Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Determination of Virulence Genes
2.3. Pulsed-Field Gel Electrophoresis (PFGE)
2.4. Multi-Locus Sequence Typing (MLST)
3. Results
3.1. Serotypes and stx and eae Gene Subtypes
3.2. Distribution of Other Virulence Markers
3.3. PFGE Analysis
3.4. Multi-Locus Sequence Typing (MLST)
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia coli. Clin. Microbiol. Rev. 2013, 26, 822–880. [Google Scholar] [CrossRef] [PubMed]
- Paton, J.C.; Paton, A.W. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 1998, 11, 450–479. [Google Scholar] [CrossRef] [PubMed]
- Karmali, M.; Petric, M.; Lim, C.; Fleming, P.C.; Arbus, G.S.; Lior, H. The association between idiophatic hemolytic uremic syndrome and infection by Verotoxin-producing Escherichia coli. J. Infect. Dis. 1985, 151, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Majowicz, S.E.; Scallan, E.; Jones-bitton, A.; Jan, M.; Stapleton, J.; Angulo, F.J.; Yeung, D.H.; Kirk, M.D. Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge systhesis. Foodborne Pathog Dis. 2015, 11, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Lacher, D.W.; Gangiredla, J.; Patel, I.; Elkins, C.A.; Feng, P.C.H. Use of the Escherichia coli identification microarray for characterizing the health risks of Shiga toxin-producing Escherichia coli isolated from foods. J. Food Prot. 2016, 79, 1656–1662. [Google Scholar] [CrossRef]
- Bai, X.; Fu, S.; Zhang, J.; Fan, R.; Xu, Y.; Sun, H.; He, X.; Xu, J.; Xiong, Y. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Hughes, A.C.; Zhang, Y.; Bai, X.; Xiong, Y.; Wang, Y.; Yang, X.; Xu, Q.; He, X. Structural and functional characterization of stx2k, a new subtype of Shiga toxin 2. Microorganisms 2020, 8, 4. [Google Scholar] [CrossRef]
- Caprioli, A.; Morabito, S.; Brugere, H.; Oswald, E. Enterohemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet. Res. 2005, 36, 289–311. [Google Scholar] [CrossRef]
- Beutin, L.; Montenegro, M.A.; Orskov, I.; Orskov, F.; Prada, J.; Zimmermann, S.; Stephan, R. Close association of Verotoxin (Shiga-like toxin) production with enterohemolysin production in strains of Escherichia coli. J. Clin. Microbiol. 1989, 27, 2559–2564. [Google Scholar] [CrossRef]
- Ethelberg, S.; Olsen, K.E.P.; Scheutz, F.; Jensen, C.; Schiellerup, P.; Engberg, J.; Petersen, A.M.; Olesen, B.; Gerner-Smidt, P.; Mølbak, K. Virulence factors for hemolytic uremic syndrome, Denmark. Emerg. Infect. Dis. 2004, 10, 842–847. [Google Scholar] [CrossRef]
- Boerlin, P.; McEwen, S.A.; Boerlin-Petzold, F.; Wilson, J.B.; Johnson, R.P.; Gyles, C.L. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J. Clin. Microbiol. 1999, 37, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Toma, C.; Espinosa, E.M.; Song, T.; Miliwebsky, E.; Chinen, I.; Iyoda, S.; Iwanaga, M.; Rivas, M.; Malbra, A.C.G.; Icrobiol, J.C.L.I.N.M. Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 2004, 42, 4937–4946. [Google Scholar] [CrossRef] [PubMed]
- Brunder, W.; Schmidt, H.; Frosch, M.; Karch, H. The large plasmids of Shiga-toxin-producing Escherichia coli (STEC) are highly variable genetic elements. Microbiology 1999, 145, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
