Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions
Abstract
:1. Introduction
2. “No Antibiotics Ever” Broiler Production
3. Challenges in NAE Production
3.1. Gut Health
3.2. Coccidiosis
3.3. Housing and Environment
3.3.1. Litter and Litter Moisture
3.3.2. Ammonia and Respiratory Issues
3.4. Selective Breeding and Lowered Immunity
4. Avian Pathogenic Escherichia coli
4.1. Serotypes
4.2. Colibacillosis
4.3. Virulence Factors
4.4. APEC in NAE
5. C. perfringens
5.1. Necrotic Enteritis and Gangrenous Dermatitis
5.2. Toxinogroups and Virulence Genes
5.3. C. perfringens in NAE
6. Disease Prevention Strategies in NAE
6.1. Vaccination
6.1.1. APEC Vaccines
6.1.2. C. perfringens Vaccines
6.1.3. Coccidia Vaccines
6.2. Probiotics and Prebiotics
6.3. Biosecurity
6.4. Housing and Environment Management
6.5. Other Methods
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- NASS; USDA. Poultry—Production and Value: 2018 Summary; NASS; USDA: Washington, DC, USA, 2019.
- Wade, B.; Keyburn, A. The true cost of necrotic enteritis. World Poult. 2015, 31, 16–17. [Google Scholar]
- FDA. Guidance for Industry #209: The Judicious Use of Medically Important Antimicrobial Drugs in Food-producing Animals; FDA: Montgomery, MD, USA, 2012.
- FDA. Guidance for Industry #213: New Animal Drugs and New Animal Drug Combination Products Administered in or on Medicated Feed or Drinking Water of Food-producing Animals: Recommendations for Drug Sponsors for Voluntarily Aligning Product Use Conditions with GFI #209; FDA: Montgomery, MD, USA, 2013.
- Johnson, T.J.; Wannemuehler, Y.; Doetkott, C.; Johnson, S.J.; Rosenberger, S.C.; Nolan, L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence used for rapid diagnostic tool. J. Clin. Microbiol. 2008, 46, 3987–3996. [Google Scholar] [CrossRef] [Green Version]
- Dziva, F.; Stevens, M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skinner, J.T.; Bauer, S.; Young, V.; Pauling, G.; Wilson, J. An economic analysis of the Impact of subclinical (mild) necrotic enteritis in broiler chickens. Avian Dis. 2010, 54, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef]
- Opengart, K. Necrotic enteritis. In Diseases of Poultry, 12th ed.; Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., Eds.; Blackwell Publishing: Ames, IA, USA, 2008; pp. 872–879. [Google Scholar]
- McReynolds, J.L.; Byrd, J.A.; Anderson, R.C.; Moore, R.W.; Edrington, T.S.; Genovese, K.J. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis. Poult. Sci. 2004, 83, 1948–1952. [Google Scholar] [CrossRef] [PubMed]
- Van Immerseel, F.; De Buck, J.; Pasmans, F.; Huyghebaert, G.; Haesebrouck, F.; Ducatelle, R. Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol. 2004, 33, 537–549. [Google Scholar] [CrossRef] [PubMed]
- NASS; USDA. Poultry—Production and Value; 2019 Summary; NASS; USDA: Washington, DC, USA, 2020.
- Tabler, T.; Wells, J. Economic Impact of Mississippi’s Poultry Industry; MS Extension Mississippi State: Indianola, MS, USA, 2017; pp. 1–8. [Google Scholar]
- FDA. Antimicrobials Sold or Distributed for Use in Food-producing Animals; FDA: Montgomery, MD, USA, 2009.
- Danzeisen, J.L.; Kim, H.B.; Isaacson, R.E.; Tu, Z.J.; Johnson, T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, 11. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M.; Agerso, Y.; Gerner-Smidt, P.; Madsen, M.; Jensen, L.B. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 2000, 37, 127–137. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Seyfarth, A.M.; Emborg, H.D.; Pederson, K.; Hendriksen, R.S.; Badger, F. Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicob. Agents. Chemother. 2001, 45, 2054–2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, T.; Harada, K.; Ishihara, K.; Kojima, A.; Sameshima, T.; Tamura, Y.; Takahashi, T. Association of antimicrobial resistance in Campylobacter isolated from food-producing animals with antimicrobial use of farms. Jpn. J. Infect. Dis. 2007, 60, 290–294. [Google Scholar]
- McDermott, P.F.; Zhao, S.; Wagner, D.D.; Simjee, S.; Walker, R.D.; White, D.G. The food safety perspective of antibiotic resistance. Anim. Biotechnol. 2002, 13, 71–84. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, C.L.; Letellier, A.; Quessy, S.; Boulianne, M.; Daignault, D.; Archambault, M. Multiple-antibiotic resistance of Enterococcus faecalis and Enterococcus faecium from cecal contents in broiler chicken and turkey flocks slaughtered in Canada and plasmid colocalization of tetO and ermB genes. J. Food Prot. 2011, 74, 1639–1648. [Google Scholar] [CrossRef]
- White, D.G.; Zhao, S.; Simjee, S.; Wagner, D.D.; McDermott, P.F. Antimicrobial resistance of foodborne pathogens. Microbes. Infect. 2002, 4, 405–412. [Google Scholar] [CrossRef]
- Ritter, G.D.; Acuff, G.R.; Bergeron, G.; Bourassa, M.W.; Chapman, B.J.; Dickson, J.S.; Opengart, K.; Salois, M.J.; Singer, R.S.; Storrs, C. Antimicrobial-resistant bacterial infections from foods of animal origin: Understanding and effectively communicating to consumers. Ann. N.Y. Acad. Sci. 2019, 1441, 40–49. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Engster, H.M.; Marvil, D.; Stewart-Brown, B. The effect of withdrawing growth promoting antibiotics from broiler chickens: A long-term commercial industry study. J. Applied. Poult. Res. 2002, 11, 431–436. [Google Scholar] [CrossRef]
- Sun, X.; McElroy, A.; Webb, K.E.; Sefton, A.E.; Novak, C. Broiler performance and intestinal alterations when fed drug-free diets. Poult. Sci. 2005, 84, 1294–1302. [Google Scholar] [CrossRef]
- Newman, L. New strategies in coccidiosis control to meet customer demands. Int. Poult. Prod. 2018, 26, 15–17. [Google Scholar]
- Poultry Health Today. 2019. Available online: https://poultryhealthtoday.com/discrepancies-emerge-between-animal-welfareand-consumer-perceptions/ (accessed on 30 January 2019).
- Tabler, T.; Liang, Y.; Moon, J.; Wells, J. NAE Production Challenges Poultry Industry on Several Fronts; Mississippi State University: Starkville, MS, USA, 2020; Volume 3428, pp. 1–4. [Google Scholar]
- Salois, M. The Cost of Broiler Welfare Standard. 2017 Chicken Marketing Summit; Elanco: Greenfield, IN, USA, 2017; GMABRLNON00638. [Google Scholar]
- Gaucher, M.-L.; Quessy, S.; Letellier, A.; Arsenault, J.; Boulianne, M. Impact of a drug-free program on broiler chicken growth performances, gut health, Clostridium perfringens and Campylobacter jejuni occurrences at the farm level. Poult. Sci. 2015, 94, 1791–1801. [Google Scholar] [CrossRef]
- Anderson, D.B.; McCracken, V.J.; Aminov, R.I.; Simpson, J.M.; Mackie, R.I.; Vestegen, M.W.A.; Gaskins, H.R. Gut microbiology and growth-promoting antibiotics in swine. PigNews Inf. 1999, 20, 115N–122N. [Google Scholar]
- Gaskins, H.R.; Collier, C.T.; Anderson, D.B. Antibiotics as growth promotants: Mode of action. Anim. Biotechnol. 2002, 13, 29–42. [Google Scholar] [CrossRef]
- Pourabedin, M.; Guan, L.; Zhao, X. Xylo-oligosaccharides and virginiamycin differentially modulate gut microbial composition in chickens. Microbiome 2015, 3, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, K.; Uwiera, R.R.E.; Kalmokoff, M.L.; Brooks, S.P.J.; Inglis, G.D. Antimicrobial growth promoter use in livestock: A requirement to understand their modes of action to develop effective alternatives. Int. J. Antimicrob. Agents. 2017, 49, 12–24. [Google Scholar] [CrossRef]
- O’hara, A.M.; Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 2006, 7, 688–693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Mauer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiom. FEMS Microb. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef]
- Whelan, R.; Doranalli, K.; Rinttilä, T.; Vienola, K.; Jurgens, G.; Apajalahti, J. The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge. Poult. Sci. 2019, 98, 3450–3463. [Google Scholar] [CrossRef] [PubMed]
- Martins da Costa, P.; Oliveira, M.; Bica, A.; Vaz-Pires, P.; Bernardo, F. Antimicrobial resistance in Enterococcus spp., and Escherichia coli isolated from poultry feed and feed ingredients. Vet. Microl. 2006, 120, 122–131. [Google Scholar]
- Choct, M.; Hughes, R.J.; Trimble, R.P.; Angkanaporn, K.; Annison, G. Non-starch polysaccharide-degrading enzymes increase the performance of broiler chickens fed wheat of low apparent metabolizable energy. J. Nutr. 1995, 125, 485–492. [Google Scholar] [CrossRef]
- Murphy, T.C.; Mccracken, J.K.; McCann, M.E.E.; George, J.; Bedford, M.R. Broiler performance and in vivo viscosity as influenced by a range of xylanases, varying in ability to effect wheat in vitro viscosity. Br. Poult. Sci. 2009, 50, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Choct, M.; Hughes, R.J.; Wang, J.; Bedford, M.R.; Morgan, A.J.; Annison, G. Increased small intestinal fermentation is partly responsible for the anti-nutritive activity of non-starch polysaccharides in chickens. Br. Poult. Sci. 1996, 37, 609–621. [Google Scholar] [CrossRef] [PubMed]
- Truscott, R.B.; Al-Sheikly, F. Reproduction and treatment of necrotic enteritis in broilers. Am. J. Vet. Res. 1977, 38, 857–861. [Google Scholar]
- Gholamiandehkordi, A.R.; Timbermont, L.; Lanckriet, A.; Broeck, W.V.D.; Pederson, K.; Dewulf, J.; Pasmans, F.; Haesebrouck, F.; Ducatelle, R.; Van Immerseel, F. Quantification of gut lesions in a subclinical necrotic enteritis model. Avian Path. 2007, 36, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bourassa, D.V.; Wilson, K.M. Antibiotic-free Production and Broiler Chicken Meat Safety. Food Safety Magazine. Available online: https://www.foodsafetymagazine.com/magazine-archive1/octobernovember-2018/antibiotic-free-production-and-broiler-chicken-meat-safety/ (accessed on 7 April 2020).
