2005, 105, 445–454. [Google Scholar] [CrossRef]
- Williams, A.P.; Avery, L.M.; Killham, K.; Jones, D.L. Persistence of Escherichia coli O157 on farm surfaces under different environmental conditions. J. Appl. Microbiol. 2005, 98, 1075–1083. [Google Scholar] [CrossRef]
- Montibus, M.; Ismaïl, R.; Michel, V.; Federighi, M.; Aviat, F.; Le Bayon, I. Assessment of Penicillium expansum and Escherichia coli transfer from poplar crates to apples. Food Control 2016, 60, 95–102. [Google Scholar] [CrossRef]
- Richter, W.R.; Sunderman, M.M.; Wendling, M.Q.S.; Serre, S.; Mickelsen, L.; Rupert, R.; Wood, J.; Choi, Y.; Willenberg, Z.; Calfee, M.W. Evaluation of altered environmental conditions as a decontamination approach for nonspore-forming biological agents. J. Appl. Microbiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pérez, J.L.; Gómez, E.; Sauca, G. Survival of Gonococci from Urethral Discharge on Fomites. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 54–55. [Google Scholar] [CrossRef]
- Panagea, S.; Winstanley, C.; Walshaw, M.J.; Ledson, M.J.; Hart, C.A. Environmental contamination with an epidemic strain of Pseudomonas aeruginosa in a Liverpool cystic fibrosis centre, and study of its survival on dry surfaces. J. Hosp. Infect. 2005, 59, 102–107. [Google Scholar] [CrossRef]
- Uesugi, A.R.; Danyluk, M.D.; Harris, L.J. Survival of Salmonella enteritidis Phage Type 30 on Inoculated Almonds Stored at −20, 4, 23, and 35 °C. J. Food Prot. 2006. [Google Scholar] [CrossRef] [PubMed]
- Robertson, M.H. Survival of S. typhimurium in Floor Dust: A possible Reservoir of Infections in Institutions. Public Health 1972, 87, 39–45. [Google Scholar] [CrossRef]
- Finn, S.; Händler, K.; Condell, O.; Colgan, A.; Cooney, S.; McClure, P.; Amézquita, A.; Hinton, J.C.D.; Fanning, S. ProP is required for the survival of desiccated Salmonella enterica serovar typhimurium cells on a stainless steel surface. Appl. Environ. Microbiol. 2013, 79, 4376–4384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruzdev, N.; Pinto, R.; Sela Saldinger, S. Persistence of Salmonella enterica during dehydration and subsequent cold storage. Food Microbiol. 2012, 32, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, G.; Aheto, K.; Shirtliff, M.E.; Tennant, S.M. Poor biofilm-forming ability and long-term survival of invasive Salmonella typhimurium ST313. Pathog. Dis. 2016, 74. [Google Scholar] [CrossRef] [Green Version]
- Lesne, J.; Berthet, S.; Binard, S.; Rouxel, A.; Humbert, F. Changes in culturabilty and virulence of Salmonella typhimurium during long-term starvation under desiccating condition. Int. J. Food Microbiol. 2000, 60, 198–203. [Google Scholar] [CrossRef]
- Margas, E.; Meneses, N.; Conde-Petit, B.; Dodd, C.E.R.; Holah, J. Survival and death kinetics of Salmonella strains at low relative humidity, attached to stainless steel surfaces. Int. J. Food Microbiol. 2014, 187, 33–40. [Google Scholar] [CrossRef]
- Abdelhamid, A.G.; Yousef, A.E. The Microbial Lipopeptide Paenibacterin Disrupts Desiccation Resistance in Salmonella enterica Serovars Tennessee and Eimsbuettel. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.S.; Hossain, M.A.; Khan, S.I.; Khan, M.N.H.; Sack, R.B.; Albert, M.J.; Huq, A.; Colwell, R.R. Survival of Shigella dysenteriae Type 1 on Fomites. J. Health Popul. Nutr. 2001, 19, 177–182. [Google Scholar] [PubMed]
- Falsey, A.R.; Walsh, E.E. Transmission of Chlamydia pneumoniae. J. Infect. Dis. 1993. [Google Scholar] [CrossRef]
