Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cell Culture
2.2. Single and Multilocus Phylogenetic Sequence Analysis
2.3. Morphological and Biochemical and Nutritional Characterisation
2.4. MALDI-TOF Mass Spectroscopy Analysis
3. Results and Discussion
3.1. Isolation of strain ZA_0188T
3.2. Single-Locus Sequence Analysis of 16S rRNA and GroEL
3.3. Multilocus Sequence Analysis
3.4. Average Nucleotide Identity (ANI) Values and Genomic Guanine–Cytosine Content (DNA G+C Content)
3.5. Morphological Characterisation
3.6. Phenotypic Characterisation
3.7. MALDI-TOF Biotyper Analysis
4. Conclusions
4.1. Description of Cedecea colo Species Novel
4.2. Importance of Cedecea colo sp. nov.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Foley, W.J.; Hume, J.D. Nitrogen requirements and urea metabolism in two arboreal marsupials, the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula), fed eucalyptus foliage. Physiol. Zool. 1987, 60, 241–250. [Google Scholar] [CrossRef]
- Hume, I.D. Marsupial Nutrition; Cambridge Univ. Press: Cambridge, UK; New York, NY, USA, 1999. [Google Scholar]
- Van Soest, P. Plant fiber and its role in herbivore nutrition. Cornell Vet. 1977, 67, 307. [Google Scholar] [PubMed]
- Marschner, C.; Krockenberger, M.B.; Higgins, D.P. Effects of eucalypt plant monoterpenes on koala (Phascolarctos Cinereus) cytokine expression in vitro. Sci. Rep. 2019, 9, 16545–16552. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.J.; Wallis, I.R. Behavioral contributions to the regulated intake of plant secondary metabolites in koalas. Oecologia 2007, 154, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Jensen, L.M.; Wallis, I.R.; Marsh, K.J.; Moore, B.D.; Wiggins, N.L.; Foley, W.J. Four species of arboreal folivore show differential tolerance to a secondary metabolite. Oecologia 2014, 176, 251–258. [Google Scholar] [CrossRef]
- Iason, G. The role of plant secondary metabolites in mammalian herbivory: Ecological perspectives. Proc. Natl. Acad. Sci. USA 2005, 64, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Brice, K.L.; Trivedi, P.; Jeffries, T.C.; Blyton, M.D.J.; Mitchell, C.; Singh, B.K.; Moore, B.D. The koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. PeerJ 2019, 7, e6534. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Thavamani, P.; Megharaj, M.; Naidu, R. Multifarious activities of cellulose degrading bacteria from koala (Phascolarctos cinereus) faeces. JAST 2015, 57, 23. [Google Scholar] [CrossRef] [Green Version]
- Denton, M. Enterobacteriaceae. Int. J. Antimicrob. Agents 2007, 29, 9–22. [Google Scholar] [CrossRef]
- Alfano, N.; Courtiol, A.; Vielgrader, H.; Timms, P.; Roca, A.L.; Greenwood, A.D. Variation in koala microbiomes within and between individuals: Effect of body region and captivity status. Sci. Rep. 2015, 5, 10189. [Google Scholar] [CrossRef] [Green Version]
- Vidgen, M.E.; Hanger, J.; Timms, P. Microbiota composition of the koala (Phascolarctos cinereus) ocular and urogenital sites, and their association with Chlamydia infection and disease. Sci. Rep. 2017, 7, 5239. [Google Scholar] [CrossRef] [Green Version]
- Wedrowicz, F.; Karsa, M.; Mosse, J.; Hogan, F.E. Reliable genotyping of the koala (Phascolarctos cinereus) using DNA isolated from a single faecal pellet. Mol. Ecol. Resour. 2013, 13, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-R, L.M.; Konstantinidis, K.T. The enveomics collection: A toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ 2016, 4, e1900v1. [Google Scholar]
- Darling, A.E.; Jospin, G.; Lowe, E.; Matsen, F.A.I.V.; Bik, H.M.; Eisen, J.A. PhyloSift: Phylogenetic analysis of genomes and metagenomes. PeerJ 2014, 2, e243. [Google Scholar] [CrossRef] [PubMed]
- Fischer, E.R.; Hansen, B.T.; Nair, V.; Hoyt, F.H.; Dorward, D.W. Scanning Electron Microscopy. Curr. Protoc. Microbiol. 2012, 25, 2B.2.1–2B.2.47. [Google Scholar]
- Varettas, K.; Mukerjee, C.; Schmidt, M. A comparative study of the BBL Crystal Enteric/Nonfermenter identification system and the BioMerieux API20E and API20NE identification systems after overnight incubation. Pathology 1995, 27, 358–361. [Google Scholar] [CrossRef]
- Cowan, S.T.; Steel, K.J. Manual for the Identification of Medical Bacteria, 3rd ed.; Cambridge University Press: London, UK, 1965. [Google Scholar]
- Kovacs, N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956, 178, 703. [Google Scholar] [CrossRef]
- Kim, M.; Oh, H.S.; Park, S.C.; Chun, J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 2014, 64, 346–351. [Google Scholar] [CrossRef]