- Van Immerseel, F.; Rood, J.I.; Moore, R.J.; Titball, R.W. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol. 2009, 17, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef]
- De Gussem, M. Coccidiosis in poultry: Review on diagnosis, control, prevention and interaction with overall gut health. 16th Eur. Symp. Poult. Nutr. 2007, 253–261. [Google Scholar]
- Shirley, M.W.; Smith, A.L.; Tomley, F.M. The Biology of Avian Eimeria with an Emphasis on their Control by Vaccination. Adv. Parasitol. 2005, 60, 285–330. [Google Scholar]
- Ganapathy, K.; Salamat, M.H.; Lee, C.C.; Johara, M.Y. Concurrent occurrence of salmonellosis, colibacillosis and histomoniasis in a broiler flock fed with antibiotic-free commercial feed. Avian Pathol. 2000, 29, 639–642. [Google Scholar] [CrossRef] [PubMed]
- Yahav, S.; Goldfeld, S.; Plavnik, I.; Hurwitz, S. Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. J. Therm.Biol. 1995, 20, 245–253. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.F.; Jiao, H.C.; Zhao, T.; Sui, S.J.; Zhang, Z.Y.; Buyse, J.; Decuypere, E. Thermoregulation responses of broiler chickens to humidity at different ambient temperatures. I. One Week of Age. Poult. Sci. 2005, 84, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Sandercock, D.A.; Hunter, R.R.; Nute, G.R.; Mitchell, M.A.; Hocking, P.M. Acute heat stress-induced alterations in blood acid-base status and skeletal muscle mem-brane integrity in broiler chickens at two ages: Implications for meat quality. Poult. Sci. 2001, 80, 418–425. [Google Scholar] [CrossRef]
- Yalĉin, S.; Ozkan, S.; Türkmut, L.; Siegel, P.B. Responses to heat stress in commercial and local broiler stocks. Br. Poult. Sci. 2001, 42, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Wei, H.; Bi, Y.; Wang, Y.; Zhao, P.; Zhang, R.; Li, X.; Li, J.; Bao, J. Pre-cold acclimation improves the immune function of trachea and resistance to cold stress in broilers. J. Cell Physiol. 2018, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.Q.; Zhang, Z.W.; Qu, J.P.; Yao, H.D.; Li, M.; Li, S.; Xu, S.W. Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 2014, 19, 635–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, K.L.; Rothroc, M.J., Jr.; Eiteman, M.A.; Lovanh, N.; Sistani, K. Evaluation of nitrogen retention and microbial populations in poultry litter treated with chemical, biological or adsorbent amendments. J. Environ. Manage. 2011, 92, 1760–1766. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.M.; Brooks, J.P.; Sistani, K. Spatial contrasts of seasonal and intraflock broiler litter trace gas emissions, physical and chemical properties. J. Environ. Qual. 2011, 40, 176–187. [Google Scholar] [CrossRef]
- Stanley, V.G.; Gray, C.; Daley, M.; Krueger, W.F.; Sefton, A.E. An alternative to antibiotic-based drugs in feed for enhancing performance of broilers grown on Eimeria spp.-infected litter. Poult. Sci 2004, 83, 39–44. [Google Scholar] [CrossRef]
- Wadud, S.; Michaelsen, A.; Gallagher, E.; Parcsi, G.; Zemb, O.; Stuetz, R.; Manefield, M. Bacterial and fungal community composition over time in chicken litter with high or low moisture content. Br. Poult. Sci. 2012, 53, 561–569. [Google Scholar] [CrossRef]
- Dumas, M.D.; Polson, S.W.; Ritter, D.; Ravel, J.; Gelb, J.; Morgan, R.; Wommack, K.E. Impacts of poultry house environment on poultry litter bacterial community composition. PLoS ONE 2011, 6, e24785. [Google Scholar] [CrossRef] [Green Version]
- van der Hoeven-Hangoor, E.; Paton, N.D.; van de Linde, I.B.; Verstegen, M.W.A.; Hendriks, W.H. Moisture content in broiler excreta is influenced by excreta nutrient contents. J. Anim. Sci. 2013, 91, 5705–5713. [Google Scholar]
- Collett, S.R. Nutrition and wet litter problems in poultry. Anim. Feed Sci. Technol. 2012, 173, 65–75. [Google Scholar]
- Schrader, J.S.; Singer, R.S.; Atwill, E.R. A prospective study of management and litter variables associated with cellulitis in California broiler flocks. Avian Dis. 2004, 48, 522–530. [Google Scholar] [CrossRef]
- Shepherd, E.M.; Fairchild, B.D. Footpad dermatitis in poultry. Poult. Sci. 2010, 89, 2043–2051. [Google Scholar] [CrossRef]
- Eriksson de Rezende, C.L.; Mallinson, E.T.; Tablante, N.L.; Morales, R.; Park, A. Effect of dry litter and airflow in reducing Salmonella and Escherichia coli populations in the broiler production environment. J. Appl. Poult. Res. 2001, 10, 245–251. [Google Scholar] [CrossRef]
- Wei, S.; Gutek, A.; Lilburn, M.; Yu, Z. Abundance of pathogens in the gut and litter of broiler chickens as affected by bacitracin and litter management. Vet. Micro. 2013, 166, 593–601. [Google Scholar]
- Kaukonen, E.; Norring, M.; Valros, A. Effect of litter quality on foot pad dermatitis, hock burns and breast blisters in broiler breeders during the production period. Avian Pathol. 2016, 45, 667–673. [Google Scholar] [CrossRef] [Green Version]
- Taira, K.; Nagai, T.; Obi, T.; Takase, K. Effect of litter moisture on the development of footpad dermatitis in broiler chickens. J. Vet. Med. Sci. 2014, 76, 583–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilkinson, K.G.; Tee, E.; Tomkins, R.B.; Hepworth, G.; Premier, R. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult. Sci. 2011, 90, 10–18. [Google Scholar] [CrossRef]
- De Jong, I.C.; Gunnink, H.; van Harn, J. Wet litter not only induces footpad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. J. Appl. Poult. Res. 2014, 23, 51–58. [Google Scholar]
- Salois, M.J.; Baker, K.T.; Watkons, K.L. The impact of antibiotic-free production on broiler chicken health: An econometric analysis. In Proceedings of the 2016 Southern Agricultural Economic Association Annual Meeting, San Antonio, TX, USA, 6–9 February 2019. [Google Scholar]
- Oyetunde, O.O.F.; Thomson, R.G.; Carlson, H.C. Aerosol exposure of ammonia, dust and Escherichia coli in broiler chickens. Can. Vet. J. 1978, 19, 187–193. [Google Scholar]
- Ellen, H.; Doleghs, B.; Zoons, J. Influence of air humidity on dust concentration in broiler houses. In Proceedings of the International Symposium on “Dust Control in Animal Production Facilities”, Scandinavian Congress Center, Aarhus, Denmark, 30 May–2 June 1999; pp. 41–47. [Google Scholar]
- Aarnink, A.J.A.; Roelofs, P.F.M.M.; Ellen, H.; Gunnink, H. Dust sources in animal houses. In Proceedings of the International Symposium on “Dust Control in Animal Production Facilities”, Scandinavian Congress Center, Aarhus, Denmark, 30 May–2 June 1999; pp. 34–40. [Google Scholar]
- Johnson, T.J.; Youmans, B.P.; Noll, S.; Cardona, C.; Evans, N.P.; Karnezos, T.P.; Ngunjiri, J.M.; Abundo, M.C.; Lee, C.-W. A consistent and predictable commercial broiler chicken bacterial microbiota in antibiotic-free production displays strong correlations with performance. Appl. Env. Microbiol. 2018, 84, e00362-18. [Google Scholar] [CrossRef] [Green Version]
- Poroyko, V.; Meng, F.; Meliton, A.; Afonyushkin, T.; Ulanov, A.; Semenyuk, E. Alterations of lung microbiota in a mouse model of LPS-induced lung injury. Am. J. Physiol. Lung. Cell Mol. Physiol. 2015, 309, L76–L83, pmid:2595729. [Google Scholar]
