(a) Chlamydomonas reinhardtii (b) Synechocystis sp. (c) Cyclotella meneghiniana | (a) green alga, 2 (b) cyanobac., 0 (c) diatom, 0 | ass. rot. | measuring effects of AC field intensity, frequency and duration on chaining efficiency and chain lengths | chamber $\left({\mathrm{d}}_{\mathrm{ch}}=350\right)$, coplanar electrodes $\left(\mathrm{Au},{\text{}\mathrm{d}}_{\mathrm{eg}}=2000\right)$ | $\begin{array}{l}E=15\dots 25\\ f={10}^{-4}\dots 0.5\\ \dot{V}=0\\ c=5\xb7{10}^{6}\dots 5\xb7{10}^{7}\end{array}$ | Geneva lake water ${\mathsf{\sigma}}_{\mathrm{m}}=320$ ${\mathsf{\epsilon}}_{\mathrm{m}}=80$ | $\left(\mathrm{a}\right)\text{}\mathrm{d}=13,{\text{}\mathrm{t}}_{\mathrm{w}}=500,\phantom{\rule{0ex}{0ex}}{\text{}\mathsf{\sigma}}_{\mathrm{i}}=0.008,{\mathsf{\sigma}}_{\mathrm{w}}=50,\phantom{\rule{0ex}{0ex}}{\text{}\mathsf{\epsilon}}_{\mathrm{i}}=150,{\mathsf{\epsilon}}_{\mathrm{w}}=70$ $\left(\mathrm{b}\right)\text{}\mathrm{d}=3.98,{\text{}\mathrm{t}}_{\mathrm{w}}=130,\text{}\phantom{\rule{0ex}{0ex}}{\mathsf{\sigma}}_{\mathrm{i}}=0.19,{\text{}\mathsf{\sigma}}_{\mathrm{w}}=680,\phantom{\rule{0ex}{0ex}}{\text{}\mathsf{\epsilon}}_{\mathrm{w}}=60,{\text{}\mathsf{\epsilon}}_{\mathrm{i}}=61$ $\left(\mathrm{c}\right)\text{}\mathrm{d}=17.72,{\mathrm{t}}_{\mathrm{w}}=500,\text{}\phantom{\rule{0ex}{0ex}}{\mathsf{\sigma}}_{\mathrm{i}}=0.008,{\text{}\mathsf{\sigma}}_{\mathrm{w}}={10}^{-17}$ ${\mathsf{\epsilon}}_{\mathrm{i}}=150,{\text{}\mathsf{\epsilon}}_{\mathrm{w}}=3.9$ | [56] |

(a) Chlorella vulgaris (b) Raphidocelis subcapitata (c) Dunaliella salina | (a) green alga, 0 (b) green alga, 0 (c) green alga, 2 | sep. | separation by size and species | PDMS channels $\left({\mathrm{d}}_{\mathrm{cw}}=90\dots \text{}300,{\text{}\mathrm{d}}_{\mathrm{ch}}=25\right)$ with overall field gradient | $\begin{array}{l}U<295\\ f=0\end{array}$ | sodium borate buffer solution $\mathrm{pH}\text{}7.5$ | $\left(\mathrm{a}\right)\text{}\mathrm{d}=2\dots 4$ $\left(\mathrm{b}\right)\text{}\mathrm{d}=3.7\dots 6.25\text{}$ $\left(\mathrm{c}\right)\text{}\mathrm{d}=3.8\dots 6.0$ | [57] |

Chlamydomonas reinhardtii (a) high lipid (b) low lipid | green alga, 2 | sep. | high-frequency DEP in continuous-flow cell screening device for separation based on lipid content | $\mathrm{PDMS}\text{}\mathrm{channel}\text{}\left({\mathrm{d}}_{\mathrm{ch}}=20,{\text{}\mathrm{d}}_{\mathrm{cw}}=1000\right),$ 4 interdigitated electrode arrays 10 electrodes each $\left(\mathrm{Au},{\mathrm{d}}_{\mathrm{ew}}=50,{\text{}\mathrm{d}}_{\mathrm{eg}}=50\right)$ by etching | $U=30$ $f=50$ $\dot{V}=9$ $c=6.7\xb7{10}^{6}$ | $\mathrm{KCl}\text{}\mathrm{solution}$ $85{\text{}\mathrm{g}\text{}\mathrm{L}}^{-1}\text{}\mathrm{Glc}$ $0.1\%\text{}\mathrm{serum}\text{}\mathrm{albumin}$ ${\mathsf{\sigma}}_{\mathrm{m}}=10.6$ ${\mathsf{\epsilon}}_{\mathrm{m}}=80$ | $\mathrm{d}=10\dots \text{}15$ $\left(\mathrm{a}\right){\mathsf{\sigma}}_{\mathrm{i}}=0.095$ $\left(\mathrm{b}\right){\mathsf{\sigma}}_{\mathrm{i}}=0.2267$ ${\mathsf{\epsilon}}_{\mathrm{i}}=50,$${\mathsf{\epsilon}}_{\mathrm{mem}}=8$ ${\mathsf{\sigma}}_{\mathrm{mem}}=2\xb7{10}^{-6}$ | [58] |