- Novak, K.D.; Kowalski, R.P.; Karenchak, L.M.; Gordon, Y.J. Chlamydia trachomatis Can Be Transmitted by a Nonporous Plastic Surface in Vitro. Cornea 1995, 14, 523–526. [Google Scholar] [CrossRef]
- Biedenbach, D.J.; Moet, G.J.; Jones, R.N. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997–2002). Diagn. Microbiol. Infect. Dis. 2004, 50, 59–69. [Google Scholar] [CrossRef]
- Cosgrove, S.E.; Sakoulas, G.; Perencevich, E.N.; Schwaber, M.J.; Karchmer, A.W.; Carmeli, Y. Comparison of Mortality Associated with Methicillin-Resistant and Methicillin-Susceptible Staphylococcus aureus Bacteremia: A Meta-analysis. Clin. Infect. Dis. 2002. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcus epidermidis pathogenesis. Methods Mol. Biol. 2014, 1106, 17–31. [Google Scholar] [CrossRef]
- Baron, S. (Ed.) Medical Microbiology, 4th ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; ISBN 0963117211. [Google Scholar]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [Green Version]
- Weber, D.J.; Anderson, D.J.; Sexton, D.J.; Rutala, W.A. Role of the environment in the transmission of Clostridium difficile in health care facilities. Am. J. Infect. Control 2013, 41, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D. Bacterial Spores and Chemical Sporicidal Agents. Clin. Microbiol. Rev. 1990, 3, 99–119. [Google Scholar] [CrossRef]
- Kim, K.-H.; Fekety, R.; Batts, D.H.; Brown, D.; Cudmore, M.; Silva, J., Jr.; Waters, D. Isolation of Clostridium difficile from the Environment and Contacts of Patients with Antibiotic-Associated Colitis. J. Infect. Dis. 1981, 143, 42–50. [Google Scholar] [CrossRef]
- Maury, M.M.; Tsai, Y.-H.; Charlier, C.; Touchon, M.; Chenal-Francisque, V.; Leclercq, A.; Criscuolo, A.; Gaultier, C.; Roussel, S.; Brisabois, A.; et al. Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat. Genet. 2016, 48, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Ells, T.C.; Truelstrup Hansen, L. Role of sigB and osmolytes in desiccation survival of Listeria monocytogenes in simulated food soils on the surface of food grade stainless steel. Food Microbiol. 2015, 46, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Von Eiff, C.; Kuhn, N.; Herrmann, M.; Weber, S.; Peters, G. Micrococcus Luteus as a Cause of Recurrent Bacteremia. Pediatr. Infect. Dis. J. 1996, 15, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Oggioni, M.R.; Pozzi, G.; Valensin, P.E.; Galieni, P.; Bigazzi, C. Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis. J. Clin. Microbiol. 1998, 36, 325–326. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, S.; Suenaga, H.; Naito, K.; Sawazaki, M.; Hiramatsu, T.; Agata; Norio. Managment of Suspected Nosocomial Infection: An Audit of 19 Hospitalized Patients with Septicemia Caused by Bacillus Species. Jpn. J. Infect. Dis. 2000, 53, 196–202. [Google Scholar] [PubMed]
- Tsonis, I.; Karamani, L.; Xaplanteri, P.; Kolonitsiou, F.; Zampakis, P.; Gatzounis, G.; Marangos, M.; Assimakopoulos, S.F. Spontaneous cerebral abscess due to Bacillus subtilis in an immunocompetent male patient: A case report and review of literature. World J. Clin. Cases 2018, 6, 1169–1174. [Google Scholar] [CrossRef]
- La Jeon, Y.; Yang, J.J.; Kim, M.J.; Lim, G.; Cho, S.Y.; Park, T.S.; Suh, J.-T.; Park, Y.H.; Lee, M.S.; Kim, S.C.; et al. Combined Bacillus licheniformis and Bacillus subtilis infection in a patient with oesophageal perforation. J. Med. Microbiol. 2012, 61, 1766–1769. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, L.; Colburn, C.G.; Mass, B. Bacillus subtilis Meningitis and Bacteremia. AMA Arch. Intern. Med. 1950, 86, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Peleg AY, H.D. Hospital-Acquired Infections Due to Gram-Negative Bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Podschun, R.; Ullmann, U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef] [Green Version]