- Havenstein, G.B.; Ferket, P.R.; Qureshi, M.A. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 2003, 82, 1500–1508. [Google Scholar] [CrossRef]
- Zuidhof, M.J.; Schneider, B.L.; Carney, V.L.; Korver, D.R.; Robinson, F.E. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 2014, 93, 2970–2982. [Google Scholar] [CrossRef]
- Opengart, K.; Songer, G. Necrotic enteritis. In Disease of Poultry, 13th ed.; Swayne, D.E., Ed.; Wiley- Blackwell: Ames, IA, USA, 2013; pp. 4492–4513. [Google Scholar]
- Yunis, R.; Ben-David, A.; Heller, E.D.; Cahaner, A. Immunocompetence and viability under commercial conditions of broiler groups differing in growth rate and in antibody response to Escherichia coli vaccine. Poult. Sci 2000, 79, 810–816. [Google Scholar] [CrossRef]
- Maatman, R.; Gross, W.B.; Dunnington, E.A.; Larsen, A.S.; Siegel, P.B. Growth, immune response and behavior of broiler and Leghorn cockerels fed different methionine levels. Arch. FüR GeflüGelkunde 1993, 57, 249–256. [Google Scholar]
- Rao, S.V.R.; Praharaj, N.K.; Panda, A.K.; Reddy, M.R. Interaction between genotype and dietary concentrations of methionine for immune function in commercial broilers. Br. Poult. Sci. 2003, 44, 104–112. [Google Scholar] [CrossRef]
- Lumpkins, B.S.; Batal, A.B.; Lee, M.D. Evaluation of the bacterial community and intestinal development of different genetic lines of chickens. Poult. Sci. 2010, 89, 1614–1621. [Google Scholar] [PubMed]
- Siegel, P.B.; Larsen, C.T.; Emmerson, D.A.; Gereart, P.-A.; Picard, M. Feeding regimen, dietary vitamin E, and genotype influences on immunological and production traits of broilers. J. Applied. Poult. Res. 2000, 9, 269–278. [Google Scholar] [CrossRef]
- Siegel, P.B.; Blair, M.; Gross, W.B.; Meldrum, B.; Larsen, C.; Boa-Amponsem, K.; Emmerson, D.A. Poult prformance as influenced by age of dam, genetic line, and dietary vitamin E. Poult. Sci. 2006, 85, 939–942. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.I.; Lillehoj, H.S.; Lee, S.H.; Lee, K.W.; Lillehoj, E.P. Relative disease susceptibility and clostridial toxin antibody responses in three commercial broiler lines coinfected with Clostridium perfringens and Eimeria maxima using an experimental model of necrotic enteritis. Avian Dis. 2013, 57, 684–687. [Google Scholar] [PubMed]
- Leitner, G.; Heller, E.D. Colonisation of Escherichia coli in young turkeys and chickens. Avian Dis. 1992, 36, 211–220. [Google Scholar] [PubMed]
- Harry, E.G.; Hemsley, L.A. The association between the presence of septicaemia strains of Escherichia coli in the respiratory and intestinal tracts of chickens and the occurrence of coli septicaemia. Vet. Rec. 1965, 77, 35–40. [Google Scholar] [PubMed]
- Vandekerchove, D.; De Herdt, P.; Laevens, H.; Pasmans, F. Colibacillosis in caged layer hens: Characteristics of the disease and the aetiological agent. Avian Pathol. 2004, 33, 117–125. [Google Scholar] [CrossRef]
- Johnson, J.R.; Johnston, B.; Clabots, C.; Kuskowski, M.A.; Castanheira, M. Escherichia coli sequence type ST131 as the major cause of serious multidrug-resistant E. coli infections in the United States. Clin. Inf. Dis. 2010, 51, 286–294. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Fakhr, M.K.; Nolan, L.K. Comparison of Escherichia coli isolates implicated in human urinary tract infection and avian colibacillosis. Microbiology 2005, 151, 2097–2110. [Google Scholar]
- Skyberg, J.A.; Johnson, T.J.; Johnson, J.R.; Clabots, C.; Logue, C.M.; Nolan, L.K. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chick embryos, grow in human urine, and colonize the murine kidney. Infect. Immun. 2006, 74, 6287–6292. [Google Scholar]
- Tivendale, K.A.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.; Wannemuehler, Y.; Nolan, L.K. Avian-pathogenic Escherichia coli strains are similar to neonatal meningitis E. coli strains and are able to cause meningitis in the rat model of human disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar]
- Joensen, K.G.; Tetzschner, A.M.M.; Iguchi, A.; Aarestrup, F.M.; Scheutz, F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 2015, 53, 2410–2426. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, F.; Ørskov, I. Serotyping of Escherichia coli. Methods Microbiol. 1984, 14, 43–112. [Google Scholar]
- Scheutz, F.; Cheasty, T.; Woodward, D.; Smith, H.R. Designation of O174 and O175 to temporary O groups OX3 and OX7, and six new E. coli O groups that include verocytotoxin-producing E. coli (VTEC): O176, O177, O178, O179, O180 and O181. APMIS 2004, 112, 569–584. [Google Scholar] [CrossRef]
- Cloud, S.S.; Rosenberger, J.K.; Fries, P.A.; Wilson, R.A.; Odor, E.M. In vitro and in vivo characterization of avian Escherichia coli I Serotypes, metabolic activity, and antibiotic sensitivity. Avian Dis. 1985, 29, 1084–1093. [Google Scholar] [PubMed]
- Gross, W.G. Diseases due to Escherichia coli in Poultry; Gylcs, C.L., Ed.; Domestic Animals and Man; CAB International: Wallingford, UK, 1994; pp. 237–259. [Google Scholar]
- Whittam, T.S.; Wilson, R.A. Genetic relationships among pathogenic strains of avian Escherichia coli. Infect. Immun. 1988, 56, 2458–2466. [Google Scholar] [PubMed]
- Ewers, C.; Janssen, T.; Kiessling, S.; Philipp, H.C.; Wieler, L.H. Molecular epidemiology of avian pathogenic Escherichia coli (APEC) isolated from colisepticemia in poultry. Vet. Micro. Biol. 2004, 104, 91–101. [Google Scholar]
- Ewers, C.; Janßen, T.; Kießling, S.; Philipp, H.C.; Wieler, L.H. Rapid detection of virulence-associated genes in avian pathogenic Escherichia coli by multiplex polymerase chain reaction. Avian Dis. 2005, 49, 269–273. [Google Scholar] [PubMed]
- Fancher, C.; Thames, H.; Easterling, A.; Nuthalapati, N.; Zhang, L.; Kiess, A.; Dinh, T.; Sukumaran, A. Influence of season and age of flock on the virulence gene profiles of Escherichia coli isolates from no antibiotics ever commercial broiler farms and their antibiotic susceptibility. In Proceedings of the 2020 International Poultry Science Forum, Georgia World Congress Center, Atlanta, GA, USA, 27–28 January 2020; pp. 46–47. [Google Scholar]
- Nolan, L.K.; Barnes, H.J.; Vaillancourt, J.P.; Abdul-Aziz, T.; Logue, C.M. Colibacillosis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; John Wiley & Sons: New York, NY, USA, 2013; pp. 751–805. [Google Scholar]
- Hornitzsky, M.A.; Mercieca, K.; Bettelheim, K.A.; Djordjevic, S.P. Bovine feces from animals with gastrointestinal infections are a source of serologically diverse atypical enteropathogenic Escherichia coli and shiga toxin-producing E. coli strains that commonly possess intimin. App. Env. Microbiol. 2005, 71, 3405–3412. [Google Scholar]
- Pourbakhsh, S.A.; Boulianne, M.; Martineau-Doize, B.; Dozois, C.M.; Desautels, C.; Fairbrother, J.M. Dynamics of Escherichia coli infection in experimentally inoculated chickens. Avian Dis. 1997, 41, 221–233. [Google Scholar]
