Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Properties
2.2. Fertilization
2.3. Test Plant and Culture Conditions
2.4. MCP Inoculation
2.5. Plant Growth and Nutritional Status
2.6. Expression of Auxin-Responsive Genes in the Root Tissue
2.7. Marker Enzymes as Indicators for C, N and P Cycling in the Rhizosphere
2.8. Experimental Design and Statistical Evaluation
3. Results
3.1. Plant Growth
3.2. Rhizosphere Chemistry
3.3. Plant-Nutritional Status
3.4. MCP Effects on Root Growth and Expression Auf Auxin-Responsive Genes in the Root Tissue
3.5. Phosphate-Solubilizing Potential of the MCP Inoculant
4. Discussion
4.1. Effects of N-Form Supply on MCP Performance on Different Soils
4.2. Limitations of Combined MCP Application with Ammonium Fertilizers
4.3. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bashan, Y. Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 1998, 16, 729–770. [Google Scholar] [CrossRef]
- Glick, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Hartmann, A.; Schmid, M. Plant-driven selection of microbes. Plant Soil 2009, 321, 235–257. [Google Scholar] [CrossRef]
- Woo, S.L.; Pepe, O.; Fertilizers, V.S.P. Microbial Consortia: Promising Probiotics as Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 7–12. [Google Scholar] [CrossRef]
- Menzies, N.; Harbison, D.; Dart, P. Soil chemistry-facts and fiction and their influence on the fertilizer decision making process. In Proceedings of the 26th Annual Conference of the Grassland Society of NSW, Bathurst, Australia, 26–28 July 2011; pp. 49–63. [Google Scholar]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N.; Scotti, R. Improving Crop Yield and Nutrient Use Efficiency via Biofertilization - A Global Meta-analysis. Front. Plant Sci. 2018, 8, 1–13. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Nuti, M.; Giovannetti, G. Borderline Products between Bio-fertilizers/Bio-effectors and Plant Protectants: The Role of Microbial Consortia. J. Agric. Sci. Technol. A 2015, 5, 305–315. [Google Scholar] [CrossRef]
- Lopez-Cervantes, J.; Thorpe, D.T. Microbial Composition Comprising Liquid Fertilizer and Processes for Agricultural Use. U.S. Patent 2013/0255338 A1, 3 October 2013. [Google Scholar]
- Liu, H.; White, P.J.; Li, C. Biomass partitioning and rhizosphere responses of maize and faba bean to phosphorus deficiency. Crop Pasture Sci. 2016, 67, 847–856. [Google Scholar] [CrossRef]
- Bradáčová, K.; Kandeler, E.; Berger, N.; Ludewig, U.; Neumann, G. Microbial Consortia Stimulate Early Growth of Maize Depending on N and P Supply. Plant Soil Environm. 2019. submitted. [Google Scholar]
- VDLUFA (Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten e.V. Speyer, Germany). Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik Methodenbuch Band I Die Untersuchung von Böden, 4th ed.; VDLUFA Verlag: Darmsatdt, Germany, 1991. [Google Scholar]