- Fàbrega, A.; Vila, J. Salmonella enterica serovar Typhimurium skills to succeed in the host: Virulence and regulation. Clin. Microbiol. Rev. 2013, 26, 308–341. [Google Scholar] [CrossRef] [Green Version]
- Lanini, S.; D’Arezzo, S.; Puro, V.; Martini, L.; Imperi, F.; Piselli, P.; Montanaro, M.; Paoletti, S.; Visca, P.; Ippolito, G. Molecular epidemiology of a Pseudomonas aeruginosa hospital outbreak driven by a contaminated disinfectant-soap dispenser. PLoS ONE 2011, 6, e17064. [Google Scholar] [CrossRef]
- Joly-Guillou, M.-L. Clinical impact and pathogenicity of Acinetobacter. Clin. Microbiol. Infect. 2005, 11, 868–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Shafer, W.M. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin. Microbiol. Rev. 2014, 27, 587–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeidner, N.S.; Carter, L.G.; Monteneiri, J.A.; Petersen, J.M.; Schriefer, M.; Gage, K.L.; Hall, G.; Chu, M.C. An outbreak of Francisella tularensis in captive prairie dogs: An immunohistochemical analysis. J. Vet. Diagn. Investig. 2004, 16, 150–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyston, P.C.F.; Sjostedt, A.; Titball, R.W. Tularaemia: Bioterrorism defence renews interest in Francisella tularensis. Nat. Rev. Microbiol. 2004, 2, 967–978. [Google Scholar] [CrossRef]
- DuPont, H.L.; Levine, M.M.; Hornick, R.B.; Formal, S.B. Inoculum Size in Shigellosis and Implications for Expected Mode of Transmission. J. Infect. Dis. 1989, 159, 1126–1128. [Google Scholar] [CrossRef] [PubMed]
- Fairley, K.F.; Carson, N.E.; Gutch, R.C.; Leighton, P.; Grounds, A.D.; Laird, E.C.; McCallum, P.H.G.; Sleeman, R.L.; O’Keefe, C.M. Site of infection in acute urinary-tract infection in general practice. Lancet 1971, 298, 615–618. [Google Scholar] [CrossRef]
- Senior, B.W. Proteus morgani is less frequently associated with urinary tract infections than Proteus mirabilis—An Explanation. J. Med. Microbiol. 1983. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-H.; Choi, W.-H.; Yun, S.-W.; Chae, S.-A.; Yoo, B.-H. An outbreak of serratia marcescens sepsis in a pediatric ward. Clin. Pediatr. (Phila) 2010, 49, 1000–1002. [Google Scholar] [CrossRef] [PubMed]
- Chemaly, R.F.; Rathod, D.B.; Raad, I.I. A Tertiary Care Cancer Center Experience of the 2007 Outbreak of Serratia marcescens Bloodstream Infection Due to Prefilled Syringes. Infect. Control Hosp. Epidemiol. 2009, 30, 1237–1238. [Google Scholar] [CrossRef]
- Cherry, J.D. Epidemiology of pertussis. Pediatr. Infect. Dis. J. 2006, 25, 361–362. [Google Scholar] [CrossRef]
- Man, S.M. The clinical importance of emerging Campylobacter species. Nat. Rev. Gastroenterol. Hepatol. 2011, 8, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef] [Green Version]
- Gröschel, M.I.; Meehan, C.J.; Barilar, I.; Diricks, M.; Gonzaga, A.; Steglich, M.; Conchillo-Solé, O.; Scherer, I.-C.; Mamat, U.; Luz, C.F.; et al. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat. Commun. 2020, 11, 2044. [Google Scholar] [CrossRef]
- Brown, G.D.; Denning, D.W.; Levitz, S.M. Tackling human fungal infections. Science 2012, 336, 647. [Google Scholar] [CrossRef] [Green Version]