- Stearns, R.C.; Barnas, G.M.; Walski, M.; Brain, J.D. Deposition and phagocytosis of inhaled particles in the gas exchange region of the duck, Anas. platyrhynchos. Respir. Physiol. 1987, 67, 23–36. [Google Scholar] [PubMed]
- Smith, J.A. Experiences with drug-free broiler production. Poult. Sci. 2011, 90, 2670–2678. [Google Scholar] [PubMed]
- Doetkott, D.M.; Nolan, L.K.; Giddings, C.W.; Berryhill, L.D. Large plasmids of avian Escherichia coli isolates. Avian Dis. 1996, 40, 927–930. [Google Scholar] [PubMed]
- Mokady, D.; Gophna, U.; Ron, E.Z. Virulence factors of septicemic Escherichia coli strains. Int. J. Med. Microbiol. 2005, 295, 455–462. [Google Scholar] [PubMed]
- Droula, R.; Woolcock, P.R. Swollen head syndrome associated with E. coli and infectious bronchitis virus in the Central Valley of California. Avian Path. 1994, 23, 733–742. [Google Scholar]
- Uzal, F.A.; Freedman, J.C.; Shrestha, A.; Theoret, J.R.; Garcia, J.; Awad, M.M. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiol. 2014, 9, 361–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keto-Timonen, R.; Heikinheimo, A.; Eerola, E.; Korkeala, H. Identification of Clostridium Species and DNA fingerprinting of Clostridium perfringens by amplified fragment length polymorphism analysis. J. Clinical. Micro. 2006, 44, 4057–4065. [Google Scholar]
- Novak, J.S.; Juneja, V.K.; McClane, B.A. An ultrastructural comparison of spores from various strains of Clostridium perfringens and correlations with heat resistance parameters. Intern. J. Food Microl. 2003, 86, 239–247. [Google Scholar]
- Prescott, J.F.; Parreira, V.R.; Mehdizadeh Gohari, I.; Lepp, D.; Gong, J. The pathogenesis of necrotic enteritis in chickens: What we know and what we need to know: A review. Avian Pathol. 2016, 45, 288–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Remus, A.; Hauschild, L.; Andretta, I.; Kipper, M.; Lehnen, C.R.; Sakomura, N.K. A meta-analysis of the feed intake and growth performance of broiler chickens challenged by bacteria. Poult. Sci. 2014, 93, 1149–1158. [Google Scholar] [PubMed]
- Lee, K.W.; Lillehoj, H.S.; Jeong, W.; Jeoung, H.Y.; An, D.J. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult. Sci. 2011, 90, 1381–1390. [Google Scholar]
- Craven, S.E.; Stern, N.J.; Bailey, J.S.; Cox, N.A. Incidence of Clostridium perfringens in broiler chickens and their environment during production and processing. Avian Dis. 2001, 45, 887–896. [Google Scholar]
- Craven, S.E.; Cox, N.A.; Bailey, J.S.; Cosby, D.E. Incidence and tracking of Clostridium perfringens through an integrated broiler chicken operation. Avian Dis. 2003, 47, 707–711. [Google Scholar] [PubMed]
- Engstrom, B.E.; Fermer, C.; Lindberg, A.; Saarinen, E.; Baverud, V.; Gunnarsson, A. Molecular typing of isolates of Clostridium perfringens from healthy and diseased poultry. Vet. Microbiol. 2003, 94, 225–235. [Google Scholar] [CrossRef]
- Gholamiandehkordi, A.R.; Ducatelle, R.; Heyndrickx, M.; Haesebrouck, F.; Van Immerseel, F. Molecular and phenotypical characterization of Clostridium perfringens isolates from poultry flocks with different disease status. Vet. Micro. 2006, 113, 143–152. [Google Scholar] [CrossRef]
- Ficken, M.; Wages, D. Necrotic enteritis. In Disease of Poultry, 10th ed.; Calnex, B.W., Ed.; Iowa State University Press: Ames, IA, USA, 1997; p. 261e4. [Google Scholar]
- Brennan, J.; Skinner, J.; Barnum, D.A.; Wilson, J. The efficacy of bacitracin methylene disalicylate when fed in combination with narasin in the management of necrotic enteritis in broiler chickens. Poult. Sci. 2003, 82, 360–363. [Google Scholar] [PubMed]
- Wilder, T.D.; Barbaree, J.M.; Macklin, K.S.; Norton, R.A. Differences in the pathogenicity of various bacterial isolates used in an induction model for gangrenous dermatitis in broiler chickens. Avian Dis. 2001, 45, 659–662. [Google Scholar]
- Willoughby, D.H.; Bickford, A.A.; Cooper, G.L.; Charlton, B.R. Periodic recurrence of gangrenous dermatitis associated with Clostridium septicum in a broiler chicken operation. J. Vet. Diagn. Investig. 1996, 8, 59–261. [Google Scholar]
- Kaul, M.; Tanwani, S.K.; Sharda, R. Preliminary studies on bacterin against gangrenous dermatitis. Indian Vet. 2001, 78, 282–288. [Google Scholar]
- Shivaprasad, H.L. Gangrenous dermatitis in poultry. In Clostridial Diseases of Animals; Uzal, F.A., Ed.; Wiley-Blackwell: Ames, IA, USA, 2016; pp. 255–264. [Google Scholar]
- Clark, S.; Porter, R.; McComb, B.; Lippert, R.; Olson, S.; Nohner, S.; Shivaprasad, H.L. Clostridial dermatitis and cellulitis: An emerging disease on turkeys. Avian Dis. 2010, 54, 788–794. [Google Scholar] [CrossRef]
- Hoerr, F. Clinical aspects of immunosuppression in poultry. Avian Dis. 2010, 54, 2–15. [Google Scholar] [PubMed] [Green Version]
- Opengart, K. Gangrenous dermatitis. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley-Blackwell: Ames, IA, USA, 2013; pp. 957–960. [Google Scholar]
- Gornatt-Churria, C.; Crispo, M.; Shivaprasad, H.L.; Uzal, F.A. Gangrenous dermatitis in chickens and turkeys. J. Vet. Diagnostic Invest. 2018, 30, 188–196. [Google Scholar]
- Schlegel, B.J.; Nowell, V.J.; Parreira, V.R.; Soltes, G.; Prescott, J.F. Toxin-associated and other genes in Clostridium perfringens type A isolates from bovine clostridial abomasitis (BCA) and jejunal hemorrhage syndrome (JHS). Can. J. Vet. Res. 2012, 76, 248–254. [Google Scholar]
- Yoo, H.S.; Lee, S.U.; Park, K.Y.; Park, Y.H. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. J. Clin. Microbiol. 1997, 35, 228–232. [Google Scholar]
- Yang, W.Y.; Chou, C.H.; Wang, C. Characterization of toxin genes and quantitative analysis of netB in necrotic enteritis (NE)-producing and non-NE-producing Clostridium perfringens isolated from chickens. Anaerobe 2018, 54, 115–120. [Google Scholar]
- Revitt-Mills, S.A.; Rood, J.I.; Adams, V. Clostridium perfringens extracellular toxins and enzymes: 20 and counting. Microbiol. Aust. 2015, 36, 114–117. [Google Scholar]
- Myers, G.S.; Rasko, D.A.; Cheung, J.K.; Ravel, J.; Seshadri, R.; DeBoy, R.T.; Ren, Q.; Varga, J.; Awad, M.M.; Brinkac, L.M.; et al. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res. 2006, 16, 1031–1040. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Ohtani, K.; Hirakawa, H.; Ohshima, K.; Yamashita, A.; Shiba, T.; Ogasawara, N.; Hattori, M.; Kuhara, S.; Hayashi, H. Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc. Natl. Acad. Sci. USA 2002, 99, 996–1001. [Google Scholar]
- Brynestad, S.; Granum, P.E. Clostridium perfringens and foodborne infections. Int. J. Food Microbiol. 2002, 74, 195–202. [Google Scholar]
- Petit, L.; Gibert, M.; Popoff, M.R. Clostridium perfringens: Toxinotype and genotype. Trends Microbiol. 1999, 7, 104–110. [Google Scholar]
- Flores-Diaz, M.; Alape-Giron, A. Role of Clostridium perfringens phospholipase C in the pathogenesis of gas gangrene. Toxicon 2003, 42, 979–986. [Google Scholar] [PubMed]
- Awad, M.M.; Bryant, A.E.; Stevens, D.L.; Rood, J.I. Virulence studies on chromosomal alpha-toxin and theta toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol. Microbiol. 1995, 15, 191–202. [Google Scholar]
