Integrated Early Warning Surveillance: Achilles′ Heel of One Health?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Selected Indicators
3.2. Questionnaire Responsiveness
3.3. Pathogens Relevance
3.3.1. National Level
3.3.2. Regional Level
3.4. Surveillance Systems
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pfeffer, M.; Dobler, G. Emergence of zoonotic arboviruses by animal trade and migration. Parasites Vectors 2010, 3, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bueno-Marí, R.; Almeida, A.P.G.; Navarro, J.C. Editorial: Emerging zoonoses: Eco-epidemiology, involved mechanisms, and public health implications. Front. Public Health 2015, 3, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morens, D.M.; Fauci, A.S. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathog. 2013, 9, e1003467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- One Health Commission. Available online: https://www.onehealthcommission.org/ (accessed on 11 October 2019).
- The FAO-OIE-WHO Collaboration. Sharing Responsibilities and Coordinating Global Activities to Address Health Risks at the Animal-Human-Ecosystems Interfaces. A Tripartite Concept Note. 2010. Available online: https://www.who.int/influenza/resources/documents/tripartite_concept_note_hanoi/en/ (accessed on 16 October 2019).
- World Health Organization (WHO); Food and Agriculture Organization of the United Nations (FAO); World Organisation for Animal Health (OIE). A Tripartite Guide to Addressing Zoonotic Diseases in Countries Taking a Multisectoral, One Health Approach. 2019. Available online: https://www.oie.int/fileadmin/Home/eng/Media_Center/docs/EN_TripartiteZoonosesGuide_webversion.pdf (accessed on 16 October 2019).
- Dente, M.G.; Riccardo, F.; Bolici, F.; Colella, N.A.; Jovanovic, V.; Drakulovic, M.; Vasic, M.; Mamlouk, H.; Maazaoui, L.; Bejaoui, M.; et al. Implementation of the One Health approach to fight arbovirus infections in the Mediterranean and Black Sea Region: Assessing integrated surveillance in Serbia, Tunisia and Georgia. Zoonoses Public Health 2019, 66, 276–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stärk, K.D.C.; Arroyo Kuribreña, M.; Dauphin, G.; Vokaty, S.; Ward, M.P.; Wieland, B.; Lindberg, A. One Health surveillance—More than a buzz word? Prev. Vet. Med. 2015, 120, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Paz, S.; Semenza, J.C. Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—A review. Int. J. Environ. Res. Public Health 2013, 10, 3543–3562. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Duggan, M.F. Management of arthropod vector data—Social and ecological dynamics facing the One Health perspective. Acta Trop. 2018, 182, 80–91. [Google Scholar] [CrossRef]
- Dente, M.G.; Riccardo, F.; Nacca, G.; Ranghiasci, A.; Escadafal, C.; Gaayeb, L.; Jiménez-Clavero, M.A.; Manuguerra, J.; Picard, M.; Fernández-Pinero, J.; et al. Strengthening Preparedness for Arbovirus Infections in Mediterranean and Black Sea Countries: A Conceptual Framework to Assess Integrated Surveillance in the Context of the One Health Strategy. Int. J. Environ. Res. Public Health 2018, 15, 489. [Google Scholar] [CrossRef] [Green Version]
- Dente, M.G.; Ranghiasci, A.; Nacca, G.; Declich, S. Integrated Survillance and Risk Assessment for Arbovirus Infections: Recommendations for Enhancing One Health in the Mediterrean Region. ISTISAN 2018. Available online: http://old.iss.it/binary/publ/cont/18_20_web.pdf (accessed on 16 October 2019).