- Neely, A.N.; Orloff, M.M. Survival of Some Medically Important Fungi on Hospital Fabrics and Plastics. J. Clin. Microbiol. 2001, 39, 3360–3361. [Google Scholar] [CrossRef] [Green Version]
- Weaver, L.; Michels, H.T.; Keevil, C.W. Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett. Appl. Microbiol. 2010, 50, 18–23. [Google Scholar] [CrossRef]
- Gupta, M.; Bisesi, M.; Lee, J. Comparison of survivability of Staphylococcus aureus and spores of Aspergillus niger on commonly used floor materials. Am. J. Infect. Control 2017, 45, 717–722. [Google Scholar] [CrossRef]
- Quaranta, D.; Krans, T.; Espírito Santo, C.; Elowsky, C.G.; Domaille, D.W.; Chang, C.J.; Grass, G. Mechanisms of contact-mediated killing of yeast cells on dry metallic copper surfaces. Appl. Environ. Microbiol. 2011, 77, 416–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traoré, O.; Springthorpe, V.S.; Sattar, S.A. A quantitative study of the survival of two species of Candida on porous and non-porous environmental surfaces and hands. J. Appl. Microbiol. 2002, 92, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Piedrahita, C.T.; Cadnum, J.L.; Jencson, A.L.; Shaikh, A.A.; Ghannoum, M.A.; Donskey, C.J. Environmental Surfaces in Healthcare Facilities are a Potential Source for Transmission of Candida auris and Other Candida Species. Infect. Control Hosp. Epidemiol. 2017, 38, 1107–1109. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, T.; Okubo, T.; Enoeda, Y.; Yano, R.; Nakamura, S.; Thapa, J.; Yamaguchi, H. Effect of thermal control of dry fomites on regulating the survival of human pathogenic bacteria responsible for nosocomial infections. PLoS ONE 2019, 14, e0226952. [Google Scholar] [CrossRef]
- Rangel-Frausto, M.S.; Houston, A.K.; Bale, M.J.; Fu, C.; Wenzel, R.P. An Experimental Model for Study of Candida Survival and Transmission in Human Volunteers. J. Clin. Microbiol. Infect. Dis. 1994, 13, 590–595. [Google Scholar] [CrossRef]
- Welsh, R.M.; Bentz, M.L.; Shams, A.; Houston, H.; Lyons, A.; Rose, L.J.; Litvintseva, A.P. Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast Candida auris on a Plastic Health Care Surface. J. Clin. Microbiol. 2017, 55, 2996–3005. [Google Scholar] [CrossRef] [Green Version]
- Short, B.; Brown, J.; Delaney, C.; Sherry, L.; Williams, C.; Ramage, G.; Kean, R. Candida auris exhibits resilient biofilm characteristics in vitro: Implications for environmental persistence. J. Hosp. Infect. 2019, 103, 92–96. [Google Scholar] [CrossRef]
- Cotten, T.K.; Munkvold, G.P. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in Maize Stalk Residue. Phytopathology 1998, 88, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.A.; Visagie, C.M.; Houbraken, J.; Hong, S.-B.; Hubka, V.; Klaassen, C.H.W.; Perrone, G.; Seifert, K.A.; Susca, A.; Tanney, J.B.; et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud. Mycol. 2014, 78, 141–173. [Google Scholar] [CrossRef] [Green Version]
- Zilberberg, M.D.; Nathanson, B.H.; Harrington, R.; Spalding, J.R.; Shorr, A.F. Epidemiology and Outcomes of Hospitalizations with Invasive Aspergillosis in the United States, 2009–2013. Clin. Infect. Dis. 2018, 67, 727–735. [Google Scholar] [CrossRef]
- Nelson, P.E.; Dignani, M.C.; Anaissie, E.J. Taxonomy, Biology, and Clinical Aspects of Fusarium Species. J. Clin. Microbiol. 1994, 7, 479–504. [Google Scholar] [CrossRef]
- Prakash, H.; Chakrabarti, A. Global Epidemiology of Mucormycosis. J. Fungi (Basel) 2019, 5, 26. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, J.A.; Dansky, A.S. Paecilomyces Pyelonephritis Complicating Nephrolithiasis and Review of Paecilomyces Infections. J. Urol. 1983, 130, 526–528. [Google Scholar] [CrossRef]