- Stevens, D.L.; Titball, R.W.; Jepson, M.; Bayer, C.R.; Hayes-Schroer, S.M.; Bryant, A.E. Immunization with the C-Domain of alpha-toxin prevents lethal infection, localizes tissue injury, and promotes host response to challenge with Clostridium Perfringens. J. Infect Dis. 2004, 190, 767–773. [Google Scholar] [PubMed] [Green Version]
- Wages, D.P.; Opengart, K. Necrotic Enteritis. In Diseases of Poultry, 11th ed.; Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., Eds.; Iowa State Press: Ames, IA, USA, 2003; pp. 781–785. [Google Scholar]
- Keyburn, A.L.; Sheedy, S.A.; Ford, M.E.; Williamson, M.M.; Awad, M.M.; Rood, J.I.; Moore, R.J. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect. Immun. 2006, 74, 6496–6500. [Google Scholar] [PubMed] [Green Version]
- Abildgaard, L.; Schramm, A.; Rudi, K.; Højberg, O. Dynamics of plc gene transcription and α-toxin production during growth of Clostridium perfringens strains with contrasting α-toxin production. Vet. Microbiol. 2009, 139, 202–206. [Google Scholar]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 2008, 4, 26. [Google Scholar]
- Chalmers, G.; Martin, S.W.; Hunter, D.B.; Prescott, J.F.; Weber, L.J.; Boerlin, P. Genetic diversity of Clostridium perfringens isolated from healthy broiler chickens at a commercial farm. Vet. Microbiol. 2008, 127, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Martin, T.G.; Smyth, J.A. Prevalence of netB among some clinical isolates of Clostridium perfringens from animals in the United States. Vet. Microbiol. 2009, 136, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Abildgaard, L.; Sondergaard, T.E.; Endberg, R.M.; Schramm, A.; Højberg, O. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Vet. Microbio. 2010, 144, 231–235. [Google Scholar]
- Moore, R.J. Necrotic enteritis predisposing factors in broiler chickens. Avian Pathol. 2016, 45, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Gross, W.B. Pathological changes of an Escherichia coli infection in chickens and turkeys. Am. J. Vet. Res. 1957, 18, 724–730. [Google Scholar]
- Jang, S.I.; Lillehoj, H.S.; Lee, S.H.; Lee, K.W.; Lillehoj, E.P.; Hong, Y.H.; An, D.J.; Jeong, W.; Chun, J.E.; Bertrand, F.; et al. Vaccination with Clostridium perfringens recombinant proteins in combination with MontanideTM ISA 71 VG adjuvant increases protection against experimental necrotic enteritis in commercial broiler chickens. Vaccine 2012, 30, 5401–5406. [Google Scholar] [CrossRef]
- Duff, A.F.; Vuong, C.N.; Searer, K.L.; Briggs, W.N.; Wilson, K.M.; Hargis, B.M.; Bergham, L.R.; Bielke, L.R. Preliminary studies on development of a novel subunit vaccine targeting Clostridium perfringens mucolytic enzymes for the control of necrotic enteritis in broilers. Poult. Sci. 2019, 98, 6319–6325. [Google Scholar] [CrossRef] [PubMed]
- Bangoura, B.; Alnassan, A.A.; Lendner, M.; Shehata, A.A.; Kruger, M.; Daugschies, A. Efficacy of an anticoccidial live vaccine in prevention of necrotic enteritis in chickens. Exp. Parasitol. 2014, 145, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Collier, C.T.; Hofacre, C.L.; Payne, A.M.; Anderson, D.B.; Kaiser, P.; Mackie, R.I.; Gaskins, H.R. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet. Immunol. Immunopathol. 2008, 122, 104–115. [Google Scholar] [PubMed]
- Niewold, T.A. The nonantibiotic anti-inflammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult. Sci. 2007, 86, 605–609. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.B.; Kroger, E.C.; Watkins, S.E. Evaluation of disinfectant efficacy when applied to the floor of poultry grow-out facilities. J. Appl. Poult. Res. 2005, 14, 322–329. [Google Scholar]
- Fasina, F.O.; Meseko, A.C.; Joannis, T.M.; Shittu, A.I.; Ularamu, H.G.; Egbuji, N.A.; Sulaiman, L.K.; Onyekonwu, N.O. Control versus no control: Options for avian influenza H5N1 in Nigeria. Zoonoses Public Health 2007, 54, 173–176. [Google Scholar] [PubMed]
- Gelaude, P.; Schlepers, M.; Verlinden, M.; Laanen, M.; Dewulf, J.B. UGent: A quantitative tool to measure biosecurity at broiler farms and the relationship with technical performances and antimicrobial use. Poult. Sci 2014, 93, 2740–2751. [Google Scholar]
- Arp, L.H. Consequences of active or passive immunization of turkeys against Escherichia coli O78. Avian Dis. 1980, 24, 808–815. [Google Scholar] [CrossRef]
- Gyimah, J.E.; Panigrahy, B. Immunogenicity of an Escherichia coli (serotype O1) pili vaccine in chickens. Avian Dis. 1985, 29, 1078–1083. [Google Scholar] [PubMed]
- Panigraphy, B.; Gyimah, J.E.; Hall, C.F.; Williams, J.D. Immunogenic potency of an oil-emulsified Escherichia coli bacterin. Avian Dis. 1984, 28, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Kariyawasam, S.; Wilkie, B.N.; Gyles, C.L. Construction, characterization, and evaluation of the vaccine potential of three genetically defined mutants of avian pathogenic Escherichia coli. Avian Dis. 2004, 48, 287–299. [Google Scholar] [PubMed]
- Lynne, A.M.; Kariyawasam, S.; Wannemuehler, Y.; Johnson, T.J.; Johnson, S.J.; Sinha, A.S.; Lynne, D.K.; Moon, H.W.; Jordan, D.M.; Logue, C.M.; et al. Recombinant Iss as a potential vaccine for avian colibacillosis. Avian Dis. 2012, 56, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, T.Z.; Tabatabaei, S.; Karimi, V.; Fasaei, B.N.; Derakhshandeh, A.; Jahromi, A.O. Assessment of immunity against avian colibacillosis induced by an aroA mutant containing increased serum survival gene in broilers. Braz. J. Microbiol. 2012, 43, 363–370. [Google Scholar] [PubMed]
- Vandemaele, F.; Bleyen, N.; Abuaboud, O.; vanderMeer, E.; Jacobs, A.; Goddeeris, B.M. Immunization with the biologically active lectin domain of PapGII induces strong adhesion-inhibiting antibody responses but not protection against avian pathogenic Escherichia coli. Avian Pathol. J.W.V.P.A. 2006, 35, 238–249. [Google Scholar]
- Filho, T.F.; Favaro, C.; Ingberman, M.; Beira˜o, B.C.B.; Inoue, A.; Gomes, L.; Caron, L.F. Effect of spray Escherichia coli vaccine on the immunity of poultry. Avian Dis. 2013, 57, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Van Goor, A.; Stromberg, Z.R.; Mellata, M. A recombinant multi-antigen vaccine with broad protection potential against avian pathogenic Escherichia coli. PLoS ONE 2017, 12, e0183929. [Google Scholar] [CrossRef] [Green Version]
- Redweik, G.A.J.; Stromberg, Z.R.; Van Goor, A.; Mellata, M. Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine. Poult. Sci. 2020, 99, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Curtiss, R., III; Mellata, M.; Zekarias, B.; Shi, Z.; Branger, C.; Roland, K. Recombinant Bacterium Capable of Eliciting an Immune Response against Enteric Pathogens. Salmonella Vaccine against Bacterial Enteric Pathogens. US Patant No. 8,465,755B2 (granted 06/18/13), 2013. Available online: https://patentimages.storage.googleapis.com/b5/81/f0/2ecf6f7d787f7c/US8465755.pdf (accessed on 27 March 2020).