- Irino, K.; Midolli Vieira, M.A.; Tardelli Gomes, T.A.; Cabilio Guth, B.E.; Furtado Naves, Z.V.; Oliveira, M.G.; Dos Santos, L.F.; Guirro, M.; Timm, C.D.; Pigatto, C.P.; et al. Subtilase cytotoxin-encoding subAB operon found exclusively among Shiga toxin-producing Escherichia coli strains. J. Clin. Microbiol. 2010, 48, 988–990. [Google Scholar] [CrossRef] [PubMed]
- Montero, D.A.; Velasco, J.; Del Canto, F.; Puente, J.L.; Padola, N.L.; Rasko, D.A.; Farfán, M.; Salazar, J.C.; Vidal, R. Locus of adhesion and autoaggregation (LAA), a pathogenicity island present in emerging Shiga toxin–producing Escherichia coli strains. Sci. Rep. 2017, 7, 7011. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.J.; Miller, G.; Breuer, T.; Kennedy, M.; Higgins, C.; Walford, J.; McKee, G.; Fox, K.; Bibb, W.; Mead, P. A waterborne outbreak of Escherichia coli O157:H7 infections and hemolytic uremic syndrome: Implications for rural water systems. Emerg. Infect. Dis. 2002, 8, 370–375. [Google Scholar] [CrossRef]
- Ihekweazu, C.; Carroll, K.; Adak, B.; Smith, G.; Pritchard, G.C.; Gillespie, I.A.; Verlander, N.Q.; Harvey-Vince, L.; Reacher, M.; Edeghere, O.; et al. Large outbreak of Verocytotoxin-producing Escherichia coli O157 infection in visitors to a petting farm in south east England, 2009. Epidemiol. Infect. 2012, 140, 1400–1413. [Google Scholar] [CrossRef]
- González-Escalona, N.; Kase, J.A. Virulence gene profiles and phylogeny of Shiga toxin-positive Escherichia coli strains isolated from FDA regulated foods during 2010–2017. PLoS ONE 2019, 14, 1–26. [Google Scholar] [CrossRef]
- Nesse, L.L.; Sekse, C.; Berg, K.; Johannesen, K.C.S.; Solheim, H.; Vestby, L.K.; Urdahl, A.M. Potentially pathogenic Escherichia coli can form a biofilm under conditions relevant to the food production chain. Appl. Env. Microbiol. 2014, 80, 2042–2049. [Google Scholar] [CrossRef]
- Byrne, L.; Vanstone, G.L.; Perry, N.T.; Launders, N.; Adak, G.K.; Godbole, G.; Grant, K.A.; Smith, R.; Jenkins, C. Epidemiology and microbiology of Shiga toxin-producing Escherichia coli other than serogroup O157 in England, 2009–2013. J. Med. Microbiol. 2014, 63, 1181–1188. [Google Scholar] [CrossRef]
- Hughes, J.M.; Wilson, M.E.; Johnson, K.E.; Thorpe, C.M.; Sears, C.L. The emerging clinical importance of non-O157 Shiga toxin-producing Escherichia coli. Clin. Infect. Dis. 2006, 43, 1587–1595. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, S.; Mariani-Kurkdjian, P.; Bonacorsi, S.; Liguori, S.; Fach, P. Characteristics of emerging human-pathogenic Escherichia coli O26:H11 strains isolated in France between 2010 and 2013 and carrying the stx2d gene only. J. Clin. Microbiol. 2015, 53, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Brooks, J.T.; Sowers, E.G.; Wells, J.G.; Greene, K.D.; Griffin, P.M.; Hoekstra, R.M.; Strockbine, N.A. Non-O157 Shiga toxin–producing Escherichia coli infections in the United States, 1983–2002. J. Infect. Dis. 2005, 192, 1422–1429. [Google Scholar] [CrossRef] [PubMed]
- Paton, A.W.; Woodrow, M.C.; Doyle, R.M.; Lanser, J.A.; Paton, J.C. Molecular characterization of a Shiga toxigenic Escherichia coli O113:H21 strain lacking eae responsible for a cluster of cases of hemolytic- uremic syndrome. J. Clin. Microbiol. 1999, 37, 3357–3361. [Google Scholar] [CrossRef]
