The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019)
Abstract
:1. Introduction
2. Study Design
3. Results
3.1. Phenotypic Evaluation
3.1.1. Escherichia coli
3.1.2. Enterococcus spp.
3.1.3. Klebsiella pneumoniae
3.2. Genotypic Evaluation
3.3. Wastewater Treatment Processes
4. Summary, Knowledge Gaps, and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Global Action Plan on Antimicrobial Resistance; WBHO: Geneva, Switzerland, 2015. [Google Scholar]
- Carvalho, I.T.; Santos, L. Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef] [PubMed]
- European Commission. A European One-Health Action Plan against Antimicrobial Resistance (AMR); European Commission: Brussels, Belgium, 2017. [Google Scholar]
- World Health Organization. Antimicrobial Resistance. Available online: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (accessed on 5 April 2020).
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in the United States; US Department of Health and Human Services: Washington, DC, USA; CDC: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 2 April 2020).
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. In Review on Antimicrobial Resistance; Wellcome Collection: London, UK, 2014. [Google Scholar]
- Ahmed, S.A.; Bariş, E.; Go, D.S.; Lofgren, H.; Osorio-Rodarte, I.; Thierfelder, K. Assessing the global economic and poverty effects of antimicrobial resistance. World Dev. 2018, 111, 148–160. [Google Scholar] [CrossRef]
- Nikaido, H. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 1994, 264, 382–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, G.; Wright, G.D. Intrinsic antibiotic resistance: Mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 2013, 303, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Sefton, A.M. Mechanisms of antimicrobial resistance. Drugs 2002, 62, 557–566. [Google Scholar] [CrossRef]
- Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef]
- World Health Organization. Report on Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 9 April 2020).
- Fouz, N.; Pangesti, K.N.A.; Yasir, M.; Al-Malki, A.L.; Azhar, E.I.; Hill-Cawthorne, G.A.; Abd El Ghany, M. The Contribution of Wastewater to the Transmission of Antimicrobial Resistance in the Environment: Implications of Mass Gathering Settings. Trop. Med. Infect. Dis. 2020, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Wellington, E.M.; Boxall, A.B.; Cross, P.; Feil, E.J.; Gaze, W.H.; Hawkey, P.M.; Johnson-Rollings, A.S.; Jones, D.L.; Lee, N.M.; Otten, W.; et al. The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect. Dis. 2013, 13, 155–165. [Google Scholar] [CrossRef]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.; Gyssens, I.; Heuer, O.E.; et al. The global threat of antimicrobial resistance: Science for intervention. New Microbes New Infect. 2015, 6, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.R.; Stedtfeld, R.D.; Guo, X.; Hashsham, S.A. Antimicrobial Resistance in the Environment. Water Environ. Res. 2016, 88, 1951–1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekizuka, T.; Inamine, Y.; Segawa, T.; Hashino, M.; Yatsu, K.; Kuroda, M. Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan. Environ. Microbiol. Rep. 2019, 11, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, M.; Reynnells, R. Importance of soil amendments: Survival of bacterial pathogens in manure and compost used as organic fertilizers. Microbiol. Spectr. 2016, 4, 1–13. [Google Scholar]