- Kullberg, B.J.; Arendrup, M.C. Invasive Candidiasis. N. Engl. J. Med. 2015, 373, 1445–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi, H. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef]
- Larkin, E.; Hager, C.; Chandra, J.; Mukherjee, P.K.; Retuerto, M.; Salem, I.; Long, L.; Isham, N.; Kovanda, L.; Borroto-Esoda, K.; et al. The Emerging Pathogen Candida auris: Growth Phenotype, Virulence Factors, Activity of Antifungals, and Effect of SCY-078, a Novel Glucan Synthesis Inhibitor, on Growth Morphology and Biofilm Formation. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torda, A.; Kumar, R.K.; Jones, P.D. The pathology of human and murine pulmonary infection with Cryptococcus neoformans var. gattii. Pathology 2001, 33, 475–478. [Google Scholar] [CrossRef] [PubMed]
- Mondelli, M.U.; Colaneri, M.; Seminari, E.M.; Baldanti, F.; Bruno, R. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions. Lancet Infect. Dis. 2020. [Google Scholar] [CrossRef]
Pathogen | Material (Cluster) | Survival (Range) | References |
---|---|---|---|
Adenoviridae | Aluminum | 7–>60 days | [18,19] |
Plastic | >9–49 days | [18,20] | |
Stainless steel | 1 h–>8 weeks | [21] | |
Glass | 1 h–>12 weeks | [21] | |
Ceramics | 1 h–>60 days | [21,19] | |
Paper | 7–>60 days | [19] | |
Latex | 7–>60 days | [19] | |
Vinyl asbestos | 1 h–>8 weeks | [21] | |
Papillomaviridae | Plastic | >7 days | [22] |
Herpes simplex virus 1 | Plastic | 48 h–6 days | [20,23] |
Glass | 4 h–>8 weeks | [21] | |
Herpes simplex virus 2 | Plastic | 4.5 h | [24] |
Cytomegalovirus | Plexiglass | 1–8 h | [25] |
Cotton blanket | 1–2 h | [25] | |
Gloves | 15–240 min | [26] | |
Poxviridae | Glass | 3 days–56 days | [21,27] |
Steel | 1 day–56 days | [27] | |
Cinder | 1 day–56 days | [27] | |
Cloth | <1 day–56 days | [27] |
Pathogen | Material (Cluster) | Survival (Range) | References |
---|---|---|---|
Rotavirus | Stainless steel | 2–>12 days | [28] |
Paper | <2 h–>60 days | [19,28] | |
Cloth | 2–10 days | [28] | |
Countertop | 1 h | [29] | |
Glass | 9–>13 days | [30] | |
Aluminum | >60 days | [19] | |
China | >60 days | [19] | |
Latex | >60 days | [19] | |
Coxsackie virus | Plastic | 5 weeks | [23] |
Glass | 2 weeks | [21] | |
Echovirus | Cellulose ester membrane | 48–>168 h | [31] |
Poliovirus 1 | Aluminum | 7–30 days | [19] |
China | <5–>60 days | [19] | |
Latex | <5–30 days | [19] | |
Paper | 3–>30 days | [19] | |
Cellulose ester membrane | 48–>168 h | [31] | |
Steel | 4 h–>3 weeks | [32,33] | |
Cotton | >3 weeks | [32] | |
Plastic | >3 weeks | [32] | |
Poliovirus 2 | Glass | 2–>8 weeks | [21] |
Rhinovirus | Stainless steel | 4–>25 h | [34] |
Hepatitis A-virus | Stainless steel | 2 h–>30 days | [33,35] |
Aluminium | >60 days | [19] | |
China | >60 days | [19] | |
Latex | >60 days | [19] | |
Paper | >60 days | [19] | |
Wood | 1–>30 days | [35] | |
Caliciviridae | Plastics | 8 h–>168 days | [36,37,38] |
Ceramics | >168 days | [36] | |
Stainless steel | <1 day–>168 days | [35,36,38,39] | |
Cloths | 1–14 days | [40] | |
Glass | <1 day–7 days | [40] | |
Copper alloys | <5 min–>2 h | [37,39] | |
Wood | <1 day–>30 days | [35] | |
Hepatitis C-virus | Plastic | 7 days–>6 weeks | [41] |
Stainless steel | 5–>7 days | [42] | |
Influenza A-virus | Stainless steel | 6 h- 2 weeks | [43,44,45,46] |
Plastics | <2 h–4 days | [23,43,44] | |
Cloth | < 2 h–1 week | [43,46] | |
Paper | 12–24 h | [43] | |