- de Souza, R.L.; Nishimura, L.S.; Guth, B.E.C. Uncommon Shiga toxin-producing Escherichia coli serotype O165:HNM as cause of hemolytic uremic syndrome in São Paulo, Brazil. Diagn. Microbiol. Infect. Dis. 2007, 59, 223–225. [Google Scholar] [CrossRef]
- Vaz, T.M.I.; Irino, K.; Nishimura, L.S.; Cecı, M.; Guth, B.E.C. Genetic heterogeneity of Shiga toxin-producing Escherichia coli strains isolated in São Paulo, Brazil, from 1976 through 2003 as revealed by pulsed-field gel electrophoresis. J. Clin. Microbiol. 2006, 44, 798–804. [Google Scholar] [CrossRef]
- Irino, K.; Vaz, T.M.; Kato, M.A.; Naves, Z.V.; Lara, R.R.; Marco, M.E.; Rocha, M.M.; Moreira, T.P.; Gomes, T.A.; Guth, B.E. O157:H7 Shiga toxin-producing Escherichia coli strains associated with sporadic cases of diarrhea in São Paulo, Brazil. Emerg. Infect. Dis. 2002, 8, 446–447. [Google Scholar] [CrossRef]
- Guth, B.E.C.; Ramos, S.R.T.S.; Cerqueira, A.M.F.; Andrade, J.R.C.; Gomes, T.A.T. Phenotypic and genotypic characteristics of Shiga toxin-producing Escherichia coli strains isolated from children in São Paulo, Brazil. Mem. Inst. Oswaldo Cruz 2002, 97, 1085–1089. [Google Scholar] [CrossRef][Green Version]
- Ori, E.L.; Takagi, E.H.; Andrade, T.S.; Miguel, B.T. Diarrhoeagenic Escherichia coli and Escherichia albertii in Brazil: pathotypes and serotypes over a 6-year period of surveillance. Epidemiol. Infect. 2018, 147, e10. [Google Scholar] [CrossRef]
- Peresi, J.T.M.; de Almeida, I.A.Z.C.; Vaz, T.M.I.; Hernandes, R.T.; de Carvalho Teixeira, I.S.; de Lima e Silva, S.I.; Graciano, R.A.S.; Pinheiro, S.R.; dos Santos, L.F. Search for diarrheagenic Escherichia coli in raw kibbe samples reveals the presence of Shiga toxin-producing strains. Food Control 2016, 63, 165–170. [Google Scholar] [CrossRef][Green Version]
- Edwards, P.R.; Ewing, W.H. Edwards and Ewing’s Identification of Enterobacteriaceae, 4th ed.; Elsevier: New York, NY, USA, 1986; 536p. [Google Scholar]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed]
- Banjo, M.; Iguchi, A.; Seto, K.; Kikuchi, T.; Harada, T.; Scheutz, F.; Iyoda, S. Escherichia coli H-genotyping PCR: A complete and practical platform for molecular H typing. J. Clin. Microbiol. 2018, 56, e00190-18. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Blanco, J.E.; Mora, A.; Dahbi, G.; Alonso, M.P.; Gonza, E.A.; Berna, M.I.; Blanco, J. Serotypes, virulence genes, and intimin types of Shiga toxin (Verotoxin)-producing Escherichia coli. J. Clin. Microbiol. 2004, 42, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Cergole-Novella, M.C.; Nishimura, L.S.; Dos Santos, L.F.; Irino, K.; Vaz, T.M.I.; Bergamini, A.M.M.; Guth, B.E.C. Distribution of virulence profiles related to new toxins and putative adhesins in Shiga toxin-producing Escherichia coli isolated from diverse sources in Brazil. Fems Microbiol. Lett. 2007, 274, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, L.F.; Irino, K.; Vaz, T.M.I.; Guth, B.E.C. Set of virulence genes and genetic relatedness of O113:H21 Escherichia coli strains isolated from the animal reservoir and human infections in Brazil. J. Med. Microbiol. 2010, 59, 634–640. [Google Scholar] [CrossRef]