- Gericke, S.; Kurmies, B. Die kolorimetrische Phosphorsäure bestimmung mit Ammonium, Vanadat, Molybdat und ihre Anwendung in der Pflanzenanalyse. Z. für Pflanz. Düngung Bodenkd. 1952, 59, 235–247. [Google Scholar]
- Stemmer, M. Multiple-substrate enzyme assays: A useful approach for profiling enzyme activity in soils? Soil Biol. Biochem. 2004, 36, 519–527. [Google Scholar] [CrossRef]
- Chrominski, K.; Tkacz, M. Comparison of outlier detection methods in biomedical data. J. Med. Inform. Technol. 2010, 16, 1–6. [Google Scholar]
- Campbell, R.C. Reference Sufficiency Ranges for Plant Analysis in the Southern Region of the United States; Southern Cooperative Series Bulletin #394; North Carolina Department of Agriculture and Consumer Services Agronomic Division: Raleigh, NC, USA, 2009; ISBN 1581613946. [Google Scholar]
- Mpanga, I.K.; Gomez-Genao, N.J.; Moradtalab, N.; Wanke, D.; Chrobaczek, V.; Ahmed, A.; Windisch, S.; Geistlinger, J.; Walker, F.; Ludewig, U.; et al. The role of N form supply for PGPM-host plant interactions in maize. J. Plant Nutr. Soil Sci. 2019, in press. [Google Scholar] [CrossRef]
- Park, R.M.; Hasenstein, K.H. Hormone-Induced Gene Expression During Gravicurvature of Brassica Roots. J. Plant Growth Regul. 2015, 1–13. [Google Scholar] [CrossRef]
- Gälweiler, L.; Guan, C.; Müller, A.; Wisman, E.; Mendgen, K.; Yephremov, A.; Palme, K. Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue Regulation of Polar Auxin Transport by AtPIN1 in Arabidopsis Vascular Tissue. Science 1999, 282, 2226–2230. [Google Scholar] [CrossRef]
- Mpanga, I.A.; Nkebiwe, P.M.; Kuhlmann, K.; Cozzolino, V.; Piccolo, A.; Geistlinger, G.; Berger, N.; Ludewig, U.; Neumann, G. The Form of N Supply Determines Plant Growth Promotion by P-Solubilizing Microorganisms in Maize. Microorganisms 2019, 7, 38. [Google Scholar] [CrossRef]
- Neumann, G.; Römheld, V. Root-induced changes in the availability of nutrients in the rhizosphere. In Plant Roots the Hidden Half, 3rd ed.; Waisel, Y., Eshel, A., Kafkafi, U., Eds.; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Duus, J.; Lekfeldt, S.; Rex, M.; Mercl, F.; Kulhánek, M.; Tlustoš, P.; Magid, J. Effect of bioeffectors and recycled P - fertiliser products on the growth of spring wheat. Chem. Biol. Technol. Agric. 2016, 3, 1–18. [Google Scholar] [CrossRef]
- Thonar, C.; Duus, J.; Lekfeldt, S.; Cozzolino, V.; Kundel, D.; Kulhánek, M.; Mosimann, C.; Neumann, G.; Piccolo, A.; Rex, M.; et al. Potential of three microbial bio - effectors to promote maize growth and nutrient acquisition from alternative phosphorous fertilizers in contrasting soils. Chem. Biol. Technol. Agric. 2017, 4, 1–16. [Google Scholar] [CrossRef]
- Mpanga, I.K.; Dapaah, H.K.; Geistlinger, J.; Ludewig, U. Soil Type-Dependent Interactions of P-Solubilizing Microorganisms with Organic and Inorganic Fertilizers Mediate Plant Growth Promotion in Tomato. Agronomy 2018, 8, 1–17. [Google Scholar] [CrossRef]
