Prevention of Clostridium difficile Infection and Associated Diarrhea: An Unsolved Problem
Abstract
:1. Introduction
2. Infection Control Measures
3. Antibiotic Stewardship
4. Probiotics
5. Fecal Microbiota Transplantation
6. Active and Passive Immunization
6.1. Vaccines
6.2. Passive Immunization
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bartlett, J.G. Clostridium difficile Infection. Infect. Dis. Clin. N. Am. 2017, 31, 489–495. [Google Scholar] [CrossRef]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Center for Disease Prevention and Control. European Surveillance of Clostridioides (Clostridium) Difficile Infections. Surveillance Protocol Version 2.4. 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/clostridium-difficile-infections-EU-surveillance-protocol-vers2.4.pdf (accessed on 28 September 2020).
- Leffler, D.A.; Lamont, J.T. Editorial: Not so nosocomial anymore: The growing threat of community-acquired Clostridium difficile. Am. J. Gastroenterol. 2012, 107, 96–98. [Google Scholar] [CrossRef] [PubMed]
- Lessa, F.C.; Mu, Y.; Bamberg, W.M.; Beldavs, Z.G.; Dumyati, G.K.; Dunn, J.R.; Farley, M.M.; Holzbauer, S.M.; Meek, J.I.; Phipps, E.C.; et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Sholeh, M.; Krutova, M.; Forouzesh, M.; Mironov, S.; Sadeghifard, N.; Molaeipour, L.; Maleki, A.; Kouhsari, E. Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2020, 9, 158. [Google Scholar] [CrossRef]
- European Center for Diseease Prevention and Control. Surveillance Report. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals 2011–2012. Available online: https://www.ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/healthcare-associated-infections-antimicrobial-use-PPS.pdf (accessed on 28 September 2020).
- Bouwknegt, M.; van Dorp, S.; Kuijper, E. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 2015, 372, 2368. [Google Scholar] [CrossRef]
- Desai, K.; Gupta, S.B.; Dubberke, E.R.; Prabhu, V.S.; Browne, C.; Mast, T.C. Epidemiological and economic burden of Clostridium difficile in the United States: Estimates from a modeling approach. BMC Infect. Dis. 2016, 16, 303. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.; Gravel, D.; Mulvey, M.; Taylor, G.; Boyd, D.; Simor, A.; Gardam, M.; McGeer, A.; Hutchinson, J.; Moore, D.; et al. Health care-associated Clostridium difficile infection in Canada: Patient age and infecting strain type are highly predictive of severe outcome and mortality. Clin. Infect Dis. 2010, 50, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Lucado, J.; Gould, C.; Elixhauser, A. Clostridium Difficile Infections (CDI) in Hospital Stays, 2009: Statistical Brief #124. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2006. [Google Scholar]
- Ricciardi, R.; Rothenberger, D.A.; Madoff, R.D.; Baxter, N.N. Increasing prevalence and severity of Clostridium difficile colitis in hospitalized patients in the United States. Arch. Surg. 2007, 142, 624–631; discussion 631. [Google Scholar] [CrossRef] [Green Version]
- Kola, A.; Wiuff, C.; Akerlund, T.; van Benthem, B.H.; Coignard, B.; Lyytikäinen, O.; Weitzel-Kage, D.; Suetens, C.; Wilcox, M.H.; Kuijper, E.J.; et al. Survey of Clostridium difficile infection surveillance systems in Europe, 2011. Eurosurveillance 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Badger, V.O.; Ledeboer, N.A.; Graham, M.B.; Edmiston, C.E., Jr. Clostridium difficile: Epidemiology, pathogenesis, management, and prevention of a recalcitrant healthcare-associated pathogen. JPEN J. Parenter Enteral Nutr. 2012, 36, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S. Recurrent Clostridium difficile infection: A review of risk factors, treatments, and outcomes. J. Infect. 2009, 58, 403–410. [Google Scholar] [CrossRef]
- Zhang, D.; Prabhu, V.S.; Marcella, S.W. Attributable Healthcare Resource Utilization and Costs for Patients With Primary and Recurrent Clostridium difficile Infection in the United States. Clin. Infect. Dis. 2018, 66, 1326–1332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lytvyn, L.; Mertz, D.; Sadeghirad, B.; Alaklobi, F.; Selva, A.; Alonso-Coello, P.; Johnston, B.C. Prevention of Clostridium difficile Infection: A Systematic Survey of Clinical Practice Guidelines. Infect. Control Hosp. Epidemiol. 2016, 37, 901–908. [Google Scholar] [CrossRef]