- Jourdain, F.; Samy, A.M.; Hamidi, A.; Bouattour, A.; Alten, B.; Faraj, C.; Roiz, D.; Petrić, D.; Pérez-Ramírez, E.; Velo, E.; et al. Towards harmonisation of entomological surveillance in the Mediterranean area. PLoS Negl. Trop. Dis. 2019, 13, e0007314. [Google Scholar] [CrossRef]
- Riccardo, F.; Monaco, F.; Bella, A.; Savini, G.; Russo, F.; Cagarelli, R.; Dottori, M.; Rizzo, C.; Venturi, G.; Di Luca, M.; et al. An early start of West Nile virus seasonal transmission: The added value of One Heath surveillance in detecting early circulation and triggering timely response in Italy, June to July 2018. Euro Surveill. 2018, 23, 1800427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrbova, L.; Stephen, C.; Kasman, N.; Boehnke, R.; Doyle-Waters, M.; Chablitt-Clark, A.; Gibson, B.; FitzGerald, M.; Patrick, D.M. Systematic Review of Surveillance Systems for Emerging Zoonoses. Transbound. Emerg. Dis. 2010, 57, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Dente, M.G.; Riccardo, F.; Van Bortel, W.; Marrama, L.; Mollet, T.; Derrough, T.; Sudre, B.; Calistri, P.; Declich, S. Enhancing preparedness for arbovirus infections with a One Health approach: The development and implementation of Multisectoral Risk Assessment Exercises. BioMed Res. under review.
- Consultative Group for RVF Decision Support. Decision-support tool for prevention and control of Rift Valley fever epizootics in the Greater Horn of Africa. Am. J. Trop. Med. Hyg. 2010, 83, 75–85. [Google Scholar] [CrossRef]
- Nguku, P.M.; Sharif, S.K.; Mutonga, D.; Amwayi, S.; Omolo, J.; Mohammed, O.; Farnon, E.C.; Gould, L.H.; Lederman, E.; Rao, C.; et al. An investigation of a major outbreak of rift valley fever in Kenya: 2006–2007. Am. J. Trop. Med. Hyg. 2010, 83, 5–13. [Google Scholar] [CrossRef]
- Fullerton, L.M.; Dickin, S.K.; Schuster-Wallace, C.J. Mapping Global Vulnerability to Dengue Using the Water Associated Disease Index; United Nations University: Kuala Lumpur, Malaysia, 2014. [Google Scholar] [CrossRef] [Green Version]
- Ben Hassine, T.; Conte, A.; Calistri, P.; Candeloro, L.; Ippoliti, C.; De Massis, F.; Danzetta, M.L.; Bejaoui, M.; Hammami, S. Identification of Suitable Areas for West Nile Virus Circulation in Tunisia. Transbound. Emerg. Dis. 2017, 64, 449–458. [Google Scholar] [CrossRef]
- Ezanno, P.; Aubry-Kientz, M.; Arnoux, S.; Cailly, P.; L’Ambert, G.; Toty, C.; Balenghien, T.; Tran, A. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France. Prev. Vet. Med. 2015, 120, 39–50. [Google Scholar] [CrossRef]
- Lowe, R.; Barcellos, C.; Coelho, C.A.S.; Bailey, T.C.; Coelho, G.E.; Graham, R.; Jupp, T.; Ramalho, W.M.; Carvalho, M.S.; Stephenson, D.B.; et al. Dengue outlook for the World Cup in Brazil: An early warning model framework driven by real-time seasonal climate forecasts. Lancet Infect. Dis. 2014, 14, 619–626. [Google Scholar] [CrossRef] [Green Version]
- Lowe, R.; Stewart-Ibarra, A.M.; Petrova, D.; García-Díez, M.; Borbor-Cordova, M.J.; Mejía, R.; Regato, M.; Rodó, X. Climate services for health: Predicting the evolution of the 2016 dengue season in Machala, Ecuador. Lancet Planet. Health 2017, 14, e142–e151. [Google Scholar] [CrossRef] [Green Version]