- Herold, S.; Paton, J.C.; Paton, A.W. Sab, a novel autotransporter of locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli O113:H21, contributes to adherence and biofilm formation. Infect. Immun. 2009, 77, 3234–3243. [Google Scholar] [CrossRef]
- Colello, R.; Vélez, M.V.; González, J.; Montero, D.A.; Bustamante, A.V.; Del Canto, F.; Etcheverría, A.I.; Vidal, R.; Padola, N.L. First report of the distribution of locus of adhesion and autoaggregation (LAA) pathogenicity island in LEE-negative Shiga toxin-producing Escherichia coli isolates from Argentina. Microb. Pathog. 2018, 123, 259–263. [Google Scholar] [CrossRef]
- Delannoy, S.; Beutin, L.; Fach, P. Discrimination of enterohemorrhagic Escherichia coli (EHEC) from Non-EHEC strains based on detection of various combinations of Type III effector genes. J. Clin. Microbiol. 2013, 51, 3257–3262. [Google Scholar] [CrossRef]
- Delannoy, S.; Beutin, L.; Fach, P. Towards a molecular definition of enterohemorrhagic Escherichia coli (EHEC): detection of genes located on O island 57 as markers to distinguish EHEC from closely related enteropathogenic E. coli strains. J. Clin. Microbiol. 2013, 51, 1083–1088. [Google Scholar] [CrossRef][Green Version]
- Vieira, M.A.; Dos Santos, L.F.; Dias, R.C.B.; Camargo, C.H.; Pinheiro, S.R.S.; Gomes, T.A.T.; Hernandes, R.T. Atypical enteropathogenic Escherichia coli as etiologic agents of sporadic and outbreak-associated diarrhea in Brazil. J. Med. Microbiol. 2016, 998–1006. [Google Scholar] [CrossRef]
- Mercado, E.H.; Piscoche, C.; Contreras, C.; Durand, D.; Riveros, M.; Ruiz, J.; Ochoa, T.J. Pathogenicity Island O-122 in enteropathogenic Escherichia coli strains is associated with diarrhea severity in children from Lima Peru. Int. J. Med. Microbiol. 2016, 306, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Wirth, T.; Falush, D.; Lan, R.; Colles, F.; Mensa, P.; Wieler, L.H.; Karch, H.; Reeves, P.R.; Maiden, M.C.J.; Ochman, H.; et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006, 60, 1136–1151. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Wang, P.; Lan, R.; Ye, C.; Wang, H.; Ren, J.; Jing, H.; Wang, Y.; Zhou, Z.; Bai, X.; et al. A novel Escherichia coli O157:H7 clone causing a major hemolytic uremic syndrome outbreak in China. PLoS ONE 2012, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Saupe, A.; Edel, B.; Pfister, W.; Löffler, B.; Ehricht, R.; Rödel, J. Acute diarrhoea due to a Shiga toxin 2e-producing Escherichia coli O8:H19. JMM Case Rep. 2017, 4, 4–6. [Google Scholar] [CrossRef]
- Miko, A.; Rivas, M.; Bentancor, A.; Delannoy, S.; Fach, P.; Beutin, L. Emerging types of Shiga toxin-producing E. coli (STEC) O178 present in cattle, deer, and humans from Argentina and Germany. Front. Cell. Infect. Microbiol. 2014, 4, 1–14. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, J.; Ambikan, A.; Jernberg, C.; Ehricht, R.; Scheutz, F.; Xiong, Y.; Matussek, A. molecular characterization and comparative genomics of clinical hybrid Shiga toxin-producing and enterotoxigenic Escherichia coli (STEC/ETEC) strains in Sweden. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Morach, M.; Cernela, N.; Althaus, D.; Jost, M.; Mäusezahl, M.; Bloomberg, G.; Stephan, R. Serotypes and virulence profiles of Shiga toxin-producing Escherichia coli strains isolated during 2017 from human infections in Switzerland. Int. J. Med. Microbiol. 2018, 308, 933–939. [Google Scholar] [CrossRef]