- Dubberke, E.R.; Carling, P.; Carrico, R.; Donskey, C.J.; Loo, V.G.; McDonald, L.C.; Maragakis, L.L.; Sandora, T.J.; Weber, D.J.; Yokoe, D.S.; et al. Strategies to prevent Clostridium difficile infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 2014, 35 (Suppl. 2), S48–S65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tschudin-Sutter, S.; Kuijper, E.J.; Durovic, A.; Vehreschild, M.J.G.T.; Barbut, F.; Eckert, C.; Fitzpatrick, F.; Hell, M.; Norèn, T.; O’Driscoll, J.; et al. Guidance document for prevention of Clostridium difficile infection in acute healthcare settings. Clin. Microbiol. Infect. 2018, 24, 1051–1054. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.; Adcock, L. CADTH Rapid Response Reports. In Probiotics for Antibiotic-Associated Diarrhea and Clostridium difficile Infection: A Review of Clinical Effectiveness; Canadian Agency for Drugs and Technologies in Health 2018: Ottawa, ON, USA, 2018. [Google Scholar]
- Haber, S.L.; Raney, C.R.K.; Larson, T.L.; Lau, J.P. Fecal microbiota transplantation for recurrent Clostridioides difficile infection. Am. J. Health Syst. Pharm. 2019, 76, 935–942. [Google Scholar] [CrossRef]
- Carroll, K.C.; Mizusawa, M. Laboratory Tests for the Diagnosis of Clostridium difficile. Clin. Colon. Rectal Surg. 2020, 33, 73–81. [Google Scholar] [CrossRef]
- Shaughnessy, M.K.; Micielli, R.L.; DePestel, D.D.; Arndt, J.; Strachan, C.L.; Welch, K.B.; Chenoweth, C.E. Evaluation of hospital room assignment and acquisition of Clostridium difficile infection. Infect. Control Hosp. Epidemiol. 2011, 32, 201–206. [Google Scholar] [CrossRef]
- Chang, V.T.; Nelson, K. The role of physical proximity in nosocomial diarrhea. Clin. Infect Dis. 2000, 31, 717–722. [Google Scholar] [CrossRef]
- Clabots, C.R.; Johnson, S.; Olson, M.M.; Peterson, L.R.; Gerding, D.N. Acquisition of Clostridium difficile by hospitalized patients: Evidence for colonized new admissions as a source of infection. J. Infect Dis. 1992, 166, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Mayfield, J.L.; Leet, T.; Miller, J.; Mundy, L.M. Environmental control to reduce transmission of Clostridium difficile. Clin. Infect Dis. 2000, 31, 995–1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaier, K.; Hagist, C.; Frank, U.; Conrad, A.; Meyer, E. Two time-series analyses of the impact of antibiotic consumption and alcohol-based hand disinfection on the incidences of nosocomial methicillin-resistant Staphylococcus aureus infection and Clostridium difficile infection. Infect. Control Hosp. Epidemiol. 2009, 30, 346–353. [Google Scholar] [CrossRef] [PubMed]
- Gordin, F.M.; Schultz, M.E.; Huber, R.A.; Gill, J.A. Reduction in nosocomial transmission of drug-resistant bacteria after introduction of an alcohol-based handrub. Infect. Control Hosp. Epidemiol. 2005, 26, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Vernaz, N.; Sax, H.; Pittet, D.; Bonnabry, P.; Schrenzel, J.; Harbarth, S. Temporal effects of antibiotic use and hand rub consumption on the incidence of MRSA and Clostridium difficile. J. Antimicrob. Chemother. 2008, 62, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bobulsky, G.S.; Al-Nassir, W.N.; Riggs, M.M.; Sethi, A.K.; Donskey, C.J. Clostridium difficile skin contamination in patients with C. difficile-associated disease. Clin. Infect. Dis. 2008, 46, 447–450. [Google Scholar] [CrossRef] [Green Version]
- Wullt, M.; Odenholt, I.; Walder, M. Activity of three disinfectants and acidified nitrite against Clostridium difficile spores. Infect. Control Hosp. Epidemiol. 2003, 24, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Boyce, J.M.; Ligi, C.; Kohan, C.; Dumigan, D.; Havill, N.L. Lack of association between the increased incidence of Clostridium difficile-associated disease and the increasing use of alcohol-based hand rubs. Infect. Control Hosp. Epidemiol. 2006, 27, 479–483. [Google Scholar] [CrossRef]
- Jabbar, U.; Leischner, J.; Kasper, D.; Gerber, R.; Sambol, S.P.; Parada, J.P.; Johnson, S.; Gerding, D.N. Effectiveness of alcohol-based hand rubs for removal of Clostridium difficile spores from hands. Infect. Control Hosp. Epidemiol. 2010, 31, 565–570. [Google Scholar] [CrossRef]
- Gopal Rao, G.; Jeanes, A.; Osman, M.; Aylott, C.; Green, J. Marketing hand hygiene in hospitals--a case study. J. Hosp. Infect. 2002, 50, 42–47. [Google Scholar] [CrossRef]