Wood | <2 h | [44] | |
Influenza B-virus | Stainless steel | 24 h | [43] |
Plastic | 24 h | [43] | |
Cloth | 6–8 h | [43] | |
Paper | 8 h | [43] | |
Parainfluenza virus | Stainless steel | 2–>8 h | [47] |
Formica | 0.5–>8 h | [47] | |
Cloth | <0.5–>4 h | [47] | |
Hendra virus | Polystyrene | 5–30 min | [48] |
Nipah virus | Polystyrene | 5–>60 min | [48] |
Respiratory syncytial virus | Formica | 5–7 h | [49] |
Gloves | 1–4 h | [49] | |
Cloth | 0.5–2 h | [49] | |
Paper | 0.5 h | [49] | |
Ebola virus | Banknote | 2–4 days | [50] |
Syringe | 16–>32 days | [50] | |
HCoV-229E | Aluminum | 6 h | [51] |
Sponge | 6 h | [51] | |
Latex | 3 h | [51] | |
Plastic | 24–48 h | [20] | |
HCoV-OC43 | Aluminum | 2 h | [51] |
Sponge | <1 h | [51] | |
Latex | <1 h | [51] | |
SARS-CoV-1 (incl. TGEV and MHV) | Plastic | 72 h–9 days | [20,52,53] |
Paper | 24 h | [54] | |
Disposable gown | 2 days | [54] | |
Cloth | 24 h | [54] | |
Cardboard | 8 h | [53] | |
Copper | 8 h | [53] | |
Stainless steel | 48 h | [53] | |
Transmissible gastroenteritis virus (TGEV) and mouse hepatitis virus (MHV) (SARS-CoV-1 surrogates) | Plastic | 4 h–28 days | [55] |
MERS-CoV | Plastic | 8–48 h | [56] |
Steel | 8–48 h | [56] | |
SARS-CoV-2 | Cardboard | 24 h | [53] |
Copper | 4 h | [53] | |
Plastic | 72 h–4 days | [53,57] | |
Stainless steel | 72 h–>8 days | [53,57,58] | |
Paper | 30 min–2 days | [57] | |
Wood | 1 day | [57] | |
Glass | 2 days | [57] | |
Cloth | 1 day | [57] | |
Surgical masks | 4–>7 days | [57] | |
Astrovirus | China | 7–60 days | [59] |
Paper | 7–90 days | [59] | |
Human immunodefiency virus | Plastic | >7 days | [60] |
Glass | 5 days | [61] | |
Hepatitis B-virus | Silanized tubes | >7 days | [62] |
Cotton | >14 days | [63] | |
Stainless steel | >14 days | [63] | |
Hepatitis E-virus | Stainless steel | 10 weeks | unpublished |
Pathogen | Material (Cluster) | Survival (Range) | References |
---|---|---|---|
Bacillus subtilis | Polycarbonate membrane filters | >200 days | [86] |
Clostridioides difficile | Stainless steel | >6 weeks | [87] |
glass | 15 min | [88,89] | |
Corynebacterium diphtheriae | Dust | 102 days | [90] |
Enterococcuscasseliflavus | Cloths | 15–>90 days | [91] |
Plastics | >90 days | [91] | |
Enterococcus gallinarum | Cloths | 28–>90 days | [91] |
Plastics | >90 days | [91] | |
Enterococcus faecium | Cloths | 22–>90 days | [91,92] |
Glass | >77 days | [93] | |
Plastics | 1–>16 weeks | [91,94] | |
Stainless steel | >6 weeks | [87] | |
Countertop | >7 days | [95] | |
Enterococcus faecalis | Cloths | 1–>90 days | [91,96,97] |
Glass | >77 days | [93] | |
Plastics | 1–>16 weeks | [91,94] | |
Other surfaces | 5 days–3 weeks | [97,95] | |
Listeria monocytogenes | Stainless steel | 1–>91 days | [98,99,100,101] |
Plastic | >180 min–>10 days | [98,102,103] | |
Wood | >180 min | [102] | |
Cardboard | >48 h | [103] | |
Micrococcus luteus | Cotton lint | >1 day | [96] |
Polycarbonate membrane filters | 120 days | [86] | |
Staphylococcus aureus | Cloths | 1–>70 days | [91,92,96,97,104] |
Plastics | 21 days–>3 years | [91,105,106,107,108] | |
Stainless steel | 6 h–> 6 weeks | [87,109,110] | |
Copper alloys | 30 min–>6 h | [109] | |
Glass | 15–25 days | [111] | |
Flooring materials | >4 h–8 weeks | [104,97] | |
Staphylococcus epidermidis | Cloths | 6–28 days | [96,91] |
Glass | >7 h | [96] | |
Plastics | 41–>90 days | [91] | |
Streptococcus equi | Wood | <1 to 13 d | [112,113] |
Metal | <1 to 3 d | [112] | |
Rubber | <1 to 3 d | [112] | |
Clothing | <1 to 13 d | [113] | |
