Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation
Abstract
:1. Introduction
2. Methods
2.1. Bacterial Isolates and Culturing Conditions
2.2. Tolerance to Acid, NaCl, and Phenol
2.3. Tolerance to Bile Salts
2.4. Adhesion Ability Assessment
2.5. Antimicrobial Assessment
2.6. Preparation of LAB-Fermented Soymilk
2.7. Acidity, Proteolysis, and Viable Counts after Fermentation
2.8. β-Glucosidase Activity Measurement in Fermented Soymilk
2.9. Determination of Isoflavones
2.10. Free Radical Scavenging Activity and Ferrous Ion-Chelating Activity
3. Results
3.1. Tolerance of LAB to Acid, NaCl, Bile Salt, and Phenol
3.2. Antimicrobial Effect of LAB
3.3. Adhesive Ability to Caco-2 Cells among LAB Isolates
3.4. Fermented Soymilk by LAB and Its Potential β-Glucosidase Activity
3.5. Changes of Soymilk after Fermentation by LAB
3.6. Antioxidant Activities In Vitro
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Ljungh, A.; Wadström, T. Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 2006, 7, 73–89. [Google Scholar]
- Asood, M.I.; Qadir, M.I.; Shirazi, J.H.; Khan, I.U. Beneficial effects of lactic acid bacteria on human beings. Crit. Rev. Microbiol. 2011, 37, 91. [Google Scholar]
- Perdigon, G.; Fuller, R.; Raya, R. Lactic acid bacteria and their effect on the immune system. Curr. Issues Intest. Microbiol. 2001, 2, 27–42. [Google Scholar] [PubMed]
- Ouwehand, A.C. Antiallergic Effects of Probiotics. J. Nutr. 2019, 137, 794S–797S. [Google Scholar] [CrossRef] [Green Version]
- Karami, S.; Roayaei, M.; Zahedi, E.; Bahmani, M.; Mahmoodnia, L.; Hamzavi, H.; Rafieian-Kopaei, M. Antifungal effects of Lactobacillus species isolated from local dairy products. Int. J. Pharm. Investig. 2017, 7, 77–81. [Google Scholar] [PubMed] [Green Version]
- Swain, M.R.; Anandharaj, M.; Ray, R.C.; Parveen Rani, R. Fermented Fruits and Vegetables of Asia: A Potential Source of Probiotics. Biotechnol Res. Int. 2014, 2014, 250424. [Google Scholar] [CrossRef]
- Zhong, L.; Zhang, X.; Covasa, M. Emerging roles of lactic acid bacteria in protection against colorectal cancer. World J. Gastroenterol. 2014, 20, 7878–7886. [Google Scholar] [CrossRef]
- Gilliland, S.E. Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Rev. 1990, 7, 175–188. [Google Scholar] [CrossRef]
- Sieber, R.; Stransky, M.; de Vrese, M. Lactose intolerance and consumption of milk and milk products. Z Ernahrungswiss 1998, 36, 375–393. [Google Scholar] [CrossRef]
- Nixon, A.F.; Cunningham, S.J.; Cohen, H.W.; Crain, E.F. The effect of Lactobacillus GG on acute diarrheal illness in the pediatric emergency department. Pediatr. Emerg. Care 2012, 28, 1048–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Takatsuka, N.; Nagata, C.; Kurisu, Y.; Inaba, S.; Kawakami, N.; Shimizu, H. Hypocholesterolemic Effect of Soymilk Supplementation with Usual Diet in Premenopausal Normolipidemic Japanese Women. Prev. Med. 2000, 31, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Ryder, J.J.; Kurzer, M.S.; Lampe, J.W.; Messina, M.J.; Phipps, W.R.; Cassidy, A. Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: A systematic review and meta-analysis. Hum. Reprod. Update 2018, 15, 423–440. [Google Scholar] [CrossRef] [Green Version]
- Moghadasian, R.M.T.; Surendiran, G.; Zahra, S.; Mohammed, H. Cardiovascular benefits of probiotics: A review of experimental and clinical studies. Food Funct. 2016, 7, 632–642. [Google Scholar]
- Kok, C.R.; Hutkins, R. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutr Rev. 2018, 76 (Suppl. S1), 4–15. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.H.; Chiou, J.; Tsai, T.Y. Effects of Lactobacillus plantarum TWK10-Fermented Soymilk on Deoxycorticosterone Acetate-Salt-Induced Hypertension and Associated Dementia in Rats. Nutrients 2016, 8, 260. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wu, Y.; Yang, C.; Xu, X.; Meng, Y. Antioxidant and hypolipidemic effects of soymilk fermented via Lactococcus acidophilus MF204. Food Funct. 2017, 8, 4414–4420. [Google Scholar] [CrossRef]