- Rice, T.; Quinn, N.; Sleator, R.D.; Lucey, B. Changing diagnostic methods and increased detection of Verotoxigenic Escherichia coli, Ireland. Emerg. Infect. Dis. 2016, 22, 1656–1657. [Google Scholar] [CrossRef]
- Germinario, C.; Caprioli, A.; Giordano, M.; Chironna, M.; Gallone, M.S.; Tafuri, S.; Minelli, F.; Maugliani, A.; Michelacci, V. Community-wide outbreak of haemolytic uraemic syndrome associated with Shiga toxin 2-producing Escherichia coli O26:H11 in southern Italy, summer 2013. Euro Surveill. 2016, 21, 1–9. [Google Scholar] [CrossRef]
- Marejková, M.; Bláhová, K.; Janda, J.; Fruth, A.; Petráš, P. Enterohemorrhagic Escherichia coli as causes of hemolytic uremic syndrome in the Czech Republic. PLoS ONE 2013, 8, e73927. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Bletz, S.; Zhang, W.; Köck, R.; Kossow, A.; Prager, R.; Fruth, A.; Orth-Höller, D.; Marejková, M.; et al. Enterohemorrhagic Escherichia coli O26:H11/H-: A new virulent clone emerges in Europe. Clin. Infect. Dis. 2013, 56, 1373–1381. [Google Scholar] [CrossRef]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Wong, C.S.; Mooney, J.C.; Brandt, J.R.; Staples, A.O.; Jelacic, S.; Boster, D.R.; Watkins, S.L.; Tarr, P.I. Risk factors for the hemolytic uremic syndrome in children infected with Escherichia coli O157:H7: A multivariable analysis. Clin. Infect. Dis. 2012, 55, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.G.; Brito, J.R.F.; Gomes, T.A.T.; Guth, B.E.C.; Vieira, M.A.M.; Naves, Z.V.F.; Vaz, T.M.I.; Irino, K. Diversity of virulence profiles of Shiga toxin-producing Escherichia coli serotypes in food-producing animals in Brazil. Int. J. Food Microbiol. 2008, 127, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Vettorato, M.P.; De Castro, A.F.P.; Cergole-Novella, M.C.; Camargo, F.L.L.; Irino, K.; Guth, B.E.C. Shiga toxin-producing Escherichia coli and atypical enteropathogenic Escherichia coli strains isolated from healthy sheep of different populations in São Paulo, Brazil. Lett. Appl. Microbiol. 2009, 49, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Guth, B.E.C.; Lopes De Souza, R.; Vaz, T.M.I.; Irino, K. First Shiga toxin-producing Escherichia coli isolated from a patient with hemolytic uremic Syndrome, Brazil. Emerg. Infect. Dis. 2002, 8, 535–536. [Google Scholar] [CrossRef]
- Prager, R.; Fruth, A.; Siewert, U.; Strutz, U.; Tschäpe, H. Escherichia coli encoding Shiga toxin 2f as an emerging human pathogen. Int. J. Med. Microbiol. 2009, 299, 343–353. [Google Scholar] [CrossRef]
- Feng, P.C.H.; Delannoy, S.; Lacher, D.W.; dos Santos, L.F.; Beutin, L.; Fach, P.; Rivas, M.; Hartland, E.L.; Paton, A.W.; Guth, B.E.C. Genetic diversity and virulence potential of Shiga toxin-producing Escherichia coli O113:H21 strains isolated from clinical, environmental, and food sources. Appl. Env. Microbiol. 2014, 80, 4757–4763. [Google Scholar] [CrossRef]