- Knight, N.; Strait, T.; Anthony, N.; Lovell, R.; Norton, H.J.; Sautter, R.; Scobey, M. Clostridium difficile colitis: A retrospective study of incidence and severity before and after institution of an alcohol-based hand rub policy. Am. J. Infect. Control 2010, 38, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.E.; Fitzgerald, T.; Puumala, S.; Anderson, J.R.; Craig, R.; Iwen, P.C.; Jourdan, D.; Keuchel, J.; Marion, N.; Peterson, D.; et al. Prospective, controlled, cross-over trial of alcohol-based hand gel in critical care units. Infect. Control Hosp. Epidemiol. 2008, 29, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Jump, R.L.; Pultz, M.J.; Donskey, C.J. Vegetative Clostridium difficile survives in room air on moist surfaces and in gastric contents with reduced acidity: A potential mechanism to explain the association between proton pump inhibitors and C. difficile-associated diarrhea? Antimicrob. Agents Chemother. 2007, 51, 2883–2887. [Google Scholar] [CrossRef] [Green Version]
- Stuart, R.L.; Marshall, C.; Harrington, G.; Sasko, L.; McLaws, M.L.; Ferguson, J. ASID/ACIPC position statement-Infection control for patients with Clostridium difficile infection in healthcare facilities. Infect. Dis. Health 2019, 24, 32–43. [Google Scholar] [CrossRef]
- Dhar, S.; Marchaim, D.; Tansek, R.; Chopra, T.; Yousuf, A.; Bhargava, A.; Martin, E.T.; Talbot, T.R.; Johnson, L.E.; Hingwe, A.; et al. Contact precautions: More is not necessarily better. Infect. Control Hosp. Epidemiol. 2014, 35, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Gurses, A.P.; Seidl, K.L.; Vaidya, V.; Bochicchio, G.; Harris, A.D.; Hebden, J.; Xiao, Y. Systems ambiguity and guideline compliance: A qualitative study of how intensive care units follow evidence-based guidelines to reduce healthcare-associated infections. Qual. Saf. Health Care 2008, 17, 351–359. [Google Scholar] [CrossRef] [Green Version]
- Yanke, E.; Zellmer, C.; Van Hoof, S.; Moriarty, H.; Carayon, P.; Safdar, N. Understanding the current state of infection prevention to prevent Clostridium difficile infection: A human factors and systems engineering approach. Am. J. Infect. Control 2015, 43, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20 (Suppl. 1), 1–55. [Google Scholar] [CrossRef] [Green Version]
- Principi, N.; Esposito, S. Antimicrobial stewardship in paediatrics. BMC Infect. Dis. 2016, 16, 424. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, A.; Pasupuleti, V.; Thota, P.; Pant, C.; Rolston, D.D.; Sferra, T.J.; Hernandez, A.V.; Donskey, C.J. Community-associated Clostridium difficile infection and antibiotics: A meta-analysis. J. Antimicrob. Chemother. 2013, 68, 1951–1961. [Google Scholar] [CrossRef] [Green Version]
- Mullish, B.H.; Williams, H.R. Clostridium difficile infection and antibiotic-associated diarrhoea. Clin. Med. 2018, 18, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Elligsen, M.; Walker, S.A.; Pinto, R.; Simor, A.; Mubareka, S.; Rachlis, A.; Allen, V.; Daneman, N. Audit and feedback to reduce broad-spectrum antibiotic use among intensive care unit patients: A controlled interrupted time series analysis. Infect. Control Hosp. Epidemiol. 2012, 33, 354–361. [Google Scholar] [CrossRef]
- Fowler, S.; Webber, A.; Cooper, B.S.; Phimister, A.; Price, K.; Carter, Y.; Kibbler, C.C.; Simpson, A.J.; Stone, S.P. Successful use of feedback to improve antibiotic prescribing and reduce Clostridium difficile infection: A controlled interrupted time series. J. Antimicrob. Chemother. 2007, 59, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Frank, M.O.; Batteiger, B.E.; Sorensen, S.J.; Hartstein, A.I.; Carr, J.A.; McComb, J.S.; Clark, C.D.; Abel, S.R.; Mikuta, J.M.; Jones, R.B. Decrease in expenditures and selected nosocomial infections following implementation of an antimicrobial-prescribing improvement program. Clin. Perform. Qual. Health Care 1997, 5, 180–188. [Google Scholar]
- Gulihar, A.; Nixon, M.; Jenkins, D.; Taylor, G.J. Clostridium difficile in hip fracture patients: Prevention, treatment and associated mortality. Injury 2009, 40, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Jones, E.M.; Kirkpatrick, B.L.; Feeney, R.; Reeves, D.S.; MacGowan, A.P. Hospital-acquired Clostridium difficile diarrhoea. Lancet 1997, 349, 1176–1177. [Google Scholar] [CrossRef]
- Ludlam, H.; Brown, N.; Sule, O.; Redpath, C.; Coni, N.; Owen, G. An antibiotic policy associated with reduced risk of Clostridium difficile-associated diarrhoea. Age Ageing 1999, 28, 578–580. [Google Scholar] [CrossRef] [Green Version]
- Malani, A.N.; Richards, P.G.; Kapila, S.; Otto, M.H.; Czerwinski, J.; Singal, B. Clinical and economic outcomes from a community hospital’s antimicrobial stewardship program. Am. J. Infect. Control 2013, 41, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Carr, B. The impact of an antibiotic policy change on Clostridium difficile infection in a UK teaching hospital intensive care unit Abstracts of the Twenty-second ESICM Annual Congress. Intensive Care Med. 2009, 35, S207. [Google Scholar]