Chlamydomonas reinhardtii | green alga, 2 | ass. | high-frequency DEP to determine upper crossover frequency of cells with varying lipid content | glass slide with needle patterned electrodes (Au) | $U=30$ $f=10\dots 110$ $\dot{V}=0$ | $\mathrm{KCl}\text{}\mathrm{solution};$ $85{\text{}\mathrm{g}\text{}\mathrm{L}}^{-1}\text{}\mathrm{Glc};$ ${\mathsf{\sigma}}_{\mathrm{m}}=64$ ${\mathsf{\epsilon}}_{\mathrm{m}}=80$ | $\mathrm{d}=12,{\text{}\mathrm{t}}_{\mathrm{mem}}=7\phantom{\rule{0ex}{0ex}}{\mathsf{\epsilon}}_{\mathrm{i}}=50,{\text{}\mathsf{\epsilon}}_{\mathrm{mem}}=8,\text{}\phantom{\rule{0ex}{0ex}}{\mathsf{\sigma}}_{\mathrm{i}}=0.5,\text{}{\mathsf{\sigma}}_{\mathrm{mem}}=0.02$ | [59] |

Chlamydomonas reinhardtii | green alga, 2 | ass. | characterization of effects of freshwater composition on the DEP response | $\mathrm{chamber}\text{}\left({\mathrm{d}}_{\mathrm{ch}}=250\right)$, coplanar electrodes $\left(\mathrm{Au},{\text{}\mathrm{d}}_{\mathrm{eg}}=2000\right)$ by vapor deposition | $E=20$ $f=0.001$ $\dot{V}=0$ $n={10}^{6}$ | $\mathrm{fresh}\text{}\mathrm{water};$ ${\mathsf{\sigma}}_{\mathrm{m}}=32\dots \text{}56$ | | [60] |

Chlamydomonas reinhardtii | green alga, 2 | ass. | rapid tool for capture and screen with fluorescence for the effect of contaminants | $\mathrm{chamber}\text{}\left(\mathrm{silicone},{\mathrm{d}}_{\mathrm{ch}}=2000\right),$ $\mathrm{four}\text{}\mathrm{orthogonally}\text{}\mathrm{needle}\text{}\mathrm{electrodes}\text{}\left(\mathrm{stainless}\text{}\mathrm{steel},{\text{}\mathrm{d}}_{\mathrm{eg}}=5000\right)$ | $E=10$ $f=0.0001$ $\dot{V}=0$ $n=5\xb7{10}^{6}$ | water; 0.0001 M MOPS +various contaminants | | [61,62] |

Chlorella vulgaris | green alga, 0 | sep. | studies on solution conductivity and lipid content, microfluidic chip to sort the microalgae with different lipid contents | $\mathrm{channel}\text{}\left(\mathrm{JSR}\text{}\mathrm{THB}151\mathrm{N},{\text{}\mathrm{d}}_{\mathrm{ch}}=15\right)$ by spin coating, symmetrical deflector electrodes $\left(\mathrm{Ti}\text{}0.2\text{}\mathrm{Au},{\text{}\mathrm{d}}_{\mathrm{eh}}=0.03\text{}\right)$ by vapor deposition and photolithography | $U=10$ $f=7,10,20$ $\dot{V}=250$ | ${\mathrm{KH}}_{2}{\mathrm{PO}}_{4}$ $\mathrm{buffer}\text{}\mathrm{solution};$ ${\mathsf{\sigma}}_{\mathrm{m}}=290$ ${\mathsf{\epsilon}}_{\mathrm{m}}=80$ | $\mathrm{d}=5.2$ ${\mathrm{d}}_{\mathrm{lip}}=1.23\dots 2.05$ ${\mathsf{\sigma}}_{\mathrm{w}}={10}^{-8},{\mathsf{\sigma}}_{\mathrm{i}}=0.5$ ${\mathsf{\sigma}}_{\mathrm{lip}}=0.0001$ ${\mathsf{\epsilon}}_{\mathrm{w}}=5,{\text{}\mathsf{\epsilon}}_{\mathrm{i}}=60$ ${\mathsf{\epsilon}}_{\mathrm{lip}}=3$ ${\mathrm{t}}_{\mathrm{w}}=100$ | [63,64] |