- Robinson, D.; Rorison, I.H. Root hairs and plant growth at low nitrogen availabilities. New Phytol. 1987, 107, 681–693. [Google Scholar] [CrossRef]
- Kania, A.; Guldner, M.; Szabo, B.; Kazem, S.; Römheld, V.; Neumann, G.; Morhard, J.; Evers, M.; Terlouw, T. Functional characterization of the stabilized organic turf grass fertilizer ‘Marathon’ . Rasen. Turf. Gazon. 2007, 1, 192–195. [Google Scholar]
- Patil, N.B.; Gajbhiye, M.; Ahiwale, S.S.; Gunjal, A.B.; Kapadnis, B.P. Optimization of Indole 3 acetic acid (IAA) production by Acetobacter diazotrophicus L1 isolated from Sugarcane. Int. J. Environ. Sci. 2011, 2, 295–302. [Google Scholar]
- Bharucha, U.; Patel, K.; Trivedi, U.B. Optimization of Indole Acetic Acid Production by Pseudomonas putida UB1 and its Effect as Plant Growth-Promoting Rhizobacteria on Mustard (Brassica nigra). Agric. Res. 2013, 2, 215–221. [Google Scholar] [CrossRef]
- Ortíz-Castro, R.; Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; López-Bucio, J. The role of microbial signals in plant growth and development. Plant Signal. Behav. 2009. [Google Scholar] [CrossRef]
- Hartmann, A.; Rothballer, M.; Hense, B.A.; Schröder, P. Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Front. Plant Sci. 2014. [Google Scholar] [CrossRef]
- Sharifi, R.; Ryu, C. Revisiting bacterial volatile-mediated plant growth promotion: Lessons from the past and objectives for the future. Ann. Bot. 2018, 122, 349–358. [Google Scholar] [CrossRef]
- Petrášek, J.; Friml, J. Auxin transport routes in plant development. Development 2009, 136, 2675–2688. [Google Scholar] [CrossRef]
- Garnica-Vergara, A.; Barrera-Ortiz, S.; Mu, E.; Raya-gonz, J. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol. 2015, 209, 1496–1512. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Spaccini, R.; Piccolo, A. An alternative to mineral phosphorus fertilizers: The combined effects of Trichoderma harzianum and compost on Zea mays, as revealed by 1 H NMR and GC-MS metabolomics. PLoS ONE 2018. [Google Scholar] [CrossRef]
- Vinci, G.; Cozzolino, V.; Mazzei, P.; Monda, H.; Savy, D.; Drosos, M.; Piccolo, A. Effects of Bacillus amyloliquefaciens and different phosphorus sources on Maize plants as revealed by NMR and GC-MS based metabolomics. Plant Soil 2018, 429, 437–450. [Google Scholar] [CrossRef]
- Bradáčová, K.; Florea, A.S.; Bar-Tal, A.; Minz, D.; Yermiyahu, U.; Shawahna, R.; Kraut-Cohen, J.; Zolti, A.; Erel, R.; Dietel, K.; et al. Microbial Consortia versus Single-Strain Ionculants: An Advantage in PGPM-Assisted Tomato Production? Agronomy 2019. [Google Scholar] [CrossRef]
- Benckiser, G.; Christ, E.; Herbert, T.; Weiske, A.; Blome, J.; Hardt, M. The nitrification inhibitor 3, 4-dimethylpyrazole-phosphat (DMPP)- quantification and effects on soil metabolism. Plant Soil 2013, 1–11. [Google Scholar] [CrossRef]