- Tsai, T.Y.; Chu, L.H.; Lee, C.L.; Pan, T.M. Atherosclerosis-preventing activity of lactic acid bacteria-fermented milk-soymilk supplemented with Momordica charantia. J. Agric. Food Chem. 2009, 57, 2065–2071. [Google Scholar] [CrossRef]
- Lekkas, C.; Stewart, G.G.; Hill, A. The Importance of Free Amino Nitrogen in Wort and Beer. MBAA TQ 2005, 42, 113–116. [Google Scholar]
- Shah, N.P. Probiotic bacteria: Selective enumeration and survival in dairy foods. J. Dairy Sci. 2000, 83, 894–907. [Google Scholar] [CrossRef]
- Pyo, Y.H.; Lee, T.C.; Lee, Y.C. Enrichment of bioactive isoflavones in soymilk fermented with β-glucosidase-producing lactic acid bacteria. Food Res. Int. 2005, 38, 551–559. [Google Scholar] [CrossRef]
- Otieno, D.O.; Ashton, J.F.; Shah, N.P. Evaluation of enzymic potential for biotransformation of isoflavone phytoestrogen in soymilk by Bifidobacterium animalis, Lactobacillus acidophilus and Lactobacillus casei. Food Res. Int. 2005, 39, 394–407. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Dinis, T.C.; Maderia, V.M.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994, 315, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Obinna-Echema, P.C.; Kuria, V.; Beala, J. Fermentation and antimicrobial characteristics of Lactobacillus plantarum and Candida tropicalis from Nigerian fermented maize (akamu). Int. J. Food Stud. 2014, 3, 186–202. [Google Scholar] [CrossRef]
- Baú, T.R.; Ida, E.I. Soymilk processing with higher isoflavone aglycone content. Food Chem. 2015, 183, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Erkkila, S.; Petaja, E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 2000, 55, 297–300. [Google Scholar] [CrossRef]
- Mitsuoka, T. Intestinal flora and human health. Asia Pac. J. Clin. Nutr. 1996, 5, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Saxelin, M.; Tynkkynen, S.; Mattila-Sandholm, T.; de Vos, W.M. Probiotic and other functional microbes: From markets to mechanisms. Curr. Opin. Biotechnol. 2005, 16, 204–211. [Google Scholar] [CrossRef]
- Bernet, M.F.; Brassart, D.; Neeser, J.R.; Servin, A.L. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl. Environ. Microbiol. 1993, 59, 4121–4128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gratacap, R.L.; Rawls, J.F.; Wheeler, R.T. Mucosal candidiasis elicits NF-kappaB activation, proinflammatory gene expression and localized neutrophilia in zebrafish. Dis. Model. Mech. 2013, 6, 1260–1270. [Google Scholar] [PubMed] [Green Version]
- Saxelin, M.; Pessi, T.; Salminen, S. Fecal recovery following oral administration of Lactobacillus strain GG (ATCC 53103) in gelatine capsules to healthy volunteers. Int. J. Food Microbiol. 1995, 25, 199–203. [Google Scholar] [CrossRef]
- Paul, M.; Somkuti, G.A. Degradation of milk-based bioactive peptides by yogurt fermentation bacteria. Lett. Appl. Microbiol. 2009, 45, 345–350. [Google Scholar] [CrossRef]
- Trindade, C.S.; Terzi, S.C.; Trugo, L.C.; Della Modesta, R.C.; Couri, S. Development and sensory evaluation of soy milk based yoghurt. Arch. Latinoam. Nutr. 2001, 51, 100–104. [Google Scholar]
- Munro, I.C.; Harwood, M.; Hlywka, J.J.; Stephen, A.M.; Doull, J.; Flamm, W.G.; Adlercreutz, H. Soy isoflavones: A safety review. Nutr. Rev. 2003, 61, 1–33. [Google Scholar] [CrossRef]
- Izumi, T.; Piskula, M.K.; Osawa, S.; Obata, A.; Tobe, K.; Saito, M.; Kataoka, S.; Kubota, Y.; Kikuchi, M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 2000, 130, 1695–1699. [Google Scholar] [CrossRef] [Green Version]
- Wildman, R.E.C. Handbook of Nutraceuticals and Functional Foods, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tsangalis, D.; Ashton, J.F.; Mcgill, A.E.J. Enzymic Transformation of Isoflavone Phytoestrogens in Soymilk by β-Glucosidase-Producing Bifidobacteria. J. Food Sci. 2017, 67, 3104–3113. [Google Scholar] [CrossRef]