Chlorella vulgaris | green alga, 0 | att. rep. | screening for highest radionuclide bio-decontamination by n- and p-DEP | $\mathrm{PDMS}\text{}\mathrm{Chamber},\text{}\mathrm{electrodes}\text{}\left(\mathrm{Au},{\text{}\mathrm{d}}_{\mathrm{eh}}=0.3,{\text{}\mathrm{d}}_{\mathrm{ew}}=30\right)$ on glass by lithography | $U=10$ $f=0.1\dots 5$ $c=4.8\xb7{10}^{6}$ | $3{\text{}\mathrm{mM}\text{}\mathrm{NaHCO}}_{3}$ ${\mathsf{\sigma}}_{\mathrm{m}}=335$ | | [65] |

Coscinodiscus wailesii | diatom, 0 | att. rep. | 2D dielectrophoretic signature | PDMS microfluidic well, interdigitated electrode pattern | $U=1\dots 10$ $f=0.001\dots 100$ $\dot{V}=0$ | $\mathrm{f}/2\text{}\mathrm{culture}\text{}\mathrm{medium}$ ${\mathsf{\sigma}}_{\mathrm{m}}=47$ ${\mathsf{\epsilon}}_{\mathrm{m}}=79$ | $d=20,75\dots \text{}80$ ${\mathsf{\sigma}}_{\mathrm{i}}=0.06,{\text{}\mathsf{\sigma}}_{\mathrm{mem}}=0.03$ ${\mathsf{\epsilon}}_{\mathrm{i}}=48,{\text{}\mathsf{\epsilon}}_{\mathrm{mem}}=20$ ${\mathrm{t}}_{\mathrm{mem}}=9$ | [66] |

Eremosphaera viridis | green alga, 0 | att. rep. | tool for spatial manipulation | commercially available single electrode, etched elgiloy tip with porous metal-oxide coating | $U=1\dots 5$ $f=0.05\dots 10$ $\dot{V}=0$ | $\mathrm{low}\text{}\mathrm{calcium}$ $\mathrm{Dickinson}\text{}\mathrm{medium}$ | | [67] |

Karenia brevis | dinoflagellate, 2 | ass. | dielectrophoretic concentration | $\mathrm{glass}\text{}\mathrm{slide},\text{}3\mathrm{x}4\mathrm{mm}\text{}\mathrm{array}\text{}\mathrm{of}\text{}\mathrm{castellated}\text{}\mathrm{interdigitated}\text{}\mathrm{electrodes}\text{}\left(\mathrm{Pt},{\text{}\mathrm{d}}_{\mathrm{eh}}=0.2,{\text{}\mathrm{d}}_{\mathrm{ew}}=20,{\text{}\mathrm{d}}_{\mathrm{eg}}=20\right)$ | $U=1$ $f=0.2$ $\dot{V}=0$ $n=3\xb7{10}^{5}$ | $280\mathrm{mM}\text{}\mathrm{mannose};$ $0.5\%\text{}\mathrm{Tween}$ ${\mathsf{\sigma}}_{\mathrm{m}}=10.5$ | | [68] |

Raphidocelis subcapitata | green alga, 0 | sep. | concentrate and separate live and dead cells | $\mathrm{glass}\text{}\mathrm{chambers}\text{}\left({\mathrm{d}}_{\mathrm{cw}}=2000,{\text{}\mathrm{d}}_{\mathrm{ch}}=20\right)$$\mathrm{with}\text{}\mathrm{cylinders}\text{}\left(470\dots \text{}520\text{}\mu \mathrm{m}\right)$ by wet etching, overall field gradient | $E=10\dots 25$ $f=0$ $n=1.7\xb7{10}^{7}$ | $\left(\mathrm{i}\right)\text{}\mathrm{bidistilled}\text{}\mathrm{water}$ $\left(\mathrm{ii}\right)\text{}1\mathrm{mM}\text{}\mathrm{KH}2\mathrm{PO}4$ ${\mathsf{\sigma}}_{\mathrm{m}}=0.225,\text{}18.7$ | | [69] |