- Bradáčová, K.; Weber, N.F.; Talab, N.M.; Asim, M.; Imran, M.; Weinmann, M.; Neumann, G. Micronutrients (Zn/Mn), seaweed extracts, and plant growth - promoting bacteria as cold - stress protectants in maize. Chem. Biol. Technol. Agric. 2016, 1–10. [Google Scholar] [CrossRef]
- Moradtalab, N.; Weinmann, M.; Walker, F.; Höglinger, B.; Ludewig, U.; Neumann, G. Silicon Improves Chilling Tolerance During Early Growth of Maize by Effects on Micronutrient Homeostasis and Hormonal Balances. Front. Plant Sci. 2018, 9, 1–17. [Google Scholar] [CrossRef]
- Kochian, L.V.; Pin, M.A.; Hoekenga, O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Britto, D.T.; Kronzucker, H.J. Review NH4+ toxicity in higher plants: A critical review. J. Plant Physiol. 2002, 159, 567–584. [Google Scholar] [CrossRef]
- Emanuelsson, J. Root growth and calcium uptake in relation to calcium concentration. Plant Soil 1984, 78, 325–334. [Google Scholar] [CrossRef]
- Njoku, B.O.; Enwezor, W.O.; Onyenakwe, B.I. Calcium deficiency identified as an important factor limiting maize growth in acid ultisols of eastern Nigeria Laboratory incubation. Fertil. Res. 1987, 14, 113–123. [Google Scholar] [CrossRef]
- Jakli-Hauer, M.; Tränkner, M. Critical Leaf Magnesium Thresholds and the Impact of Magnesium on Plant Growth and Photo-Oxidative Defense: A Systematic Review and Meta-Analysis from 70 Years of Research. Front. Plant Sci. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Jing, J.; Rui, Y.; Zhang, F.; Rengel, Z.; Shen, J. Localized application of phosphorus and ammonium improves growth of maize seedlings by stimulating root proliferation and rhizosphere acidification. Field Crops Res. 2010, 119, 355–364. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Müller, T. Improving fertilizer-depot exploitation and maize growth by inoculation with plant growth-promoting bacteria: From lab to field. Chem. Biol. Technol. Agric. 2016, 3, 1–16. [Google Scholar] [CrossRef]
Plant Response | MCP Treatments | Soil 1 | Soil 2 | ||
---|---|---|---|---|---|
NO3− | NH4+ | NO3− | NH4+ | ||
Shoot DW [g] | no MCP | 3.32 ± 0.3 a | 3.96 ± 0.2 a | 2.09 ± 0.4 b | 2.63 ± 0.3 b |
with MCP | 3.37 ± 0.1 ab | 3.90 ± 0.2 a | 2.28 ± 0.5 b | 3.4 ± 0.3 a | |
Total root length [cm] | no MCP | 2718.9 ± 787.0 a | 1048.3 ± 170.2 b | 6454.6 ± 2954.1 b | 6836.5 ± 4455.3 b |
with MCP | 2325.3 ± 232.9 a | 988.9 ± 448.6 b | 5615.1 ± 132.0 b | 9008.4 ± 1409.8 a | |
P content [mg plant−1] | no MCP | 6.05 ± 0.8 b | 8.10 ± 0.4 a | 2.89 ± 0.5 b | 3.67 ± 0.4 b |
with MCP | 6.50 ± 0.4 b | 7.60 ± 0.6 a | 2.95 ± 0.8 b | 4.93 ± 0.4 a |
MCP Treatments | Soil 1 | Soil 2 | |||
---|---|---|---|---|---|
NO3− | NH4+ | NO3− | NH4+ | ||
no MCP | 5.11 ± 0.1 a | 4.60 b ± 0.1 | 5.79 ± 0.02 a | 5.35 ± 0.04 b | |
With MCP | 5.42 ± 0.4 a | 5.11 ± 0.2 a | 5.79 ± 0.01 a | 5.32 ± 0.06 b | |
Rhizosphere Enzymatic Activities [nmol g−1 soil h−1] | |||||
Peptidase | no MCP | 42.01 ± 10.9 | 36.34 ± 6.2 | 160.28 ± 12.2 | 140.81 ± 6.6 |
with MCP | 47.92 ± 0.3 | 49.54 ± 1.6 * | 142.60 ± 6.8 | 144.42 ± 11.9 | |