- Anyamba, A.; Chretien, J.P.; Small, J.; Tucker, C.J.; Formenty, P.B.; Richardson, J.H.; Britch, S.C.; Schnabel, D.C.; Erickson, R.L.; Linthicum, K.J. Prediction of a Rift Valley fever outbreak. Proc. Natl. Acad. Sci. USA 2009, 106, 955–959. [Google Scholar] [CrossRef] [Green Version]
- Munyua, P.M.; Murithi, R.M.; Ithondeka, P.; Hightower, A.; Thumbi, S.M.; Anyangu, S.A.; Kiplimo, J.; Bett, B.; Vrieling, A.; Robert Breiman, F.; et al. Predictive factors and risk mapping for Rift Valley fever epidemics in Kenya. PLoS ONE 2016, 11, e0144570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munyua, P.; Murithi, R.M.; Wainwright, S.; Githinji, J.; Hightower, A.; Mutonga, D.; Macharia, J.; Ithondeka, P.M.; Musaa, J.; Breiman, R.F.; et al. Rift Valley fever outbreak in livestock in Kenya, 2006–2007. Am. J. Trop. Med. Hyg. 2010, 83, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Boaz, R.; Corberán-Vallet, A.; Lawson, A.; de Ferreira Lima, F.E., Jr.; Edel Donato, L.; Vieira Alves, R.; Machado, G.; Freire de Carvalho, M.; Pompei, J.; Del Rio Vilas, V.J. Integration of animal health and public health surveillance sources to exhaustively inform the risk of zoonosis: An application to visceral leishmaniasis data in Brazil. Spat. Spatio-Temporal Epidemiol. 2019, 29, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Rotejanaprasert, C.; Lawson, A.; Rossow, H.; Sane, J.; Huitu, O.; Henttonen, H.; Del Rio Vilas, V.J. Towards integrated surveillance of zoonoses: Spatiotemporal joint modeling of rodent population data and human tularemia cases in Finland. BMC Med. Res. Methodol. 2018, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Corberán-Vallet, A.; Lawson, A.B. Prospective analysis of infectious disease surveillance data using syndromic information. Stat. Methods Med. Res. 2014, 23, 572–590. [Google Scholar] [CrossRef]
- Kraemer, M.U.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. ELife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef]
- Kjær, L.J.; Soleng, A.; Edgar, K.S.; Lindstedt, H.E.H.; Paulsen, K.M.; Andreassen, Å.K.; Korslund, L.; Kjelland, V.; Slettan, A.; Stuen, S.; et al. Predicting and mapping human risk of exposure to ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Euro Surveill. 2019, 24, 1800101. [Google Scholar] [CrossRef] [Green Version]
- MediLabSecure—Homepage. Available online: https://www.medilabsecure.com/ (accessed on 16 October 2019).
- MediLabSecure—One Health Conference. Available online: https://www.medilabsecure.com/public.aspx?page=events_meetings_onehealthconference2018 (accessed on 1 December 2019).
- MediLabSecure—One Health Workshop. Available online: https://www.medilabsecure.com/public.aspx?page=workshop_ph_teramo (accessed on 1 December 2019).
- European Centre for Disease Prevention and Control; European Food Safety Authority. The Importance of Vector Abundance and Seasonality—Results from an Expert Consultation; ECDC and EFSA: Stockholm, Sweden; Parma, Italy, 2018; pp. 1–43. [CrossRef]
- Moreland, S.; Morris, L.; Smith, E. One Health Policy Model—User Guide and Technical Description; United States Agency for International Development (USAID): Washington, DC, USA, 2018.