- Fierz, L.; Cernela, N.; Hauser, E.; Nüesch-Inderbinen, M.; Stephan, R. Characteristics of Shigatoxin-producing Escherichia coli strains isolated during 2010–2014 from human infections in Switzerland. Front. Microbiol. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Karnisova, L.; Marejkova, M.; Hrbackova, H.; Mellmann, A.; Karch, H.; Fruth, A.; Drevinek, P.; Blahova, K.; Bielaszewska, M.; Nunvar, J. Attack of the clones: Whole genome-based characterization of two closely related enterohemorrhagic Escherichia coli O26 epidemic lineages. BMC Genom. 2018, 19, 1–12. [Google Scholar] [CrossRef]
- Mellmann, A.; Fruth, A.; Friedrich, A.W.; Wieler, L.H.; Harmsen, D.; Werber, D.; Middendorf, B.; Bielaszewska, M.; Karch, H. Phylogeny and disease association of Shiga toxin-producing Escherichia coli O91. Emerg. Infect. Dis. 2009, 15, 1474–1477. [Google Scholar] [CrossRef] [PubMed]
Strain | Year of Isolation | Clinical Condition * | Serotype | stx | eae | |
---|---|---|---|---|---|---|
stx1 | stx2 | |||||
IAL6196 | 2007 | AD | O118:H16 | a | - | β1 |
IAL6203 | 2007 | AD | O145:H34 | - | f | ι |
IAL6170 | 2007 | AD | O26:H11 | - | a | β1 |
IAL6202 | 2007 | AD | O157:H7 | - | a, c | γ1 |
IAL6162 | 2008 | AD | O26:H11 | a | - | β1 |
IAL6210 | 2008 | AD | O77:H8 | a | - | θ |
IAL6207 | 2009 | AD | O157:H7 | - | a, c | γ1 |
IAL6208 | 2009 | AD | O75:H14 | c | ND ** | - |
IAL6209 | 2010 | AD | O76:H19 | c | - | - |
IAL6206 | 2010 | AD | O24:H4 | a | - | - |
IAL6198 | 2011 | AD | OR:H25 | - | c | β1 |
IAL6201 | 2012 | AD | O100:H20 | - | e | - |
IAL6200 | 2012 | AD | O111:H8 | a | a | γ2 |
IAL6175 | 2012 | AD | O111:H8 | a | - | γ2 |
IAL6192 | 2012 | AD | O153:H21 | a | - | - |
IAL6199 | 2012 | AD | O177:H25 | - | c | β1 |
IAL6191 | 2012 | AD | O111:H8 | a | - | γ2 |
IAL6193 | 2013 | HUS | O157:H7 | - | a, c | γ1 |
IAL6189 | 2013 | AD | O24:H4 | a | - | - |
IAL6188 | 2013 | AD | O118:H16 | a | - | β1 |
IAL6186 | 2013 | AD | O103:H25 | a | - | β1 |
IAL6184 | 2013 | AD | O111:H8 | a | - | γ2 |
IAL6174 | 2013 | AD | O71:H8 | a | - | θ |
IAL6183 | 2014 | AD | O111:H8 | a | - | γ2 |
IAL6182 | 2014 | AD | O153:H28 | d | - | - |
IAL6173 | 2014 | AD | O91:H14 | a | - | - |
IAL6187 | 2014 | AD | O111:H11 | a | - | β1 |
IAL6171 | 2014 | AD | O123:H20 | a | - | β1 |
IAL6176 | 2014 | AD | O8:H19 | - | a, d | - |
IAL6204 | 2014 | AD | O145:H34 | - | f | ι |
IAL6163 | 2014 | BD | O26:H11 | a | - | β1 |
IAL6195 | 2015 | AD | ONT:H46 | - | a, d | - |
IAL6181 | 2015 | AD | O123:H2 | a | - | β1 |
IAL6179 | 2015 | HUS | O157:H7 | - | a, c | γ1 |
IAL6177 | 2015 | AD | O111:H8 | a | - | γ2 |
IAL6180 | 2015 | AD | O123:H2 | a | - | β1 |
IAL6205 | 2015 | AD | ONT:H19 | - | a, e | - |
IAL6178 | 2016 | AD | O111:H8 | a | - | γ2 |
IAL6197 | 2016 | AD | O123:H2 | a | - | β1 |
IAL6172 | 2016 | AD | O178:H19 | - | c | - |
IAL6161 | 2017 | AD | O26:H11 | - | a | β1 |
IAL6190 | 2017 | HUS | O157:H7 | - | c, d | γ1 |
IAL6185 | 2017 | AD | O163:H19 | - | d | - |
Genetic Context | Gene * | eae+ | eae− |
---|---|---|---|
pO157 | ehx | 21/30 (70%) | 5/13 (38%) |
toxB | 13/30 (43%) | 1/13 (8%) | |
katP | 18/30 (60%) | 1/13 (8%) | |
etpD | 5/30 (17%) | 0/13 | |
espP | 18/30 (60%) | 6/13 (46%) | |
pO113 | saa | 0/30 | 4/13 (31%) |
subAB | 0/30 | 1/13 (8%) | |
OI-122 | efa-1 | 26/30 (87%) | 0/13 |
nleB | 26/30 (87%) | 0/13 | |
nleE | 26/30 (87%) | 0/13 | |
sen | 20/30 (67%) | 0/13 | |
pagC | 18/30 (60%) | 3/13 (23%) | |
OI-44 | espV | 21/30 (70%) | 0/13 |