- O’Connor, K.A.; Kingston, M.; O’Donovan, M.; Cryan, B.; Twomey, C.; O’Mahony, D. Antibiotic prescribing policy and Clostridium difficile diarrhoea. QJM 2004, 97, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Price, J.; Cheek, E.; Lippett, S.; Cubbon, M.; Gerding, D.N.; Sambol, S.P.; Citron, D.M.; Llewelyn, M. Impact of an intervention to control Clostridium difficile infection on hospital- and community-onset disease; an interrupted time series analysis. Clin. Microbiol. Infect. 2010, 16, 1297–1302. [Google Scholar] [CrossRef] [Green Version]
- Cobo Reinoso, J.; Oliva Domínguez, J.; Soler Vigil, M.; Martínez-Beltrán, J.; Pedraza Cezón, L.; Moreno Guillén, S. Evaluation of an advisory program in antibiotic therapy. Rev. Clin. Esp. 2002, 202, 78–83. [Google Scholar] [CrossRef]
- Schön, T.; Sandelin, L.L.; Bonnedahl, J.; Hedebäck, F.; Wistedt, A.; Brudin, L.; Jarnheimer, P. A comparative study of three methods to evaluate an intervention to improve empirical antibiotic therapy for acute bacterial infections in hospitalized patients. Scand J. Infect. Dis. 2011, 43, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Starks, I.; Ayub, G.; Walley, G.; Orendi, J.; Roberts, P.; Maffulli, N. Single-dose cefuroxime with gentamicin reduces Clostridium difficile-associated disease in hip-fracture patients. J. Hosp. Infect. 2008, 70, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Stone, S.P.; Beric, V.; Quick, A.; Balestrini, A.A.; Kibbler, C.C. The effect of an enhanced infection-control policy on the incidence of Clostridium difficile infection and methicillin-resistant Staphyloccocus aureus colonization in acute elderly medical patients. Age Ageing 1998, 27, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Talpaert, M.J.; Gopal Rao, G.; Cooper, B.S.; Wade, P. Impact of guidelines and enhanced antibiotic stewardship on reducing broad-spectrum antibiotic usage and its effect on incidence of Clostridium difficile infection. J. Antimicrob. Chemother. 2011, 66, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.; Stevenson, M.; Williamson, D.J.; Riley, T.V. Clostridium difficile-associated diarrhea: Epidemiological data from Western Australia associated with a modified antibiotic policy. Clin. Infect. Dis. 2002, 35, 1457–1462. [Google Scholar] [CrossRef] [Green Version]
- Borde, J.P.; Litterst, S.; Ruhnke, M.; Feik, R.; Hübner, J.; deWith, K.; Kaier, K.; Kern, W.V. Implementing an intensified antibiotic stewardship programme targeting cephalosporin and fluoroquinolone use in a 200-bed community hospital in Germany. Infection 2015, 43, 45–50. [Google Scholar] [CrossRef]
- Cruz-Rodríguez, N.C.; Hernández-García, R.; Salinas-Caballero, A.G.; Pérez-Rodríguez, E.; Garza-González, E.; Camacho-Ortiz, A. The effect of pharmacy restriction of clindamycin on Clostridium difficile infection rates in an orthopedics ward. Am. J. Infect. Control 2014, 42, e71–e73. [Google Scholar] [CrossRef]
- Lübbert, C.; Schumacher, U.; Stareprawo, S.; Claus, J.; Heeß-Erler, G.; Fiebig, C.; de With, K.; Wilhelms, D.; Kekulé, A.S.; Klöss, T.; et al. Can the antibiotic prescription practice in a hospital be influenced by in-house guidelines? An interventional study at the University Hospital Halle (Saale), Germany. Dtsch. Med. Wochenschr. 2014, 139, 2578–2584. [Google Scholar] [CrossRef]
- Dubrovskaya, Y.; Papadopoulos, J.; Scipione, M.R.; Altshuler, J.; Phillips, M.; Mehta, S.A. Antibiotic stewardship for intra-abdominal infections: Early impact on antimicrobial use and patient outcomes. Infect. Control Hosp. Epidemiol. 2012, 33, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Leung, V.; Gill, S.; Sauve, J.; Walker, K.; Stumpo, C.; Powis, J. Growing a “positive culture” of antimicrobial stewardship in a community hospital. Can J. Hosp. Pharm. 2011, 64, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Cook, P.P.; Gooch, M. Long-term effects of an antimicrobial stewardship programme at a tertiary-care teaching hospital. Int. J. Antimicrob. Agents 2015, 45, 262–267. [Google Scholar] [CrossRef] [PubMed]
- McNulty, C.; Logan, M.; Donald, I.P.; Ennis, D.; Taylor, D.; Baldwin, R.N.; Bannerjee, M.; Cartwright, K.A. Successful control of Clostridium difficile infection in an elderly care unit through use of a restrictive antibiotic policy. J. Antimicrob. Chemother. 1997, 40, 707–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, A.D.; Bradham, D.D.; Baumgarten, M.; Zuckerman, I.H.; Fink, J.C.; Perencevich, E.N. The use and interpretation of quasi-experimental studies in infectious diseases. Clin. Infect. Dis. 2004, 38, 1586–1591. [Google Scholar] [CrossRef] [Green Version]