- Karenlampi, R.I.; Tolvanen, T.P.; Hanninen, M.L. Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J. Clin. Microbiol. 2004, 42, 5731–5738. [Google Scholar] [CrossRef] [Green Version]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [Green Version]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, B.H.; Cunningham, S.A.; Dailey, A.L.; Gustafson, D.R.; Patel, R. Identification of anaerobic bacteria by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry with on-plate formic acid preparation. J. Clin. Microbiol. 2013, 51, 782–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organism | NCBI/GenBank Accession | ANI Two-Way (%) | 16S rRNA Similarity (%) | GroEL Similarity (%) |
---|---|---|---|---|
C. neteri strain M006 | NZ_CP009458.1 | 80.87 | 97.31 | 90.87 |
C. neteri strain SSMD04 | NZ_CP009451.1 | 81.03 | 97.24 | 90.42 |
C. neteri ATCC 33855 | NZ_BCTL01000007.1 | 81.65 * | 97.12 | 90.51 |
C. davisae DSM4568 | NZ_ATDT00000000.1 | 81.10 | 97.17 | 92.17 * |
C. freundii ATCC 8090 | NZ_ANAV00000000.1 | 79.34 | 96.97 | 90.47 |
C. universalis NCTC 9529 | NZ_CP012257.1 | 79.65 | 96.07 | 88.91 |
E. aerogenes KCTC 2190 | NC_015663.1 | 79.61 | 96.82 | 88.85 |
E. cloacae ATCC 13047 | NC_014121.1 | 79.55 | 96.83 | 89.27 |
E. xiangfangensis LMG27195 | NZ_CP017183.1 | 79.59 | 97.93 * | 88.96 |
E. albertii KF1 | NZ_CP007025.1 | 79.17 | 96.56 | 90.53 |
E. coli strain O157H7 | NC_002695.1 | 79.15 | 97.11 | 90.24 |
E. fergusonii ATCC35469 | NC_011740.1 | 79.22 | 96.76 | 90.30 |
K. pneumonia ATCC 13884 | NZ_ACZD00000000.1 | 79.62 | 96.14 | 88.61 |
K. oxytoca CAV1374 | NZ_CP011636.1 | 79.65 | 97.04 | 90.24 |
L. adecarboxylata USDA -60222 | NZ_CP13990.1 | 79.39 | 97.31 | 88.77 |
R. ornithinolytica ATCC 31898 | NZ_BCYR01000001 | 78.58 | 96.11 | 88.97 |
S. bongori NCTC 12419 | NC_015761.1 | 79.08 | 97.38 | 90.12 |
S. enterica serovar Typhi strain CT18 | NC_003198.1 | 79.55 | 97.79 | 89.62 |
S. enterica servoar Typh. ATCC 13311 | CP009102.1 | 79.70 | 97.86 | 89.62 |
S. plymuthica NBRC 102599 | BCTU00000000.1 | 78.39 | 95.26 | 90.89 |
S. flexneri ATCC 12022 | NZ_JPPN00000000.1 | 79.15 | 96.53 | 90.06 |
S. sonnei 53G | NC_016822.1 | 79.30 | 97.38 | 90.06 |
Characteristic | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DNase | - | - | - | - | - | - | - | - | - | - | (+) | - | + | + | (+) |
Oxidase | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Catalase | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Lipase | - | - | + | - | - | - | - | - | - | - | - | - | + | + | + |
Hydrolysis of: | |||||||||||||||
ONPG | + | + | + | + | + | + | + | + | + | + | + | - | + | (+) | + |
Arginine | - | - | + | + | + | - | - | - | - | + | + | (+) | - | (+) | - |
Decarboxylation of: | |||||||||||||||
Lysine | - | + | - | - | - | + | + | + | - | + | + | + | - | - | - |
Ornithine | - | + | - | - | + | + | - | + | - | + | + | - | - | - | + |
Citrate Utilisation | + | - | + | + | + | + | + | + | - | + | + | - | + | - | - |
H2S Production | - | - | - | + | - | - | - | - | - | + | + | + | - | - | - |
Urease | - | - | - | + | + | (+) | + | + | + | - | - | - | - | - | + |
Indole Test | - | + | - | + | - | - | - | + | + | - | (+) | - | - | + | + |
Voges-Proskauer Test | - | - | + | - | + | + | + | + | - | - | - | - | + | - | (+) |
Gelatinase | - | - | - | - | - | - | - | - | - | - | - | - | + | - | - |
Fermentation of: | |||||||||||||||
Glucose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Mannose | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
Inositol | - | - | - | - | + | + | + | + | - | - | - | - | + | - | + |
Sorbitol | - | + | + | + | (+) | + | + | + | - | + | + | + | + | + | + |
Rhamnose | + | + | - | + | + | + | + | + | + | + | + | - | - | (+) | (+) |
Sucrose | - | + | + | + | + | + | + | + | + | - | (+) | - | + | (+) | + |
Melibiose | + | + | - | + | + | + | + | + | + | + | + | + | + | + | (+) |
Arabinose | + | + | - | + | + | + | + | + | + | + | + | (+) | + | + | + |
Nitrate reduction | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
DNA G+C (mol %) | 53 | 48–52 | 54–55 | 50–51 | 52–54 | 54–56 | 56–58 | 55–58 | 52–55 | 51–52 | 50–53 | 50–53 | 53–57 | 49–51 | 47–50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boath, J.M.; Dakhal, S.; Van, T.T.H.; Moore, R.J.; Dekiwadia, C.; Macreadie, I.G. Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut. Microorganisms 2020, 8, 309. https://doi.org/10.3390/microorganisms8020309
Boath JM, Dakhal S, Van TTH, Moore RJ, Dekiwadia C, Macreadie IG. Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut. Microorganisms. 2020; 8(2):309. https://doi.org/10.3390/microorganisms8020309
Chicago/Turabian StyleBoath, Jarryd M., Sudip Dakhal, Thi Thu Hao Van, Robert J. Moore, Chaitali Dekiwadia, and Ian G. Macreadie. 2020. "Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut" Microorganisms 8, no. 2: 309. https://doi.org/10.3390/microorganisms8020309