OI-48 | iha | 21/30 (70%) | 8/13 (62%) |
terE | 27/30 (90%) | 0/13 | |
ureD | 28/30 (93%) | 2/13 (15%) | |
OI-50 | espK | 26/30 (87%) | 1/13 (8%) |
espN | 26/30 (87%) | 0/13 | |
OI-71 | espM1 | 25/30 (83%) | 0/13 |
OI-57 | Z2098 | 22/30 (73%) | 0/13 |
Z2099 | 23/30 (77%) | 3/13 (23%) | |
Z2121 | 26/30 (87%) | 0/13 | |
others | estA | 0/30 | 1/13 (8%) |
cdt-V | 1/30 (3%) | 1/13 (8%) | |
astA | 0/30 | 5/13 (38%) | |
lpfO113 | 7/30 (23%) | 10/13 (78%) | |
hes | 0/30 | 2/13 (15%) |
Strain | Serotype | stx Genotype | Allelic Form of: | ||||||
---|---|---|---|---|---|---|---|---|---|
adk | fumC | gyrB | icdF | mdh | purA | recA | |||
IAL6208 | O75:H14 | 1c,2ND | 6 | 6 | 4 | 1 | 63 | 2 | 7 |
IAL6175 | O111:H8 | 1a | 6 | 41 | 12 | 16 | 9 | 7 | 12 |
IAL6199 | O177:H25 | 2c | 43 | 46 | 123 | 1 | 20 | 34 | 12 |
IAL6181 | O123:H2 | 1a | 6 | 4 | 3 | 17 | 9 | 204 | 6 |
IAL6180 | O123:H2 | 1a | 6 | 4 | 3 | 17 | 7 | 204 | 6 |
IAL6197 | O123:H2 | 1a | 514 | 4 | 12 | 16 | 9 | 7 | 7 |
IAL6171 | O123:H20 | 1a | 6 | No match * | No match | 16 | 9 | 7 | 7 |
IAL6202 | O157:H7 | 2a,2c | 12 | 12 | 8 | 12 | 15 | 31 | 2 |
IAL6179 | O157:H7 | 2a,2c | 12 | No match | 8 | 12 | 15 | 2 | 2 |
IAL6162 | O26:H11 | 1a | 16 | 4 | 12 | 16 | 23 | 7 | 7 |
IAL6204 | O145:H34 | 2f | 124 | 24 | 19 | 13 | 9 | 50 | 17 |
IAL6206 | O24:H4 | 1a | 20 | 45 | No match | 43 | 5 | 32 | 2 |
IAL6189 | O24:H4 | 1a | 20 | 4 | No match | 43 | 5 | 32 | 2 |
IAL6176 | O8:H19 | 2a,2d | 9 | 65 | 5 | 1 | 9 | No match | 6 |
IAL6170 | O26:H11 | 2a | 6 | 4 | 12 | 16 | 9 | No match | 144 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maria Ferreira Cavalcanti, A.; Tavanelli Hernandes, R.; Harummyy Takagi, E.; Ernestina Cabílio Guth, B.; de Lima Ori, É.; Regina Schicariol Pinheiro, S.; Sueli de Andrade, T.; Louzada Oliveira, S.; Cecilia Cergole-Novella, M.; Rodrigues Francisco, G.; et al. Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms 2020, 8, 171. https://doi.org/10.3390/microorganisms8020171
Maria Ferreira Cavalcanti A, Tavanelli Hernandes R, Harummyy Takagi E, Ernestina Cabílio Guth B, de Lima Ori É, Regina Schicariol Pinheiro S, Sueli de Andrade T, Louzada Oliveira S, Cecilia Cergole-Novella M, Rodrigues Francisco G, et al. Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms. 2020; 8(2):171. https://doi.org/10.3390/microorganisms8020171
Chicago/Turabian StyleMaria Ferreira Cavalcanti, Adriene, Rodrigo Tavanelli Hernandes, Elizabeth Harummyy Takagi, Beatriz Ernestina Cabílio Guth, Érica de Lima Ori, Sandra Regina Schicariol Pinheiro, Tânia Sueli de Andrade, Samara Louzada Oliveira, Maria Cecilia Cergole-Novella, Gabriela Rodrigues Francisco, and et al. 2020. "Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil" Microorganisms 8, no. 2: 171. https://doi.org/10.3390/microorganisms8020171
APA StyleMaria Ferreira Cavalcanti, A., Tavanelli Hernandes, R., Harummyy Takagi, E., Ernestina Cabílio Guth, B., de Lima Ori, É., Regina Schicariol Pinheiro, S., Sueli de Andrade, T., Louzada Oliveira, S., Cecilia Cergole-Novella, M., Rodrigues Francisco, G., & dos Santos, L. F. (2020). Virulence Profiling and Molecular Typing of Shiga Toxin-Producing E. coli (STEC) from Human Sources in Brazil. Microorganisms, 8(2), 171. https://doi.org/10.3390/microorganisms8020171