- Stone, S.P.; Cooper, B.S.; Kibbler, C.C.; Cookson, B.D.; Roberts, J.A.; Medley, G.F.; Duckworth, G.; Lai, R.; Ebrahim, S.; Brown, E.M.; et al. The ORION statement: Guidelines for transparent reporting of outbreak reports and intervention studies of nosocomial infection. Lancet Infect. Dis. 2007, 7, 282–288. [Google Scholar] [CrossRef]
- Feazel, L.M.; Malhotra, A.; Perencevich, E.N.; Kaboli, P.; Diekema, D.J.; Schweizer, M.L. Effect of antibiotic stewardship programmes on Clostridium difficile incidence: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2014, 69, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- Baur, D.; Gladstone, B.P.; Burkert, F.; Carrara, E.; Foschi, F.; Döbele, S.; Tacconelli, E. Effect of antibiotic stewardship on the incidence of infection and colonisation with antibiotic-resistant bacteria and Clostridium difficile infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2017, 17, 990–1001. [Google Scholar] [CrossRef]
- Taibi, A.; Comelli, E.M. Practical approaches to probiotics use. Appl. Physiol. Nutr. Metab. 2014, 39, 980–986. [Google Scholar] [CrossRef]
- Goldenberg, J.Z.; Yap, C.; Lytvyn, L.; Lo, C.K.; Beardsley, J.; Mertz, D.; Johnston, B.C. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst. Rev. 2017, 12, Cd006095. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Blaabjerg, S.; Artzi, D.M.; Aabenhus, R. Probiotics for the Prevention of Antibiotic-Associated Diarrhea in Outpatients-A Systematic Review and Meta-Analysis. Antibiotics 2017, 6, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, N.T.; Maw, A.; Tmanova, L.L.; Pino, A.; Ancy, K.; Crawford, C.V.; Simon, M.S.; Evans, A.T. Timely Use of Probiotics in Hospitalized Adults Prevents Clostridium difficile Infection: A Systematic Review With Meta-Regression Analysis. Gastroenterology 2017, 152, 1889–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernaya, M.; McAdam, J.; Hampton, M.D. Effectiveness of probiotics in reducing the incidence of Clostridium difficile-associated diarrhea in elderly patients: A systematic review. JBI Database Syst. Rev. Implement Rep. 2017, 15, 140–164. [Google Scholar] [CrossRef]
- Jafarnejad, S.; Shab-Bidar, S.; Speakman, J.R.; Parastui, K.; Daneshi-Maskooni, M.; Djafarian, K. Probiotics Reduce the Risk of Antibiotic-Associated Diarrhea in Adults (18–64 Years) but Not the Elderly (>65 Years): A Meta-Analysis. Nutr. Clin. Pract. 2016, 31, 502–513. [Google Scholar] [CrossRef]
- Sinclair, A.; Xie, X.; Saab, L.; Dendukuri, N. Lactobacillus probiotics in the prevention of diarrhea associated with Clostridium difficile: A systematic review and Bayesian hierarchical meta-analysis. CMAJ Open 2016, 4, E706–E718. [Google Scholar] [CrossRef] [Green Version]
- Szajewska, H.; Kołodziej, M. Systematic review with meta-analysis: Saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment. Pharmacol. Ther. 2015, 42, 793–801. [Google Scholar] [CrossRef]
- Xie, C.; Li, J.; Wang, K.; Li, Q.; Chen, D. Probiotics for the prevention of antibiotic-associated diarrhoea in older patients: A systematic review. Travel. Med. Infect. Dis. 2015, 13, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Pattani, R.; Palda, V.A.; Hwang, S.W.; Shah, P.S. Probiotics for the prevention of antibiotic-associated diarrhea and Clostridium difficile infection among hospitalized patients: Systematic review and meta-analysis. Open Med. 2013, 7, e56–e67. [Google Scholar]
- Barker, A.K.; Duster, M.; Valentine, S.; Hess, T.; Archbald-Pannone, L.; Guerrant, R.; Safdar, N. A randomized controlled trial of probiotics for Clostridium difficile infection in adults (PICO). J. Antimicrob. Chemother. 2017, 72, 3177–3180. [Google Scholar] [CrossRef]
- Barone, A.; Marchionni, F.S.; Cinquini, C.; Cipolli Panattoni, A.; Toti, P.; Marconcini, S.; Covani, U.; Gabriele, M. Antibiotic treatment to prevent postextraction complications: A monocentric, randomized clinical trial. Preliminary outcomes. Minerva Stomatol. 2017, 66, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.C.; Lytvyn, L.; Lo, C.K.; Allen, S.J.; Wang, D.; Szajewska, H.; Miller, M.; Ehrhardt, S.; Sampalis, J.; Duman, D.G.; et al. Microbial Preparations (Probiotics) for the Prevention of Clostridium difficile Infection in Adults and Children: An Individual Patient Data Meta-analysis of 6,851 Participants. Infect. Control Hosp. Epidemiol. 2018, 39, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Eiseman, B.; Silen, W.; Bascom, G.S.; Kauvar, A.J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 1958, 44, 854–859. [Google Scholar] [PubMed]