- Maddux, J.T.; Stromberg, Z.R.; Curtiss, R., III; Mellata, M. Evaluation of recombinant attenuated Salmonella vaccine strains for broad protection against extraintestinal pathogenic Escherichia coli. Front. Immunol. 2017, 8, 1280. [Google Scholar]
- Stromberg, Z.R.; Van Goor, A.; Redweik, G.A.J.; Mellata, M. Characterization of spleen transcriptome and immunity against avian colibacillosis after immunization with re-combinant attenuated Salmonella vaccine strains. Front. Vet. Sci. 2018, 5, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Zuo, J.; Chen, Z.; Fu, L.; Lv, X.; Hu, S.; Shi, X.; Jing, Y.; Wang, Z.; Mi, R.; et al. Use of a modified bacterial ghost lysis system for the construction of an inactivated avian pathogenic Escherichia coli vaccine candidate. Vet Microbiol. 2019, 229, 48–58. [Google Scholar]
- Langemann, T.; Koller, V.J.; Muhammad, A.; Kudela, P.; Mayr, U.B.; Lubitz, W. The Bacterial Ghost platform system: Production and applications. Bioeng. Bugs 2010, 1, 326–336. [Google Scholar] [PubMed] [Green Version]
- Jiang, Y.; Kulkarni, R.R.; Parreira, V.R.; Prescott, J.F. Immunization of broiler chickens against clostridium perfringens–Induced necrotic enteritis using purified recombinant immunogenic proteins. Avian Dis. 2009, 53, 409–415. [Google Scholar] [PubMed]
- Saleh, N.; Fathalla, S.I.; Nabil, R.; Mosaad, A.A. Clinicopathological and immunological studies on toxoids vaccine as a successful alternative in controlling clostridial infection in broilers. Anaerobe 2011, 17, 426–430. [Google Scholar] [CrossRef]
- Tsiouris, V.; Georgopoulou, I.; Batzios, C.; Pappaioannou, N.; Diakou, A.; Petridou, E.; Ducatelle, R.; Fortomaris, P. The role of an attenuated anticoccidial vaccine on the intestinal ecosystem and on the pathogenesis of experimental necrotic enteritis in broiler chickens. Avian Pathol. 2013, 42, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Williams, R.B. Anticoccidial vaccines for broiler chickens: Pathways to success. Avian Pathol. 2002, 31, 317–353. [Google Scholar]
- Phillips, R.A. Is GD Skin or Gut Related? Probably Both. Intestinal Health Magazine, North American ed. 2008. Available online: http://www.thepoultrysite.com/intestinalhealth/issue1/north-american-edition-1/18/is-gd-skin-or-gut-related-probably-both (accessed on 23 March 2020).
- Williams, R.B.; Andrews, S.J. The origins and biological significance of the coccidial lesions that occur in chickens vaccinated with a live attenuated anticoccidial vaccine. Avian Pathol. 2001, 30, 215–220. [Google Scholar] [PubMed]
- Wang, X.; Peebles, E.D.; Kiess, A.S.; Wamsley, K.G.S.; Zhai, W. Effects of coccidial vaccination and dietary antimicrobial alternatives on the growth performance, internal organ development, and intestinal morphology of Eimeria-challenged male broilers. Poult. Sci. 2019, 98, 2054–2065. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.A.N.; Zakeri, A.A.; Kamrani, B.; Pourakbari, Y. Effect of prebiotics, probiotics, acidfire, growth promoter antibiotics and synbiotic on humural immunity of broiler chickens. Glob. Vet 2012, 8, 612–617. [Google Scholar]
- Elshaghabee, F.M.F.; Rokana, N.N.; Gulhane, R.D.; Sharma, C.; Panwar, H. Bacillus as potential probiotics: Status, concerns, and future perspectives. Front. Microbiol. 2017, 8, 1490. [Google Scholar]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141. [Google Scholar] [CrossRef]
- Kabir, S.M.L. The role of probiotics in the poultry industry. Internl. J. Molecular Sci. 2009, 10, 3531–3546. [Google Scholar]
- Sohail, M.U.; Hume, M.E.; Byrd, J.A.; Nisbet, D.J.; Ijaz, A.; Sohail, A.; Shabbir, M.Z.; Rehman, H. Effect of supplementation of prebiotic mannan-oligosaccharides and probiotic mixture on growth performance of broilers subjected to chronic heat stress. Poult. Sci. 2012, 91, 2235–2240. [Google Scholar] [PubMed]
- Caly, D.L.; D’Inca, R.; Auclair, E.; Drider, D. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: A microbiologist’s perspective. Front. Microbiol. 2015, 6, 1336. [Google Scholar] [CrossRef]
- Park, I.; Lee, Y.; Goo, D.; Zimmerman, N.P.; Smith, A.H.; Rehberger, T.; Lillehoj, H.S. The effects of dietary Bacillus subtilis supplementation, as an alternative to antibiotics, on growth performance, intestinal immunity, and epithelial barrier integrity in broiler chickens infected with Eimeria maxima. Poult. Sci. 2020, 99, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Ramlucken, U.; Ramchuran, S.O.; Moonsamy, G.; Lalloo, R.; Thantsha, M.S.; van Rensburg, C.J. A novel Bacillus based multistrain probiotic improves growth performance and intestinal properties of Clostridium perfringens challenged broilers. Poult. Sci. 2020, 99, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Harrington, D.; Sims, M.; Kehlet, A.B. Effect of Bacillus subtilis supplementation in low energy diets on broiler performance. J. Appl. Poult. Res. 2016, 25, 29–39. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Kim, I.H. Effects of multistrain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, cecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 2014, 93, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Ritzi, M.; Abdelrahman, W.; van-Heerden, K.; Mohnl, M.; Barrett, N.; Dalloul, R. Combination of probiotics and coccidiosis vaccine enhances protection against an Eimeria challenge. Vet. Res. 2016, 47. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Farnell, Y.Z.; Peebles, E.D.; Kiess, A.S.; Wamsley, K.G.S.; Zhai, W. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poult. Sci. 2016, 95, 1332–1340. [Google Scholar] [CrossRef]
- Hutkins, R.W.; Krumbeck, J.A.; Bindels, L.B.; Cani, P.D.; Fahey, G.; Goh, Y.J.; Hamaker, B.; Martens, E.C.; Mills, D.A.; Rastal, R.A.; et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016, 37, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spring, P.; Wenk, C.; Dawson, K.A.; Newman, K.E. The effects of dietary mannanoligosaccharides on cecal parameters and the concentrations of enteric bacteria in the ceca of Salmonella- challenged broiler chicks. Poult. Sci. 2000, 79, 205–211. [Google Scholar] [PubMed]
- Chand, N.; Faheem, H.; Khan, R.U.; Qureshi, M.S.; Alhidary, I.A.; Abudabos, A.M. Anticoccidial effect of mannoligosacharide against experimentally induced coccidiosis in broiler. Env. Sci. Pollut. Res. 2016, 23, 14414–14421. [Google Scholar] [CrossRef]
- Tarabees, R.; Gafar, K.M.; El-Sayed, M.S.; Shehata, A.A.; Ahmed, M. Effects of Dietary Supplementation of Probiotic Mix and Prebiotic on Growth Performance, Cecal Microbiota Composition, and Protection Against Escherichia coli O78 in Broiler Chickens. Probiotics Antimicrob. Proteins 2018. [CrossRef]
- Wang, H.; Ni, X.; Qing, X.; Liu, L.; Khalique, A.; Li, G.; Pan, K.; Jing, B.; Zeng, D. Probiotic Enhanced Intestinal Immunity in Broilers against Subclinical Necrotic Enteritis. Front. Immunol. 2017, 8, 1592. [Google Scholar] [PubMed]
- Lin, Y.; Xu, S.; Zeng, D.; Ni, X.; Zhou, M.; Zeng, Y. Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLoS ONE 2017, 12, e0182426. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Peng, Q.; Jia, H.M.; Zeng, X.F.; Zhu, J.L.; Hou, C.L.; Liu, X.T.; Yang, F.J.; Qiao, S.Y. Prevention of Escherichia coli infection in broiler chickens with Lactobacillus plantarum B1. Poultry Sci. 2017, 96, 2576–2586. [Google Scholar] [CrossRef]
- Peng, Q.; Zeng, X.F.; Zhu, J.L.; Wang, S.; Liu, X.T.; Hou, C.L.; Thacker, P.A.; Qiao, S.Y. Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poult. Sci. 2016, 95, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.D.; Lumpkins, B.; Mathis, G.; Williams, S.M.; Fowler, J. Evaluation of encapsulated sodium butyrate with varying releasing times on growth performance and necrotic enteritis mitigation in broilers. Poult. Sci. 2019, 98, 3240–3245. [Google Scholar] [CrossRef] [PubMed]
- Pourhossein, Z.; Qotbi, A.A.A.; Seidavi, A.; Laudadio, V.; Centoducati, G.; Tufarelli, V. Effect of different levels of dietary sweet orange (Citrus sinensis) peel extract on humoral immune system responses in broilers chickens. Anim. Sci. J. 2015, 86, 105–110. [Google Scholar]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [PubMed]