- Lowe, R. Climate Services and Early Warning Systems for Infectious Disease Outbreaks. In Proceedings of the THET Annual Conference, London, UK, 24 October 2017. [Google Scholar]
- Centers for Disease Control and Prevention; United States Agency for International Development; Food and Agriculture Organization. One Health Zoonotic Disease Prioritization for Multi-Sectoral Engagement in Burkina Faso; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Leta, S.; Beyene, T.J.; De Clercq, E.M.; Amenu, K.; Kraemer, M.U.G.; Revie, C.W. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int. J. Infect. Dis. 2018, 67, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Kramer, L.D.; Styer, L.M.; Ebel, G.D. A Global Perspective on the Epidemiology of West Nile Virus. Annu. Rev. Entomol. 2008, 53, 61–81. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Animal Health and Welfare (AHAW). Scientific Opinion on Rift Valley fever. EFSA J. 2013, 11, 3180. [Google Scholar] [CrossRef]
- WHO Emergencies—Crimean-Congo Haemorrhagic Fever (CCHF). Available online: https://www.who.int/emergencies/diseases/crimean-congo-haemorrhagic-fever/en/ (accessed on 28 October 2019).
- Wilder-Smith, A. Yellow fever vaccination: Estimating coverage. Lancet Infect. Dis. 2017, 17, 1109–1111. [Google Scholar] [CrossRef] [Green Version]
- Berthe, F.C.J.; Bouley, T.; Karesh, W.B.; Le Gall, F.G.; Machalaba, C.C.; Plante, C.A.; Seifman, R.M. Operational Framework for Strengthening Human, Animal and Environmental Public Health Systems at Their Interface; The World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Morner, T.; Obendorf, D.L.; Artois, M.; Woodford, M.H. Surveillance and monitoring of wildlife diseases. Rev. Sci. Tech. 2002, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- MediLabSecure—Participating Countries. Available online: https://www.medilabsecure.com/countries.html (accessed on 18 October 2019).
Sector | Type of Indicator | Specific Indicators |
---|---|---|
Vector | Pathogen-specific | Vector presence |
Vector abundance/density | ||
Vector seasonality | ||
Vector infection rate | ||
Human | General | Population density |
Population age distribution | ||
Pathogen-specific | Disease frequency or occurrence—new notified cases/outbreaks (according to National case definition) per year | |
Disease frequency or occurrence—number confirmed laboratory cases (according to National case definition) per year | ||
Disease frequency or occurrence—persons with detected antibodies (sero-prevalence) | ||
Animal | General | Animal population density 1 |
Animal movements and trade—pastoralism and transhumance | ||
Animal movements and trade—import and export | ||
Animal movements and trade—wildlife migrations | ||
Pathogen-specific 2 | Animal disease occurrence | |
Animal disease seroprevalence |
Pathogens | Overall Relevance in the Study Area | Sector Relevance (Vector) | Sector Relevance (Human) | Sector Relevance (Animal) |
---|---|---|---|---|
West Nile virus | 59/81 (73%) | 18/20 (90%) | 22/30 (73%) | 18/31 (61%) |
Crimean-Congo Haemorrhagic Fever virus | 51/81 (63%) | 14/20 (70%) | 20/30 (67%) | 17/31 (55%) |
Rift Valley fever virus | 40/81 (49%) | 11/20 (55%) | 13/30 (43%) | 16/31 (52%) |
Pathogens | Overall Relevance in the Study Area | Sector Relevance (Vector) | Sector Relevance (Human) |
---|---|---|---|
Dengue virus | 31/50 (62%) | 13/20 (65%) | 18/30 (60%) |