- Menz, J.; Olsson, O.; Kümmerer, K. Antibiotic residues in livestock manure: Does the EU risk assessment sufficiently protect against microbial toxicity and selection of resistant bacteria in the environment? J. Hazard. Mater. 2019, 379, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob. Resist. Infect. Control 2019, 8, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, C.; Tay, M.; Tan, B.; Le, T.H.; Haller, L.; Chen, H.; Koh, T.H.; Barkham, T.M.S.; Gin, K.Y.H. Characterization of metagenomes in urban aquatic compartments reveals high prevalence of clinically relevant antibiotic resistance genes in wastewaters. Front. Microbiol. 2017, 8, 2200. [Google Scholar] [CrossRef] [Green Version]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-resistance genes in wastewater. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, L.; Fiorentino, A.; Anselmo, A. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains. Chemosphere 2013, 92, 171–176. [Google Scholar] [CrossRef]
- Larsson, D.G.J. Antibiotics in the environment. Upsala J. Med. Sci. 2014, 119, 108–112. [Google Scholar] [CrossRef]
- De Giglio, O.; Napoli, C.; Lovero, G.; Diella, G.; Rutigliano, S.; Caggiano, G.; Montagna, M.T. Antibiotic susceptibility of Legionella pneumophila strains isolated from hospital water systems in Southern Italy. Environ. Res. 2015, 142, 586–590. [Google Scholar] [CrossRef] [Green Version]
- De Giglio, O.; Caggiano, G.; Apollonio, F.; Marzella, A.; Brigida, S.; Ranieri, E.; Lucentini, L.; Uricchio, V.F.; Montagna, M.T. The aquifer recharge: An overview of the legislative and planning aspect. Ann Ig 2018, 30, 34–43. [Google Scholar]
- Mao, D.; Yu, S.; Rysz, M.; Luo, Y.; Yang, F.; Li, F.; Hou, J.; Mu, Q.; Alvarez, P.J. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015, 85, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Ohlsen, K.; Ternes, T.; Werner, G.; Wallner, U.; Löffler, D.; Ziebuhr, W.; Witte, W.; Hacker, J. Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ. Microbiol. 2003, 8, 711–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Haberecht, H.B.; Nealon, N.J.; Gilliland, J.R.; Holder, A.V.; Runyan, C.; Oppel, R.C.; Ibrahim, H.M.; Mueller, L.; Schrupp, F.; Vilchez, S.; et al. Antimicrobial-Resistant Escherichia coli from Environmental Waters in Northern Colorado. J. Environ. Public Health 2019, 2019, 3862949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe 2018; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Gazzetta Ufficiale. Decreto Legislativo 3 Aprile 2006, n. 152 “Norme in Materia Ambientale”. Gazzetta Ufficiale n. 88 del 14 Aprile 2006—Supplemento Ordinario n. 96; Gazzetta Ufficiale: Rome, Italy, 2006. [Google Scholar]
- Corno, G.; Yang, Y.; Eckert, E.M.; Fontaneto, D.; Fiorentino, A.; Galafassi, S.; Zhang, T.; Di Cesare, A. Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. Water Res. 2019, 158, 72–81. [Google Scholar] [CrossRef]
- Fiorentino, A.; Di Cesare, A.; Eckert, E.M.; Rizzo, L.; Fontaneto, D.; Yang, Y.; Corno, G. Impact of Industrial Wastewater on the Dynamics of Antibiotic Resistance Genes in a Full-Scale Urban Wastewater Treatment Plant. Sci. Total Environ. 2019, 646, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Subirats, J.; Di Cesare, A.; Della Giustina, S.V.; Fiorentino, A.; Eckert, E.M.; Rodriguez-Mozaz, S.; Borrego, C.M.; Corno, G. High-quality Treated Wastewater Causes Remarkable Changes in Natural Microbial Communities and intI1 Gene Abundance. Water Res. 2019, 167, 114895. [Google Scholar] [CrossRef]
- Di Cesare, A.; Eckert, E.M.; D’Urso, S.; Bertoni, R.; Gillan, D.C.; Wattiez, R.; Corno, G. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. Water Res. 2016, 94, 208–214. [Google Scholar] [CrossRef]
- Di Cesare, A.; Fontaneto, D.; Doppelbauer, J.; Corno, G. Fitness and Recovery of Bacterial Communities and Antibiotic Resistance Genes in Urban Wastewaters Exposed to Classical Disinfection Treatments. Environ. Sci. Technol. 2016, 50, 10153–10161. [Google Scholar] [CrossRef]