- Abbas, A.; Iqbal, Z.; Abbas, R.Z.; Khan, M.K.; Khan, J.A.; Sindhu, Z.D.; Mahmood, M.S.; Saleemi, M.K. In vivo anticoccidial effects of Beta vulgaris (sugar beet) in broiler chickens. Microb. Pathog. 2017, 111, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, K.S. Hatchery hygiene evaluation by microbiological examination of hatchery samples. Poult. Sci. 2010, 89, 1389–1398. [Google Scholar] [CrossRef]
- Fasenko, G.M.; O’Dea Christopher, E.E.; McMullen, L.M. Spraying hatching eggs with electrolyzed oxidizing water reduces eggshell microbial load without compromising broiler production parameters. Poult. Sci. 2009, 88, 1121–1127. [Google Scholar] [CrossRef]
- Da, S.; Oliveira, G.; Nascimento, S.T.; dos Santos, V.M.; Silva, M.G. Clove essential oil in the sanitation of fertile eggs. Poult. Sci. 2020. [Google Scholar] [CrossRef]
- Copur, G.; Arslan, M.; Duru, M.; Baylan, M.; Canogullari, S.; Aksan, E. Use of oregano (Origanum onites L.) essential oil as hatching egg disinfectant. Afr. J. Biotechnol. 2010, 9, 2531–2538. [Google Scholar]
- Ulucay, I.O.; Yildirim, I. Hatching traits of quail (Coturnix coturnix japonica) eggs disinfected with carvacrol, cinnamaldehyde or thymol. J. Appl. Anim. Res. 2010, 38, 139–142. [Google Scholar]
- Ritz, C.W.; Fairchild, B.D.; Michael, P.L. Litter Quality and Broiler Performance Bulletin 1267; University of Georgia and Ft. Valley State University University of Georgia: Athens, GA, USA, 2009. [Google Scholar]
- McKeith, A.; Loper, M.; Tarrant, K.J. Research Note: Stocking density effects on production qualities of broilers raised without the use of antibiotics. Poult. Sci. 2020, 99, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Zuowei, S.; Yan, L.; Jiao, H.; Song, Z.; Guo, Y.; Lin, H. Stocking density affects the growth performance of broilers in a sex-dependent fashion. Poult. Sci. 2011, 90, 1406–1415. [Google Scholar] [CrossRef] [PubMed]
- Winkler, S.; Coufal, C.; Harmel, D.; Martin, E.; Brooks, J.P.; Popham, S.; Gentry, T.J. Within-House Spatial Distribution of Fecal Indicator Bacteria in Poultry Litter. J. Env. Qual. 2017, 46, 1003–1009. [Google Scholar] [CrossRef] [PubMed]
- Aviagen. Best Practice in the Broiler House-Biosecurity 2015. Available online: http://en.aviagen.com/assets/Tech_Center/Broiler_Breeder_Tech_Articles/English/Avia-BestPractice-Biosecurity-EN-2015.pdf (accessed on 17 July 2020).
- Fu, Y.; Zu, Y.; Chen, L.; Shi, X.; Wang, Z.; Sun, S.; Efferth, T. Antimicrobial activity of clove and rosemary oils alone and in combination. Phytother. Res. 2007, 21, 989–994. [Google Scholar] [PubMed]
- Mathlouthi, N.; Bouzaienne, T.; Oueslati, I.; Recoquillay, F.; Hamdi, M.; Urdaci, M.; Bergaoui, R. Use of rosemary, oregano, and a commercial blend of essential oils in broiler chickens: In vitro antimicrobial activities and effects on growth performance. J. Anim. Sci. 2012, 90, 813–823. [Google Scholar] [PubMed]
- Mitsch, P.; Zitterl-Eglseer, K.; Kohler, B.; Gabler, C.; Losa, R.; Zimpernik, I. The effect of two different blends of essential oil components on the proliferation of Clostridium perfringens in the intestines of broiler chickens. Poult. Sci. 2004, 83, 669–675. [Google Scholar] [CrossRef]
- Penalver, P.; Huerta, B.; Borge, C.; Astorga, R.; Romero, R.; Perea, A. Antimicrobial activity of five essential oils against origin strains of the Enterobacteriaceae family. APMIS 2005, 113, 1–6. [Google Scholar]
- Sokovic, M.; Glamoclija, J.; Marin, P.D.; Brkic, D.; van Griensven, L.J. Antibacterial effects of the essential oils of commonly consumed medicinal herbs using an in vitro model. Molecules 2010, 15, 7532–7546. [Google Scholar] [PubMed] [Green Version]
- Timbermont, L.; Lanckriet, A.; Dewulf, J.; Nollet, N.; Schwarzer, K.; Haesebrouck, F.; Ducatelle, R.R.; Immerseel, F.v. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol 2010, 39, 117–121. [Google Scholar] [PubMed] [Green Version]
- McReynolds, J.; Waneck, C.; Byrd, J.; Genovese, K.; Duke, S.; Nisbet, D. Efficacy of multistrain direct-fed microbial and phytogenetic products in reducing necrotic enteritis in commercial broilers. Poult. Sci 2009, 88, 2075–2080. [Google Scholar] [PubMed]
- Cross, D.E.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on perfor- mance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar]
- Jerzsele, A.; Szeker, K.; Csizinszky, R.; Gere, E.; Jakab, C.; Mallo, J.J.; Galfi, P. Efficacy of protected sodium butyrate, a protected blend of essential oils, their combination, and Bacillus amyloliquefaciens spore suspension against artificially induced necrotic enteritis in broilers. Poult. Sci. 2012, 91, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar]
- Jang, I.S.; Ko, Y.H.; Kang, S.Y.; Lee, C.Y. Effect of commercial essential oils on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed Sci. Technol. 2007, 134, 304–315. [Google Scholar] [CrossRef]
- Adil, S.; Banday, T.; Bhat, G.A.; Mir, M.S.; Rehman, M. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. med. inter 2010, 479485. [Google Scholar]
- Allaart, J.G.; Asten, A.J.A.M.v.; Grone, A. Predisposing factors and prevention of Clostridium perfringens-associated enteritis. Comp. Immunol. Microbiol. Infect. Dis 2013, 36, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Geier, M.S.; Mikkelsen, L.L.; Torok, V.A.; Allison, G.E.; Olnood, C.G.; Boulianne, M.; Hughes, R.J.; Choct, M. Comparison of alternatives to in-feed antimicrobials for the prevention of clinical necrotic enteritis. J. Appl. Microbiol. 2010, 109, 1329–1338. [Google Scholar] [PubMed]
- Hernandez, F.; Garcia, V.; Madrid, J.; Orengo, J.; Catala, P.; Megias, M.D. Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. Br. Poult. Sci. 2006, 47, 50–56. [Google Scholar] [PubMed]
- Gharib Naseri, K.; Rahimi, S.; Khaki, P. Comparison of the effects of probiotic, organic acid and medicinal plant on Campylobacter jejuni challenged broiler chickens. J. Agri. Sci. Tech. 2012, 14, 1485–1496. [Google Scholar]
- Aclkgoz, Z.; Bayraktar, H.; Altan, O. Effects of formic acid administration in the drinking water on performance, intestinal microflora and carcass contamination in male broilers under high ambient temperature. Asian Australas. J. Anim. Sci. 2011, 24, 96–102. [Google Scholar] [CrossRef]
- Methner, U.; Friese, A.; Rosler, U. Competitive exclusion: A tool to combat extended-spectrum B-lactamase-producing Escherichia coli strains in chickens. Res. Vet. Sci. 2019, 123, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Simitzis, P.E.; Kalogeraki, E.; Goliomytis, M.; Charismiadou, M.A.; Triantaphyllopoulos, K.; Ayoutanti, A.; Niforou, K.; Hager-Theodorides, A.L.; Deligeorgis, S.G. Impact of stocking density on broiler growth performance, meat characteristics, behavioural components and indicators of physiological and oxidative stress. Br. Poult. Sci. 2012, 53, 721–730. [Google Scholar] [PubMed]
- Montoro-Dasi, L.; Villagra, A.; Sevilla-Navarro, S.; Perez-Gracia, M.T.; Vega, S.; Marin, C. The dynamic of antibiotic resistance in commensal Escherichia coli throughout the growing period in broiler chickens: Fast-growing vs slow-growing breeds. Poultry Sci. 2020, 99, 1591–1597. [Google Scholar] [CrossRef]
- Polycarpo, G.V.; Andretta, I.; Kipper, M.; Cruz-Polycarpo, V.C.; Dadalt, J.C.; Rodrigues, P.H.M.; Albuquerque, R. Metaanalytic study of organic acids as an alternative performance- enhancing feed additive to antibiotics for broiler chickens. Poult. Sci. 2017, 96, 3645–3653. [Google Scholar] [CrossRef] [PubMed]
- Ambrosio, C.M.S.; Alencar, S.M.; de Sousa, R.L.M.; Moreno, A.M.; Da Gloria, E.M. Antimicrobial activity of several essential oils on pathogenic and beneficial bacteria. Ind. Crop. Prod. 2017, 97, 128–136. [Google Scholar]
Target Microbe | Vaccination and Results | Reference |
---|---|---|
APEC | Purified outer membrane vesicle (OMV) proteins derived from APEC serotype O78 given in vaccination to challenged Lohmann chickens showed protection over non-vaccinated groups. Native APEC O78 OMVs provided protective immunity in chickens challenged against corresponding serotype bacteria. | [183] |