Chikungunya virus | 23/50 (46%) | 11/20 (55%) | 12/30 (40%) |
Zika virus | 20/53 (40%) | 9/20 (45%) | 11/30 (37%) |
Yellow fever virus | 19/53 (38%) | 8/20 (40%) | 11/30 (37%) |
Region | CHIKV | CCHFV | DENV | YFV | RVFV | WNV | ZIKV |
---|---|---|---|---|---|---|---|
Balkans | 8/16 (50%) | 22/27 (81%) | 9/16 (56%) | 5/16 (31%) | 10/27 (37%) | 26/27 (96%) | 6/16 (38%) |
Black Sea | 1/7 (14%) | 9/11 (82%) | 1/7 (14%) | 1/7 (14%) | 1/11 (9%) | 7/11 (64%) | 1/7 (14%) |
Middle East | 5/6 (83%) | 4/11 (36%) | 6/6 (100%) | 3/6 (50%) | 5/11 (45%) | 7/11 (64%) | 3/6 (50%) |
North Africa | 5/13 (38%) | 6/19 (32%) | 8/13 (62%) | 6/13 (46%) | 11/19 (58%) | 16/19 (84%) | 6/13 (46%) |
Sahel | 4/8 (50%) | 10/13 (77%) | 7/8 (88%) | 4/8 (50%) | 13/13 (100%) | 3/13 (23%) | 4/8 (50%) |
Indicators Collected-Vector | WNV | CCHFV | DENV | RVFV |
---|---|---|---|---|
Vector presence | 12/18 (67%) | 7/14 (50%) | 11/13 (85%) | 5/11 (45%) |
Vector abundance/density | 8/18 (44%) | 2/14 (14%) | 9/13 (69%) | 4/11 (36%) |
Vector seasonality | 8/18 (44%) | 4/14 (29%) | 10/13 (77%) | 3/11 (27%) |
Vector infection rate | 6/18 (33%) | 3/14 (21%) | 1/13 (8%) | 1/11 (9%) |
Indicators Collected-Human | General Indicators | WNV | CCHFV | DENV | RVFV |
---|---|---|---|---|---|
Population density | 27/30 (90%) | ||||
Population age distribution | 27/30 (90%) | ||||
Disease frequency or occurrence—new notified cases/outbreaks (according to National case definition) per year | 20/22 (91%) | 18/20 (90%) | 14/18 (78%) | 10/13 (77%) | |
Disease frequency or occurrence—number of confirmed laboratory cases (according to National case definition) per year | 19/22 (86%) | 17/20 (85%) | 13/18 (72%) | 10/13 (77%) | |
Disease frequency or occurrence—persons with specific antibodies (seroprevalence) | 13/22 (59%) | 11/20 (55%) | 9/18 (50%) | 7/13 (54%) |
Indicators Collected-Animals | General Indicators | WNV | CCHFV | RVFV |
---|---|---|---|---|
Animal population density 1 | 31/31 (100%) | |||
Animal movements and trade—pastoralism and transhumance | 20/31 (65%) | |||
Animal movements and trade—import and export | 30/31 (97%) | |||
Animal movements and trade—wildlife migrations | 5/31 (16%) | |||
Animal disease occurrence 2 | 14/19 (74%) | 8/17 (47%) | 11/16 (69%) | |
Animal disease seroprevalence 2 | 12/19 (63%) | 8/17 (47%) | 10/16 (63%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amato, L.; Dente, M.G.; Calistri, P.; Declich, S.; on behalf of the MediLabSecure Working Group. Integrated Early Warning Surveillance: Achilles′ Heel of One Health? Microorganisms 2020, 8, 84. https://doi.org/10.3390/microorganisms8010084
Amato L, Dente MG, Calistri P, Declich S, on behalf of the MediLabSecure Working Group. Integrated Early Warning Surveillance: Achilles′ Heel of One Health? Microorganisms. 2020; 8(1):84. https://doi.org/10.3390/microorganisms8010084
Chicago/Turabian StyleAmato, Laura, Maria Grazia Dente, Paolo Calistri, Silvia Declich, and on behalf of the MediLabSecure Working Group. 2020. "Integrated Early Warning Surveillance: Achilles′ Heel of One Health?" Microorganisms 8, no. 1: 84. https://doi.org/10.3390/microorganisms8010084
APA StyleAmato, L., Dente, M. G., Calistri, P., Declich, S., & on behalf of the MediLabSecure Working Group. (2020). Integrated Early Warning Surveillance: Achilles′ Heel of One Health? Microorganisms, 8(1), 84. https://doi.org/10.3390/microorganisms8010084