- Turolla, A.; Cattaneo, M.; Marazzi, F.; Mezzanotte, V.; Antonelli, M. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading. Chemosphere 2018, 191, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Zanotto, C.; Bissa, M.; Illiano, E.; Mezzanotte, V.; Marazzi, F.; Turolla, A.; Antonelli, M.; De Giuli Morghen, C.; Radaelli, A. Identification of antibiotic-resistant Escherichia coli isolated from a municipal wastewater treatment plant. Chemosphere 2016, 164, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Piccirilli, A.; Pompilio, A.; Rossi, L.; Segatore, B.; Amicosante, G.; Rosatelli, G.; Perilli, M.; Di Bonaventura, G. Identification of CTX-M-15 and CTX-M-27 in antibiotic-resistant Gram-negative bacteria isolated from three rivers running in Central Italy. Microb. Drug Resist. 2019, 25, 1041–1049. [Google Scholar] [CrossRef] [PubMed]
- Perilli, M.; Bottoni, C.; Pontieri, E.; Segatore, B.; Celenza, G.; Setacci, D.; Bellio, P.; Strom, R.; Amicosante, G. Emergence of blaKPC-3–Tn4401a in Klebsiella pneumoniae ST512 in the municipal wastewater treatment plant and in the university hospital of a town in central Italy. J. Glob. Antimicrob. Resist. 2013, 1, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, C.; Celenza, G.; Segatore, B.; Bellio, P.; Setacci, D.; Amicosante, G.; Perilli, M. Occurrence of Class 1 and 2 Integrons in Resistant Enterobacteriaceae Collected from a Urban Wastewater Treatment Plant: First Report from Central Italy. Microb. Drug Resist. 2011, 2, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ferro, G.; Guarino, F.; Castiglione, S.; Rizzo, L. Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process. Sci. Total Environ. 2016, 560–561, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Della Sala, A.; Fiorentino, A.; Li Puma, G. Disinfection of urban wastewater by solar driven and UV lamp—TiO2 photocatalysis: Effect on a multi drug resistant Escherichia coli strain. Water Res. 2014, 53, 145–152. [Google Scholar] [CrossRef]
- Rizzo, L.; Fiorentino, A.; Anselmo, A. Effect of solar radiation on multidrug resistant E. coli strains and antibiotic mixture photodegradation in wastewater polluted stream. Sci. Total Environ. 2012, 427–428, 263–268. [Google Scholar] [CrossRef]
- Fiorentino, A.; Ferro, G.; Alferez, M.C.; Polo-Lopez, M.I.; Fernandez-Ibanez, P.; Rizzo, L. Inactivation and regrowth of multidrug resistant bacteria in urban wastewater after disinfection by solar-driven and chlorination processes. J. Photoch. Photobio. B 2015, 148, 43–50. [Google Scholar] [CrossRef]
- Fiorentino, A.; De Luca, G.; Rizzo, L.; Viccione, G.; Lofrano, G.; Carotenuto, M. Simulating the fate of indigenous antibiotic resistant bacteria in a mild slope wastewater polluted stream. Int. J. Environ. Sci. 2017, 69, 95–104. [Google Scholar] [CrossRef]
- Russo, N.; Pinoa, A.; Toscano, A.; Cirellia, G.L.; Caggia, C.; Ariolic, S.; Randazzo, C.L. Occurrence, diversity, and persistence of antibiotic resistant enterococci in full-scale constructed wetlands treating urban wastewater in Sicily. Bioresour. Technol. 2019, 274, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment Territory. Ministerial Decree of June 12, 2003. No. 185: Regulations on Technical Standards for Reuse Wastewater, OJ No. 169 of 23/07/2003; Ministry of Environment Territory: Roma, Italy, 2003. [Google Scholar]