APEC | Male and female white leghorns vaccinated with recombinant antigens of common ExPEC surface proteins and then challenged with APEC had significant IgY response, reduced in vitro growth of multiple APEC serotypes, decreased internal bacterial loads and reductions in gross lesion scores in airsacs, heart, liver, and spleen | [169] |
APEC | Bacterial ghost vaccine of APEC O2 isolate was able to achieve over 90% immunity in challenge broilers and high antibody response of 120 Sanhuang broiler chickens. | [174] |
C. perfringens | Combination vaccine of 5 mucinase peptides of C. perfringens showed promise in improving BWG in subclinical NE challenged broilers. | [154] |
C. perfringens | C. perfringens toxoid vaccination of A, C, and combined A and C toxoids in broilers resulted in decreased intestinal lesions, and increased antibody titers, especially after the second booster dose. | [177] |
C. perfringens | C. perfringens recombinant protein vaccination with NetB toxin or pyruvate: ferredoxin oxidoreductase in combination with Montanide™ ISA 71 VG adjuvant had significantly higher weight gain, and increased antibody titers than control challenged and adjuvant alone groups in broilers challenged with oral co-infection of C perfringens and E. maxima. | [153] |
Strategy | Results | Reference |
---|---|---|
Probiotic | B. subtilis strain 747 improved growth performance, intestinal immunity, and epithelial barrier integrity of broiler chickens | [189] |
Probiotic | A multi-strain Bacillus probiotic, 4 B. subtilis (CPB 011, CPB 029, HP 1.6, and D 014) and 2 B. velezensis (CBP 020 and CPB 035), improved growth performance and improved gut and liver function of broilers when under challenge. | [190] |
Probiotic | B. subtilis DSM 32315 controlled proliferation of C. perfringens in intestines of broilers under challenge, reduced performance loss and partially replaced in-feed AGP. | [39] |
Probiotic | Feed supplementation with L. johnsonii BS15 in the prevention of subclinical NE in broilers was effective in influencing performance (higher ADG and lower FCR) when given before NE challenge. BS15 effects were limited in groups with established development of NE. | [199] |
Probiotic | Broiler groups under C. perfringens, Eimeria challenge, and fishmeal supplementation when fed B. licheniformis had similar cecal microbiota compared to that of the control group, suggesting that B. licheniformis disrupts microbiota and alleviates cecal disruption caused by multiple gastrointestinal challenges. | [200] |
Probiotic | Broilers challenged with E. coli K88 and fed L. plantarum B1 had increased BW, decreased E. coli counts, and increased lactic acid bacteria in the ceca compared to challenged untreated counterparts. Broilers fed L. plantarum increased ileal mucosal secretory IgA and reduced IL-2, IL-4, IFN-γ, and tumor necrosis factor-α levels in the ileum. | [201] |
Probiotic | Broilers fed L. plantarum during the entire growing period or finishing period (d22-42) performed better overall than broilers fed only in starter period or no supplementation. | [202] |
Probiotic | A multi-strain probiotic containing L. acidophilus, B. subtilis, and C. butyricum improved FCR, ileal digestibility, increased Lactobacillus and decreased E. coli in the GIT, and reduced NH3 excreta content compared to control broiler groups. | [192] |
Prebiotics, Probiotics, and combination | Broilers fed B. subtilis spores, or combination of commercial prebiotic, Mannan oligosaccharide, and B. subtilis spores exhibited overall higher BW gain compared to negative control and AGP positive control diets. | [194] |
Prebiotic and Probiotic | The prebiotic and probiotic combination improved digestive organ growth of broilers, but did not improve growth or meat yield of broilers | [182] |
Prebiotic | Sodium butyrate (Na-B) significantly lowered intestinal lesion scores compared to control challenged Cobb-Cobb male broilers. | [203] |
Prebiotic | Broilers fed sweet orange peel extract levels in concentrations higher than 1000 ppm improved rates of IBD and IBV antibody titers and immune response in broiler chickens | [204] |
Prebiotic | Use of quercetin, a ubiquitous flavonoid, altered cecal microflora of broilers by reducing P. aeruginosa, S. enterica, S. aureus, and E. coli, but increased copies of Lactobacillus and Bifidobacterium; inhibited growth of E. coli and S. aureus in vitro by damaging cell wall and cell membrane structures; and had bactericidal effects on Gram-positive bacteria | [205] |
Prebiotic | Isomaltooligosaccharide improved hot carcass weight and increased Lactobacillus microbial numbers in the ceca with broilers under challenge from E.coli O78 (APEC) | [198] |
Prebiotic | Broiler groups fed 300mg/kg Beta vulgaris extract had comparable FCR to anticoccidial treated groups. B.vulgaris extract improved FCR, reduced oocysts in feces and lesion scores in Eimeria sp. challenged groups | [206] |
Prebiotic | Ross male broilers treated with mananoligosacharide when challenged with E. tenella significantly outperformed control and treated groups with amprolium hydrochloride with improved FCR, body weight gain, and feed intake. | [197] |
Strategy | Results | Reference |
---|---|---|
Competitive exclusion | Commercially available competitive exclusion culture administered via oral infection to White Leghorn chickens on day 1 of placement reduced the number of ESBL/AmpC-producing E. coli in gut cecal contents | [234] |
Environment | Reduced stocking density in NAE broiler flocks decreases litter moisture | [213] |
Environment | Reduced stocking densities of broilers had higher BW and lowered FCR than high stocking densities | [214] |
Environment | Broilers raised at the lower stocking density had higher BW, but lower FCR | [235] |
Genetics | No difference in AMR presence of E. coli in fast-growing vs. slow-growing breeds of broilers in an antibiotic-free system | [236] |
Organic Acids | A meta-analysis of 121 articles on organic acids in broilers showed that organic acids blends were most effective in increasing ADG and FCR compared to organic acids used alone. Birds under challenge were positively affected in FCR when organic acids were used but not to the same extent of AGPs | [237] |
Essential Oil | An in vitro study of screening 28 different essential oils revealed potential selective antibacterial activity of E. globulus, E. exserta, P. pseudocaryophyllus, Orange Oil Phase Essence, and Citrus Terpenes oils against pathogenic bacteria and little antibacterial activity observed in beneficial microbes such as L. plantarum and L. rhamnosus | [238] |
Essential Oil | Total aerobic mesophilic bacteria prevalence was significantly lower (2.30 log10 CFU/mL) in clove essential oil sprayed eggs than nonsanitized eggs (3.49 log10 CFU/mL) comparable to traditional sanitizer, paraformaldehyde (2.23 log10 CFU/mL). | [209] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fancher, C.A.; Zhang, L.; Kiess, A.S.; Adhikari, P.A.; Dinh, T.T.N.; Sukumaran, A.T. Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions. Microorganisms 2020, 8, 1533. https://doi.org/10.3390/microorganisms8101533
Fancher CA, Zhang L, Kiess AS, Adhikari PA, Dinh TTN, Sukumaran AT. Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions. Microorganisms. 2020; 8(10):1533. https://doi.org/10.3390/microorganisms8101533
Chicago/Turabian StyleFancher, Courtney A., Li Zhang, Aaron S. Kiess, Pratima A. Adhikari, Thu T.N. Dinh, and Anuraj T. Sukumaran. 2020. "Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions" Microorganisms 8, no. 10: 1533. https://doi.org/10.3390/microorganisms8101533
APA StyleFancher, C. A., Zhang, L., Kiess, A. S., Adhikari, P. A., Dinh, T. T. N., & Sukumaran, A. T. (2020). Avian Pathogenic Escherichia coli and Clostridium perfringens: Challenges in No Antibiotics Ever Broiler Production and Potential Solutions. Microorganisms, 8(10), 1533. https://doi.org/10.3390/microorganisms8101533