- McDonald, L.C.; Gerding, D.N.; Johnson, S. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef] [PubMed]
- Debast, S.B.; Bauer, M.P.; Kuijper, E.J. European society of clinical microbiology and infectious diseases: Update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2004, 20 (Suppl. 2), 1–26. [Google Scholar] [CrossRef] [Green Version]
- Trubiano, J.A.; Cheng, A.C.; Korman, T.M.; Roder, C.; Campbell, A.; May, M.L.A.; Blyth, C.C.; Ferguson, J.K.; Blackmore, T.K.; Riley, T.V.; et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Int. Med. J. 2016, 46, 479–493. [Google Scholar] [CrossRef] [Green Version]
- Van Nood, E.; Dijkgraaf, M.G.; Keller, J.J. Duodenal infusion of feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 2145. [Google Scholar] [CrossRef] [Green Version]
- Cammarota, G.; Masucci, L.; Ianiro, G.; Bibbò, S.; Dinoi, G.; Costamagna, G.; Sanguinetti, M.; Gasbarrini, A. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy vs. vancomycin for the treatment of recurrent Clostridium difficile infection. Aliment. Pharmacol. Ther. 2015, 41, 835–843. [Google Scholar] [CrossRef]
- Hota, S.S.; Sales, V.; Tomlinson, G.; Salpeter, M.J.; McGeer, A.; Coburn, B.; Guttman, D.S.; Low, D.E.; Poutanen, S.M. Oral vancomycin followed by fecal transplantation versus tapering oral vancomycin treatment for recurrent Clostridium difficile infection: An open-label, randomized controlled trial. Clin. Infect. Dis. 2017, 64, 265–271. [Google Scholar] [CrossRef]
- Hvas, C.L.; Jørgensen, S.M.D.; Jørgensen, S.P.; Storgaard, M.; Lemming, L.; Hansen, M.M.; Erikstrup, C.; Dahlerup, J.F. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 2019, 156, 1324–1332. [Google Scholar] [CrossRef] [Green Version]
- Youngster, I.; Sauk, J.; Pindar, C.; Wilson, R.G.; Kaplan, J.L.; Smith, M.B.; Alm, E.J.; Gevers, D.; Russell, G.H.; Hohmann, E.L. Fecal microbiota transplant for relapsing Clostridium difficile infection using a frozen inoculum from unrelated donors: A randomized, open-label, controlled pilot study. Clin. Infect. Dis. 2014, 58, 1515–1522. [Google Scholar] [CrossRef]
- Youngster, I.; Sauk, J.; Pindar, C.; Wilson, R.G.; Kaplan, J.L.; Smith, M.B.; Alm, E.J.; Gevers, D.; Russell, G.H.; Hohmann, E.L. Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: A randomized clinical trial. JAMA 2016, 315, 142–149. [Google Scholar]
- Kelly, C.R.; Khoruts, A.; Staley, C.; Sadowsky, M.J.; Abd, M.; Alani, M.; Bakow, B.; Curran, P.; McKenney, J.; Tisch, A.; et al. Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: A randomized trial. Ann. Int. Med. 2016, 165, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Z.D.; Ajami, N.J.; Petrosino, J.F.; Jun, G.; Hanis, C.L.; Shah, M. Randomised clinical trial: Faecal microbiota transplantation for recurrent Clostridum difficile infection-fresh, or frozen, or lyophilised microbiota from a small pool of healthy donors delivered by colonoscopy. Aliment. Pharmacol. Ther. 2017, 45, 899–908. [Google Scholar] [CrossRef] [Green Version]
- Kao, D.; Roach, B.; Silva, M.; Beck, P.; Rioux, K.; Kaplan, G.G.; Chang, H.J.; Coward, S.; Goodman, K.J.; Xu, H.; et al. Effect of oral capsule- vs colonoscopy-delivered fecal microbiota transplantation on recurrent Clostridium difficile infection: A randomized clinical trial. JAMA 2017, 318, 1985–1993. [Google Scholar] [CrossRef] [Green Version]
- Ianiro, G.; Masucci, L.; Quaranta, G.; Simonelli, C.; Lopetuso, L.R.; Sanguinetti, M. Randomised clinical trial: Faecal microbiota transplantation by colonoscopy plus vancomycin for the treatment of severe refractory Clostridium difficile infection-single versus multiple infusions. Aliment. Pharmacol. Ther. 2018, 48, 152–159. [Google Scholar] [CrossRef]
- Tan, X.; Johnson, S. Fecal microbiota transplantation (FMT) for C. difficile infection, just say ‘No’. Anaerobe 2019, 60, 102092. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Fecal Microbiota for Transplantation: Safety Alert-Risk of Serious Adverse Events Likely Due to Transmission of Pathogenic Organisms. Available online: https://www.fda.gov/safety/medical-product-safety-information/fecal-microbiota-transplantation-safety-alert-risk-serious-adverse-events-likely-due-transmission (accessed on 28 September 2020).