- Bouki, C.; Venieri, D.; Diamadopoulos, E. Detection and fate of antibiotic resistant bacteria in wastewater treatment plants: A review. Ecotoxicol. Environ. Saf. 2013, 91, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.J.; Micalizzi, G.B.; Graham, G.M.; Bates, J.B.; Costanzo, S.D. Antibiotic-resistant Escherichia coli in wastewaters, surface waters, and oysters from an urban riverine system. Appl. Environ. Microbiol. 2007, 73, 5667–5670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Han, B.; Gu, J.; Wang, C.; Wang, P.; Ma, Y.; Cao, J.; He, Z. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. Chemosphere 2015, 135, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, L.; Gernjak, W.; Krzeminski, P.; Malato, S.; McArdell, C.S.; Sanchez Perez, J.A.; Schaar, H.; Fatta-Kassinos, D. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020, 25, 136312. [Google Scholar] [CrossRef]
- Soller, J.A.; Eftim, S.E.; Nappier, S.P. Direct potable reuse microbial risk assessment methodology: Sensitivity analysis and application to state log credit allocations. Water Res. 2017, 128, 286–292. [Google Scholar] [CrossRef]
- Ding, N.; Chang, X.; Shi, N.; Yin, X.; Qi, F.; Sun, Y. Enhanced inactivation of antibiotic-resistant bacteria isolated from secondary effluents by g-C3N4 photocatalysis. Environ. Sci. Pollut. Res. Int. 2019, 18, 18730–18738. [Google Scholar] [CrossRef]
- Ivankovic, T.; Dikic, J.; Rolland du Roscoat, S.; Dekic, S.; Hrenovic, J.; Ganjto, M. Removal of emerging pathogenic bacteria using metal-exchanged natural zeolite bead filter. Water Sci. Technol. 2019, 6, 1085–1098. [Google Scholar] [CrossRef]
- Zhang, H.C.; Zhang, M.Q.; Yuan, L.; Zhang, X.; Sheng, G.P. Synergistic Effect of Permanganate and in Situ Synthesized Hydrated Manganese Oxide for Removing Antibiotic Resistance Genes from Wastewater Treatment Plant Effluent. Environ. Sci. Technol. 2019, 22, 13374–13381. [Google Scholar] [CrossRef]
- Montagna, M.T.; Triggiano, F.; Barbuti, G.; Bartolomeo, N.; De Giglio, O.; Diella, G.; Lopuzzo, M.; Rutigliano, S.; Serio, G.; Caggiano, G. Study on the In Vitro Activity of Five Disinfectants against Nosocomial Bacteria. Int. J. Environ. Res. Public Health 2019, 16, 1895. [Google Scholar] [CrossRef] [Green Version]
References | Wastewater Location | Disinfection Treatment | Studied Bacteria | Resistance Genes | Main Outcomes |
Corno G. et al., 2019 [34] | Verbania, Cannobio, Novara (Piemonte) | chlorine in Verbania, peracetic acid in Cannobio, UV radiation in Novara | Resistome of the bacterial communities | The release of uncontrolled dilutions of effluents into surface water represents a potential threat to the environment. | |
Fiorentino A. et al., 2019 [35] | Cannobio (Piemonte) | peracetic acid | tetA, sul2, ermB, qnrS and class 1 integron (intI1) | The overall removal efficiencies in terms of absolute gene concentrations were 9% (intI1), 10% (tetA), 14% (sul2), 8% (qnrS), and 8% (ermB). | |
Subirats J. et al. 2019 [36] | Verbania (Piemonte) | chlorine | blaTEM, blaCTX-M, blaOXA and blaKPC, qnrS, tetA, sulII, ermB, arsB and czcA, and class 1 integron (intI1) | The use of high-quality treated wastewater for agricultural purposes can cause changes in natural microbial communities and resistance genes. | |
Di Cesare A. et al., 2016 [37] | Verbania, Cannobio, Novara (Piemonte) | chlorine in Verbania, peracetic acid in Cannobio, UV radiation in Novara | tetA, sulII, blaTEM, blaCTXM, ermB, qnrS and class 1 integron (intI1) | Removal efficiencies in terms of absolute gene concentrations were 97% (chlorine treatment), 85% (UV radiation) and 84% (peracetic acid treatment). | |
Di Cesare A., et al. 2016 [38] | Verbania, Cannobio, Novara (Piemonte) | chlorine in Verbania, peracetic acid in Cannobio, UV radiation in Novara | tetA, ermB, blaTEM, qnrS, and class 1 integron (intI1) | Peracetic acid and chlorine disinfection promote the selection of ARGs and horizontal gene transfer. | |