- Naim, M.; Gestetner, B.; Bondi, A.; Birk, Y. Antioxidative and antihemolytic activities of soybean isoflavones. J. Agric. Food Chem. 1976, 24, 1174–1177. [Google Scholar] [CrossRef] [PubMed]
- Jha, H.C.; von Recklinghausen, G.; Zilliken, F. Inhibition of in vitro microsomal lipid peroxidation by isoflavonoids. Biochem. Pharmacol. 1985, 34, 1367–1369. [Google Scholar] [CrossRef]
- Wei, H.; Bowen, R.; Cai, Q.; Barnes, S.; Wang, Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc. Soc. Exp. Biol. Med. 1995, 208, 124–130. [Google Scholar] [CrossRef]
- Wei, H.; Wei, L.; Frenkel, K.; Bowen, R.; Barnes, S. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr. Cancer 1993, 20, 1–12. [Google Scholar] [CrossRef]
Label | Isolates in This Study | Source |
---|---|---|
Lc R1 | L. casei | HKU |
La R3 | L. acidophilus, NCFM | ATCC |
Lc R4 | L. casei, NBRC15883 | Cheese |
Lpa R5 | L. paracasei Shirota | Yakult drink |
Lpa R6 | L. paracasei | HKU |
Lpl R7 | L. plantarum, BCRC910734 | Kimchi |
Lc R8 | L. casei/L. paracasei | Yoghurt |
Ld R9 | L. delbrueckii subsp. Bulgaricus | Yoghurt |
Lr AC1 | L. rhamnosus | Infant feces |
Ls AC2 | L. sakei | Jinmi Korean kimchi |
Ls AC3 | L. sakei | Seoul farm Korean kimchi |
Ls AC4 | L. sakei | Select Korean kimchi |
Leu AC5 | Leu. mesenteroides | Select Korean kimchi |
Lpl AC9 | L. plantarum | kombucha |
Leu AC11.1 | Leu. mesenteroides | Taiwan kimchi |
Lpl AC12 | L. plantarum | Taiwan kimchi |
Lpl AC13 | L. plantarum | Taiwan kimchi |
Lpl AC14.1 | L. plantarum | Taiwan kimchi |
LAB Isolates | Viable Counts (log CFU/mL) | |
---|---|---|
Before Fermentation | After Fermentation | |
Control | 0.00 ± 0.00 a | 0.00 ± 0.00 a |
Lc R1 | 6.55 ± 0.01 d | 8.41 ± 0.05 ab |
La R3 | 6.11 ± 0.01 abc | 8.60 ± 0.02 abc |
Lc R4 | 6.49 ± 0.14 d | 7.12 ± 0.09 ab |
Lpa R5 | 6.50 ± 0.02 d | 9.29 ± 0.14 d |
Lpa R6 | 6.24 ± 0.02 c | 8.89 ± 0.02 abcd |
Lpl R7 | 6.14 ± 0.00 bc | 9.20 ± 0.19 cd |
Lc R8 | 5.92 ± 0.06 abc | 8.36 ± 0.10 ab |
Ld R9 | 5.23 ± 0.12 ab | 7.59 ± 0.08 ab |
Lr AC1 | 6.09 ± 0.04 abc | 9.07 ± 0.06 abcd |
Ls AC2 | 6.49 ± 0.02 abc | 8.42 ± 0.00 abc |
Ls AC3 | 6.15 ± 0.02 bc | 9.04 ± 0.01 abcd |
Ls AC4 | 6.20 ± 0.03 c | 8.25 ± 0.03 b |
Leu AC5 | 6.23 ± 0.00 c | 9.07 ± 0.06 bcd |
Lpl AC14.1 | 6.49 ± 0.02 d | 8.69 ± 0.05 abc |
Samples | Peak Area (mAu) | |
---|---|---|
Genistein | Daidzein | |
100 ppm Genistein | 14,368.00 ± 401.64 c | ND |
100 ppm Daidzein | ND | 12,354.50 ± 456.08 c |
Control | 911.00 ± 14.14 b | 843.50 ± 20.51 b |
Lc R1 | 1003.50 ± 43.12 b | 875.00 ± 11.31 b |
Lc R4 | 858.50 ± 45.96 b | 875.00 ± 11.31 b |
Lpa R5 | 819.50 ± 12.02 b | 745.00 ± 8.49 b |
Lpa R6 | 831.00 ± 2.83 b | 741.00 ± 16.97 b |
Lpl R7 | 949.50 ± 10.61 b | 843.50 ± 20.51 b |
Lc R8 | 1023.50 ± 21.92 b. | 826.00 ± 14.14 b |
Ld R9 | 210.50 ± 6.36 a | 144.00 ± 9.90 a |
Lr AC1 | 1041.50 ± 13.44 b | 866.50 ± 14.85 b |
Ls AC2 | 148.00 ± 12.73 a | 134.50 ± 7.78 a |
Ls AC3 | 156.00 ± 8.49 a | 135.50 ± 14.85 a |
Lpl AC14.1 | 845.50 ± 13.44 b | 746.00 ± 9.90 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Shum, T.-F.; Chiou, J. Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation. Microorganisms 2021, 9, 2544. https://doi.org/10.3390/microorganisms9122544
Wu H, Shum T-F, Chiou J. Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation. Microorganisms. 2021; 9(12):2544. https://doi.org/10.3390/microorganisms9122544
Chicago/Turabian StyleWu, Haicui, Tim-Fat Shum, and Jiachi Chiou. 2021. "Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation" Microorganisms 9, no. 12: 2544. https://doi.org/10.3390/microorganisms9122544
APA StyleWu, H., Shum, T.-F., & Chiou, J. (2021). Characterization of the Probiotic Potential of Lactic Acid Bacteria Isolated from Kimchi, Yogurt, and Baby Feces in Hong Kong and Their Performance in Soymilk Fermentation. Microorganisms, 9(12), 2544. https://doi.org/10.3390/microorganisms9122544