- Aktories, K.; Schwan, C.; Jank, T. Clostridium difficile toxin biology. Ann. Rev. Microbiol. 2017, 71, 281–307. [Google Scholar] [CrossRef] [PubMed]
- Katchar, K.; Taylor, C.P.; Tummala, S.; Chen, X.; Sheikh, J.; Kelly, C.P. Association between IgG2 and IgG3 subclass responses to toxin A and recurrent Clostridium difficile-associated disease. Clin. Gastroenterol. Hepatol. 2007, 5, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Kyne, L.; Warny, M.; Qamar, A.; Kelly, C.P. Association between antibody response to toxin A and protection against recurrent Clostridium difficile diarrhoea. Lancet 2001, 357, 189–193. [Google Scholar] [CrossRef]
- Kyne, L.; Warny, M.; Qamar, A.; Kelly, C.P. Asymptomatic carriage of Clostridium difficile and serum levels of IgG antibody against toxin A. N. Engl. J. Med. 2000, 342, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Leav, B.A.; Blair, B.; Leney, M.; Knauber, M.; Reilly, C.; Lowy, I.; Gerding, D.N.; Kelly, C.P.; Katchar, K.; Baxter, R.; et al. Serum anti-toxin B antibody correlates with protection from recurrent Clostridium difficile infection (CDI). Vaccine 2010, 28, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Lowy, I.; Molrine, D.C.; Leav, B.A.; Blair, B.M.; Baxter, R.; Gerding, D.N.; Nichol, G.; Thomas, W.D., Jr.; Leney, M.; Sloan, S.; et al. Treatment with monoclonal antibodies against Clostridium difficile toxins. N. Engl. J. Med. 2010, 362, 197–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, J.; Sponseller, J.; Schmidt, D.; Cohen, O.; Tzipori, S. Hyperimmune bovine colostrum for treatment of GI infections: A review and update on Clostridium difficile. Hum. Vaccin Immunother. 2013, 9, 1565–1568. [Google Scholar] [CrossRef] [Green Version]
- De Bruyn, G.; Saleh, J.; Workman, D.; Pollak, R.; Elinoff, V.; Fraser, N.J.; Lefebvre, G.; Martens, M.; Mills, R.E.; Nathan, R.; et al. Defining the optimal formulation and schedule of a candidate toxoid vaccine against Clostridium difficile infection: A randomized Phase 2 clinical trial. Vaccine 2016, 34, 2170–2178. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, O.; Patel, D.M.; Sasaki, S.; Oka, H.; Sasaki, T.; Pietrobon, P.J.; Laot, T.; Bouckenooghe, A.; Menezes, J.; de Bruyn, G. Safety and immunogenicity of Clostridium difficile toxoid vaccine in Japanese adults. Hum. Vaccin Immunother. 2018, 14, 322–328. [Google Scholar] [CrossRef]
- Sanofi. Sanofi Ends Development of Clostridium Difficile Vaccine. Available online: https://www.sanofi.com/en/media-room/press-releases/2017/2017-2012-2001-2022-2000-2000 (accessed on 3 January 2020).
- Donald, R.G.K.; Flint, M.; Kalyan, N.; Johnson, E.; Witko, S.E.; Kotash, C.; Zhao, P.; Megati, S.; Yurgelonis, I.; Lee, P.K.; et al. A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology 2013, 159, 1254–1266. [Google Scholar] [CrossRef]
- Sheldon, E.; Kitchin, N.; Peng, Y.; Eiden, J.; Gruber, W.; Johnson, E.; Jansen, K.U.; Pride, M.W.; Pedneault, L. A phase 1, placebo-controlled, randomized study of the safety, tolerability, and immunogenicity of a Clostridium difficile vaccine administered with or without aluminum hydroxide in healthy adults. Vaccine 2016, 34, 2082–2091. [Google Scholar] [CrossRef]
- Kitchin, N.; Remich, S.A.; Peterson, J.; Peng, Y.; Gruber, W.C.; Jansen, K.U.; Pride, M.W.; Anderson, A.S.; Knirsch, C.; Webber, C. A Phase 2 Study Evaluating the Safety, Tolerability, and Immunogenicity of Two 3-Dose Regimens of a Clostridium difficile Vaccine in Healthy US Adults Aged 65 to 85 Years. Clin. Infect. Dis. 2020, 70, 1–10. [Google Scholar] [CrossRef]
- Phetcharaburanin, J.; Hong, H.A.; Colenutt, C.; Bianconi, I.; Sempere, L.; Permpoonpattana, P.; Smith, K.; Dembek, M.; Tan, S.; Brisson, M.C.; et al. The spore-associated protein BclA1 affects the susceptibility of animals to colonization and infection by Clostridium difficile. Mol. Microbiol. 2014, 92, 1025–1038. [Google Scholar] [CrossRef]
- Ghose, C.; Eugenis, I.; Edwards, A.N.; Sun, X.; McBride, S.M.; Ho, D.D. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 2016, 37, 85–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-González, F.; Milano, M.; Olguin-Araneda, V.; Pizarro-Cerda, J.; Castro-Córdova, P.; Tzeng, S.C.; Maier, C.S.; Sarker, M.R.; Paredes-Sabja, D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J. Proteom. 2015, 123, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Barra-Carrasco, J.; Olguín-Araneda, V.; Plaza-Garrido, A.; Miranda-Cárdenas, C.; Cofré-Araneda, G.; Pizarro-Guajardo, M.; Sarker, M.R.; Paredes-Sabja, D. The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J. Bacteriol. 2013, 195, 3863–3875. [Google Scholar] [CrossRef] [Green Version]