Streptococcus pneumoniae | Plastic | < 3 d–1 month | [114] |
Streptococcus pyogenes | Tomatoes | >2–>24 h | [115] |
Plastic | 2–> 4 months | [114,115,116] | |
Ceramic | >2–>24 h | [115] | |
Stainless steel | >2–>24 h | [115] | |
Glass | 2–>88 h | [116] | |
Metal | 2–>88 h | [116] | |
Latex | 2–>88 h | [116] | |
Wood | 2–>88 h | [116] | |
Reeds | 24 h | [117] | |
Clarinets (simulated play) | 24 h | [117] | |
Streptococcus salivarius | Glass | 2–>88 h | [116] |
Metal | 2–>88 h | [116] | |
Plastic | 2–>88 h | [116] | |
Latex | 2–>88 h | [116] | |
Wood | 2–>88 h | [116] |
Pathogen | Material (Cluster) | Survival (Range) | References |
---|---|---|---|
Acinetobacter baumannii | Glass | 2–>100 days | [111,118,119,120,121,122] |
Cloths | 7–19 days | [92] | |
Plastics | 3–>90 days | [110,123,124,125,126,127] | |
Stainless steel | 12 days | [110] | |
Polycarbonate membrane filters | >20 days | [86] | |
Acinetobacter calcoaceticus | Plastics | 24 h–>14 days | [93,127,128] |
Glass | >7 h–23 days | [93,96,111,118] | |
Cotton | 4–>25 days | [96] | |
Acinetobacter radioresistens | Glass | 31–157 days | [118] |
Acinetobacter spp. | Plastics | 6–>60 days | [110,129] |
Cloths | 1–14 days | [129] | |
Stainless steel | 6 days–>6 weeks | [110,87] | |
Bordetella pertussis | Dust | 3–5 days | [130] |
Plastic | 3–5 days | [130] | |
Cloth | 3–5 days | [130] | |
Campylobacter jejuni | Paper | < 2 h | [131] |
Aluminum | 15 min–7 h | [132] | |
Stainless steel | 30 min–7 h | [132] | |
Formica | 30 min–7 h | [132] | |
Ceramics | 15 min–7 h | [132] | |
Escherichia coli | Cloths | 4 h–>8 weeks | [92,96,97,104,129] |
Plastics | 24 h–>300 days | [102,103,105,128,129,133,134,135] | |
Steel | 14–>60 days | [134,136,137] | |
Copper alloys | 60–>360 min | [136] | |
Glass | 1–≥14 days | [111,93] | |
Flooring materials | 1hours–>8 weeks | [104,97] | |
Polycarbonate membrane filters | >6 days | [86] | |
Wood | >2 h–>28 days | [102,137,138] | |
Francisella tularensis | Glass | 2–>240 h | [139] |
Paper | 1– 96 h | [139] | |
Klebsiella pneumoniae | Cloths | <1 h–4 weeks | [96,97,129] |
Plastics | 9–32 days | [129] | |
Stainless steel | 3–6 weeks | [87] | |
Ceramics/Flooring material | 2 weeks | [97] | |
Neisseria gonorrhoeae | Plastics | >24 h | [140] |
Cotton-Polyester | >24 h | [140] | |
Proteus mirabilis | Cloths | 4 h–9 days | [129] |
Plastics | <1–26 days | [129,128] | |
Pseudomonas aeruginosa | Cloths | 1 h- >8 weeks | [92,96,97,104,129] |
Glass | 5 h | [96] | |
Plastics | 9 h–10 days | [105,110,128,129,141] | |
Stainless steel | 5 days | [110] | |
Flooring materials | 1 h–>8 weeks | [104,97] | |
Pseudomonas cepacia | Glass | 5 h | [96] |
Cotton | 2 h | [96] | |
Pseudomonas putida | Glass | <2 days | [93] |
Salmonella enterica serovar Abony | Laminate | 1–>24 h | [104] |
Cloth | >48 h | [104] | |
Salmonella enterica serovar Enteritidis | Almonds | >171 days | [142] |
Cotton | 1 h | [96] | |
Plastic | 24 h | [103] | |
Cardboard | 1 h | [103] | |
Salmonella enterica serovar Typhimurium | Cotton | 5 h | [96] |
Dust | >4 years and 2 months | [143] | |
Stainless steel | <1 day–>6 weeks | [98,144] | |
Plastics | <1 day–>12 weeks | [98,145,146] | |
Polycarbonate membrane | >1 month–8 weeks | [146,147] | |
Salmonella spp. | Laminate | >24 h | [104] |
Cloth | 24–>48 h | [104] | |
Stainless steel | >30 days | [148] | |
Plastic | >72 h–>300 days | [135,149] | |
Serratia marcensens | Cloths | <1 h–7 days | [96,129] |
Plastics | 1–10 days | [129,128] | |
Glass | >7 h–11 days | [96,111] | |