Turolla A. et al., 2018 [39] | Milano (Lombardia) | chlorine, UV radiation, peracetic acid | E. coli | Different influence of various disinfectants on resistant E.coli | |
Zanotto C. et al., 2016 [40] | Milano (Lombardia) | peracetic acid | E. coli | bla and cat | Peracetic acid was very effective in reducing E.coli. |
Piccirilli A. et al., 2019 [41] | L’Aquila (Abruzzo) | E. coli | blaKPC, blaTEM, blaSHV, blaCTX-M, blaOXA-48, blaOXA-23, blaAmpC, blaVIM, blaIMP, blaNDM, blaCphA | The presence of AMR bacteria and resistance genes highlight the poor efficacy of biological and chemical-physical processes in treatment plants. | |
Perilli M. et al. 2013 [42] | L’Aquila (Abruzzo) | K. pneumoniae | blaKPC, blaOXA-48, blaNDM, blaVIM, blaIMP, blaTEM, blaSHV, blaCTX-M and class 1 integron (intI1) | Both environmental and clinical K. pneumoniae showed a multidrug resistant phenotype and the presence of some mobile genetic elements. | |
References | Wastewater Location | Disinfection Treatment | Studied Bacteria | Resistance Genes | Main Outcomes |
Pellegrini C. et al., 2011 [43] | L’Aquila (Abruzzo) | chlorine | E. coli K. pneumoniae | Class 1 and 2 integron | Presence of Enterobacteriaceae carrying class 1 and 2 integrons. |
Ferro G. et al., 2016 [44] | Salerno (Campania) | UV/H2O2 process | E. coli | blaTEM, qnrS, tetW | The UV/H2O2 process may not be an effective disinfection process to limit the spread of ARGs. |
Rizzo L. et al., 2014 [45] | Salerno (Campania) | Comparison among simulated TiO2 solar photocatalysis (SSP) and the natural solar photocatalytic process (SP) | E. coli | Total inactivation of E. coli after 60 min total irradiaton time was observed for SSP, while SP process did not result in total bacteria inactivation. | |
Rizzo L. et al., 2013 [24] | Salerno (Campania) | Comparison among chlorine and UV radiation | E. coli | UV radiation treatment has an effect on antibiotics and E. coli strains after 60 min of irradiation compared to 120 min chlorine contact. | |
Rizzo L. et al., 2012 [46] | Salerno (Campania) | Comparison among chlorine and solar radiation | E. coli | Solar radiation resulted in poor inactivation compared to the chlorination process. | |
Fiorentino A. et al., 2015 [47] | Salerno (Campania) | Comparison among H2O2/sunlight, TiO2/sunlight, H2O2/TiO2/sunlight, solar photo-Fenton and chlorine | E. coli | Among the innovative processes, treatments with H2O2/TiO2/sunlight and H2O2/sunlight have shown good efficacy. | |
Fiorentino A. et al., 2017 [48] | Salerno (Campania) | Solar radiation | E. coli Enterococci | Approximately 1 log inactivation of resistant E. coli and Enterococci after 4 h solar radiation. | |
Russo N. et al., 2019 [49] | San Michele di Ganzaria (Sicilia) | Enterococci | WWTP do not completely eliminate resistant Enterococci. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triggiano, F.; Calia, C.; Diella, G.; Montagna, M.T.; De Giglio, O.; Caggiano, G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019). Microorganisms 2020, 8, 1567. https://doi.org/10.3390/microorganisms8101567
Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019). Microorganisms. 2020; 8(10):1567. https://doi.org/10.3390/microorganisms8101567
Chicago/Turabian StyleTriggiano, Francesco, Carla Calia, Giusy Diella, Maria Teresa Montagna, Osvalda De Giglio, and Giuseppina Caggiano. 2020. "The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019)" Microorganisms 8, no. 10: 1567. https://doi.org/10.3390/microorganisms8101567
APA StyleTriggiano, F., Calia, C., Diella, G., Montagna, M. T., De Giglio, O., & Caggiano, G. (2020). The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010–2019). Microorganisms, 8(10), 1567. https://doi.org/10.3390/microorganisms8101567