- Permpoonpattana, P.; Phetcharaburanin, J.; Mikelsone, A.; Dembek, M.; Tan, S.; Brisson, M.C.; La Ragione, R.; Brisson, A.R.; Fairweather, N.; Hong, H.A.; et al. Functional characterization of Clostridium difficile spore coat proteins. J. Bacteriol. 2013, 195, 1492–1503. [Google Scholar] [CrossRef] [Green Version]
- Babcock, G.J.; Broering, T.J.; Hernandez, H.J.; Mandell, R.B.; Donahue, K.; Boatright, N.; Stack, A.M.; Lowy, I.; Graziano, R.; Molrine, D.; et al. Human monoclonal antibodies directed against toxins A and B prevent Clostridium difficile-induced mortality in hamsters. Infect. Immun. 2006, 74, 6339–6347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, J.; Mukherjee, J.; Parry, N.; Tzipori, S. Antibody against TcdB, but not TcdA, prevents development of gastrointestinal and systemic Clostridium difficile disease. J. Infect. Dis. 2013, 207, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, M.H.; Gerding, D.N.; Poxton, I.R.; Kelly, C.; Nathan, R.; Birch, T.; Cornely, O.A.; Rahav, G.; Bouza, E.; Lee, C.; et al. Bezlotoxumab for Prevention of Recurrent Clostridium difficile Infection. N. Engl. J. Med. 2017, 376, 305–317. [Google Scholar] [CrossRef]
- Johnson, S.; Gerding, D.N. Bezlotoxumab. Clin. Infect. Dis. 2019, 68, 699–704. [Google Scholar] [CrossRef]
- Food and Drug Administration. Center for Drug Evaluation and Research Application Number: 761046 Orig1s000 Labeling. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/761046Orig1s000Lbl.pdf (accessed on 13 March 2020).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zinplava#authorisation-details-section (accessed on 13 March 2020).
- Heidebrecht, H.J.; Weiss, W.J.; Pulse, M.; Lange, A.; Gisch, K.; Kliem, H.; Mann, S.; Pfaffl, M.W.; Kulozik, U.; von Eichel-Streiber, C. Treatment and Prevention of Recurrent Clostridium difficile Infection with Functionalized Bovine Antibody-Enriched Whey in a Hamster Primary Infection Model. Toxins 2019, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Mattila, E.; Anttila, V.J.; Broas, M.; Marttila, H.; Poukka, P.; Kuusisto, K.; Pusa, L.; Sammalkorpi, K.; Dabek, J.; Koivurova, O.P.; et al. A randomized, double-blind study comparing Clostridium difficile immune whey and metronidazole for recurrent Clostridium difficile-associated diarrhoea: Efficacy and safety data of a prematurely interrupted trial. Scand J. Infect. Dis. 2008, 40, 702–708. [Google Scholar] [CrossRef]
Strategy | Action |
---|---|
Infection control measures | Prompt identification of patients with suspected CDI Isolation of suspected and documented cases Disinfection of the patient’s room and objects Use of contact isolation measures such as gloves and gowns |
Antibiotic stewardship | Implementation of programmes for the optimization of antibiotic use, is considered one of the most important measures to reduce the selection of host microbiota and the emergence of antimicrobial-resistant bacteria. |
Probiotics | Administration of bacteria that confer a health benefit when ingested could reconstitute normal gut microbiota composition and suppress CD colonization in patients given antimicrobial drugs |
Active immunization | Toxin-based CD vaccine Vaccine based on a recombinant fusion protein comprising relevant epitopes of CD toxins Vaccine based on components of CD spores Vaccine based on the structural components of the exosporium layer of pathogen spores |
Passive immunization | Monoclonal antibodies against CD toxins A (actoxumab) and B (bezlotoxumab) Oral administration of hyperimmune whey derived from colostrum or mature milk of cows immunized to obtain secretory immunoglobulin A against the two toxins, A and B, as well as CD |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Principi, N.; Gnocchi, M.; Gagliardi, M.; Argentiero, A.; Neglia, C.; Esposito, S. Prevention of Clostridium difficile Infection and Associated Diarrhea: An Unsolved Problem. Microorganisms 2020, 8, 1640. https://doi.org/10.3390/microorganisms8111640
Principi N, Gnocchi M, Gagliardi M, Argentiero A, Neglia C, Esposito S. Prevention of Clostridium difficile Infection and Associated Diarrhea: An Unsolved Problem. Microorganisms. 2020; 8(11):1640. https://doi.org/10.3390/microorganisms8111640
Chicago/Turabian StylePrincipi, Nicola, Margherita Gnocchi, Martina Gagliardi, Alberto Argentiero, Cosimo Neglia, and Susanna Esposito. 2020. "Prevention of Clostridium difficile Infection and Associated Diarrhea: An Unsolved Problem" Microorganisms 8, no. 11: 1640. https://doi.org/10.3390/microorganisms8111640
APA StylePrincipi, N., Gnocchi, M., Gagliardi, M., Argentiero, A., Neglia, C., & Esposito, S. (2020). Prevention of Clostridium difficile Infection and Associated Diarrhea: An Unsolved Problem. Microorganisms, 8(11), 1640. https://doi.org/10.3390/microorganisms8111640