Tetraselmis sp. | green alga, 4 | trans. | twDEP used to estimate the dielectric properties | glass slide, octa-pairs interdigitated electrode $\left(\mathrm{Au},{\mathrm{d}}_{\mathrm{ew}}=50,{\text{}\mathrm{d}}_{\mathrm{eg}}=50,{\text{}\mathrm{d}}_{\mathrm{eh}}=0.5\right)$ by photolithography and wet-etching | $U=1.5\dots 14$ $f=0.005\dots 4$ $\dot{V}=2.4$ $c={10}^{6}$ | $0.5\text{}\mathrm{M}\text{}\mathrm{sorbitol}\text{}\mathrm{solution}\text{}+0.1\text{}\mathrm{M}\text{}\mathrm{KCl}$ ${\mathsf{\sigma}}_{\mathrm{m}}=3\dots 370$ | | [70] |

Tetraselmis sp. (a) control (b) As treated (c) boiled | green alga, 4 | trans. | determination of dielectric properties and effects of arsenic | glass slide, octa-pair interdigitated electrodes $(\mathrm{Au},{\mathrm{d}}_{\mathrm{el}}=200;{\text{}\mathrm{d}}_{\mathrm{ew}}=100,{\text{}\mathrm{d}}_{\mathrm{eh}}=0.2;{\text{}\mathrm{d}}_{\mathrm{eg}1}=100,\text{}300$) | $U=2\dots 10$ $f=0.015\dots 0.5$ $\dot{V}=0$ $c=4\xb7{10}^{5}\dots 9.2\xb7{10}^{6}$ | ${\mathsf{\sigma}}_{\mathrm{m}}=10\dots 250$ ${\mathsf{\epsilon}}_{\mathrm{m}}=78$ | $shperic:{d}_{a}=20$ ${d}_{b}=16$ $\left(\mathrm{a}\right){\text{}\mathsf{\sigma}}_{\mathrm{i}}=0.37$ ${\mathsf{\sigma}}_{\mathrm{mem}}=0.00017$ ${\mathsf{\epsilon}}_{\mathrm{i}}=48,{\text{}\mathsf{\epsilon}}_{\mathrm{mem}}=8$ $\left(\mathrm{b}\right){\text{}\mathsf{\sigma}}_{\mathrm{i}}=0.013\dots 0.03$ ${\mathsf{\sigma}}_{\mathrm{mem}}=0.003\dots 0.0038$ ${\mathsf{\epsilon}}_{\mathrm{i}}=48,{\text{}\mathsf{\epsilon}}_{\mathrm{mem}}=10\dots 32$ $\left(\mathrm{c}\right){\mathsf{\sigma}}_{\mathrm{i}}=0.06$ ${\mathsf{\sigma}}_{\mathrm{mem}}=0.03$ ${\mathsf{\epsilon}}_{\mathrm{i}}=91,{\text{}\mathsf{\epsilon}}_{\mathrm{mem}}=20$ ${t}_{mem}=13$ | [71] |

heterogeneous population | various | ass. | technique to monitor the concentration of algae in fresh water to avoid mass contaminations | chamber, four electrodes | $U<1.65$ $f<1.2$ $\dot{V}=0$ | | $\mathrm{d}=15$ | [72] |

(a) Platymonas sp. (b) Closterium sp. | (a) green alga, 2 (b) green alga, 0 | sep. | continuous separation of different microalgae from microplastics by multi-electrode n- and p-DEP | $\mathrm{PDMS}\text{}\mathrm{chamber}\text{}\left({\mathrm{d}}_{\mathrm{cw}}=100\right),\text{}$ $\mathrm{electrodes}\text{}\mathrm{on}\text{}\mathrm{ITO}\text{}(\mathrm{Ag}-\mathrm{PDMS}\text{}\mathrm{mixture},{\text{}\mathrm{d}}_{\mathrm{ew}1}=1900,\text{}$ ${\mathrm{d}}_{\mathrm{ew}2}=100,{\text{}\mathrm{d}}_{\mathrm{eg}}=100)$ | $f=30$ $\dot{V}=0.083$ | $\mathrm{PBS}\text{}\mathrm{buffer}\text{}\mathrm{solution}$ ${\mathsf{\sigma}}_{\mathrm{m}}=300$ | | [73] |