Shigella dysenteriae | Cloth | 4 h | [150] |
Wood | 3 h | [150] | |
Plastic | 1.5 h | [150] | |
Aluminum | 2 h | [150] | |
Glass | 2 h | [150] | |
Stenotrophomonas maltophilia | Cloths | 7 days | [92] |
Species | Material (Cluster) | Survival (Range) | References |
---|---|---|---|
Mycobacterium bovis | Cotton | >2 months | [96] |
Chlamydia pneumoniae | Formica | 30 h | [96,151] |
Paper | 12 h | [151] | |
Chlamydia trachomatis | Plastic | 30–120 min | [152] |
Pathogen | Material (Cluster) | Survival (Range) | References |
---|---|---|---|
Aspergillus flavus | Cloths | 2–>30 days | [187] |
Plastics | 8–>30 days | [187] | |
Aluminum | ≥120 h | [188] | |
Copper | 96 h | [188] | |
Cardboard | 24–>48 h | [103] | |
Aspergillus fumigatus | Cloths | 1–>30 days | [92,187] |
Plastics | 5–>30 days | [187] | |
Aluminum | ≥120 h | [188] | |
Copper | 120 h | [188] | |
Aspergillus niger | Cloths | 1–>30 days | [187] |
Plastics | 2–>30 days | [187] | |
Flooring materials | >28 days | [189] | |
Aluminum | >576 h | [188] | |
Copper | >576 h | [188] | |
Geotrichum candidum | Cloths | 6–21 days | [92] |
Penicillium crysogenum | Aluminum | ≥120 h | [188] |
Copper | 6 h | [188] | |
Penicillium expansum | Wood | >7 days | [138] |
Apple | >7 days | [138] | |
Candida albicans | Stainless steel | 60 min–>7 days | [105,190,191,192,193,194,195] |
Copper alloys | 5 min–6 h | [188,190] | |
Aluminum | ≥120 h | [188] | |
Cloths | 1–>14 days | [92,187,191] | |
Plastics | 4–>7 days | [105,187,194] | |
Glass | 3 days | [191] | |
Candida auris | Plastics | >14 days | [195,196,197] |
Steel | >7 days | [192] | |
Candida glabrata | Cloths | >30 days | [92] |
Steel | >7 days | [192] | |
Candida krusei | Cloths | <1–>30 days | [92,187] |
Plastics | 3–7 days | [187] | |
Candida parapsilosis | Cloths | 2–>30 days | [92,187,191] |
Stainless steel | >7 days | [191,192] | |
Glass | >14 days | [191] | |
Plastics | >28 days | [187,195] | |
Candida tropicalis | Cloths | 1–> 30 days | [92,187] |
Plastics | 6–18 days | [187] | |
Cryptococcus neoformans | Cloths | >30 days | [92] |
Saccharomyces cerevisiae | Cardboard fibres | >48 h | [103] |
Plastic | >48 h | [103] | |
Copper | <0.5 min | [190] | |
Stainless steel | >5 min | [190] | |
Fusarium spp. | Aluminum | ≥120 h | [188] |
Copper | 48 h | [188] | |
Cloths | 4–10 days | [187] | |
Plastics | 6–>30 days | [187] | |
Maize stalk residue | >630 days | [197] | |
Mucor spp. | Cloths | 16–>30 days | [187] |
Plastics | 20–21 days | [187] | |
Paecilomyces spp. | Cloths | <1–11 days | [187] |
Plastics | 4–11 days | [187] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wißmann, J.E.; Kirchhoff, L.; Brüggemann, Y.; Todt, D.; Steinmann, J.; Steinmann, E. Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms 2021, 9, 343. https://doi.org/10.3390/microorganisms9020343
Wißmann JE, Kirchhoff L, Brüggemann Y, Todt D, Steinmann J, Steinmann E. Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms. 2021; 9(2):343. https://doi.org/10.3390/microorganisms9020343
Chicago/Turabian StyleWißmann, Jan Erik, Lisa Kirchhoff, Yannick Brüggemann, Daniel Todt, Joerg Steinmann, and Eike Steinmann. 2021. "Persistence of Pathogens on Inanimate Surfaces: A Narrative Review" Microorganisms 9, no. 2: 343. https://doi.org/10.3390/microorganisms9020343
APA StyleWißmann, J. E., Kirchhoff, L., Brüggemann, Y., Todt, D., Steinmann, J., & Steinmann, E. (2021). Persistence of Pathogens on Inanimate Surfaces: A Narrative Review. Microorganisms, 9(2), 343. https://doi.org/10.3390/microorganisms9020343