Cellulase | no MCP | 8.49 ± 0.9 | 7.67 ± 0.7 | 51.34 ± 5.5 | 52.28 ± 4.2 |
with MCP | 9.74 ± 1.0 | 8.15 ± 1.1 | 52.10 ± 1.1 | 48.19 ± 6.6 | |
Acid Phosphatase | no MCP | 111.76 ± 7.1 | 131.78 ± 22.2 | 964.96 ± 128.1 | 891.49 ± 28.0 |
with MCP | 125.62 ± 4.3 * | 182.89 ± 19.5 * | 948.89 ± 45.2 | 934.45 ± 125.2 | |
Alkaline Phosphatase | no MCP | 12.45 ± 3.6 | 7.0 ± 0.5 | 122.56 ± 18.8 | 113.96 ± 17.2 |
with MCP | 13.15 ± 2.3 | 8.98 ± 1.1 * | 113.66 ± 17.3 | 127.16 ± 23.4 |
Shoot Mineral Concentration (g kg DM−1) | |||||||
---|---|---|---|---|---|---|---|
N Forms | MCP Treatments | N | P | K | Ca | Mg | |
Soil 1 | NO3− | no MCP | 26.21 a | 1.87 bc | 51.19 a | 3.94 a | 1.99 a |
with MCP | 25.25 a | 1.82 c | 49.22 a | 3.95 a | 1.99 a | ||
NH4+ | no MCP | 26.75 a | 2.10 a | 50.38 a | 2.73 b | 1.82 b | |
with MCP | 27.37 a | 2.01 ab | 49.55 a | 2.75 b | 1.74 b | ||
Soil 2 | NO3− | no MCP | 37.54 a | 1.38 a | 36.75 b | 4.92 a | 2.71 a |
with MCP | 35.42 b | 1.24 b | 36.61 b | 4.81 a | 2.65 a | ||
NH4+ | no MCP | 37.50 a | 1.42 a | 38.60 ab | 4.15 b | 2.33 b | |
with MCP | 37.73 a | 1.45 a | 39.88 a | 4.00 b | 2.12 c | ||
Deficiency Threshold [16] | 30.00 | 3.00 | 20.00 | 2.50 | 1.50 |
Shoot Mineral Content (mg Plant−1) | |||||||
---|---|---|---|---|---|---|---|
N Form | MCP Treatments | N | P | K | Ca | Mg | |
Soil 1 | NO3− | no MCP | 88.62 a | 6.05 b | 163.7 b | 12.67 ab | 6.42 a |
with MCP | 90.96 a | 6.54 b | 177.3 ab | 14.60 a | 7.28 a | ||
NH4+ | no MCP | 104.7 a | 8.13 a | 195.9 a | 10.57 b | 6.87 a | |
with MCP | 103.2 a | 7.59 a | 186.9 a | 10.40 b | 6.87 a | ||
Soil 2 | NO3− | no MCP | 78.10 b | 2.89 b | 76.66 b | 10.23 b | 5.40 a |
with MCP | 80.64 b | 2.95 b | 83.79 b | 10.98 ab | 5.84 a | ||
NH4+ | no MCP | 98.67 b | 3.67 b | 101.7 b | 10.93 ab | 5.87 a | |
with MCP | 128.1 a | 4.93 a | 135.5 a | 13.57 a | 7.21 a |
N Form | MCP Treatments | Nmin Total | Soil NO3−-N | Soil NH4+-N | |
---|---|---|---|---|---|
28 DAS | NO3− | no MCP | 60.45 ± 5.1a | 60.45 ± 5.1 a | 0 ± 0 c |
with MCP | 45.46 ± 2.8 b | 45.46 ± 2.8 b | 0 ± 0 c | ||
NH4+ | no MCP | 42.58 ± 4.1 b | 42.12 ± 4.1 b | 0.46 ± 0.05 a | |
with MCP | 19.34 ± 0.5 c | 19.26 ± 0.4 c | 0.08 ± 0.04 b | ||
41 DAS | NO3− | no MCP | 2.73 ± 1.0 b | 2.67 ± 0.9 bc | 0.06 ± 0.02c |
with MCP | 3.72 ± 4.4 b | 3.69 ± 4.4 b | 0.06 ± 0.04c | ||
NH4+ | no MCP | 7.09 ± 1.6 a | 6.8 ± 1.4 a | 0.29 ± 0.05b | |
with MCP | 2.42 ± 0.2 b | 2.06 ± 0.1 bc | 0.39 ± 0.04 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradáčová, K.; Sittinger, M.; Tietz, K.; Neuhäuser, B.; Kandeler, E.; Berger, N.; Ludewig, U.; Neumann, G. Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms 2019, 7, 329. https://doi.org/10.3390/microorganisms7090329
Bradáčová K, Sittinger M, Tietz K, Neuhäuser B, Kandeler E, Berger N, Ludewig U, Neumann G. Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms. 2019; 7(9):329. https://doi.org/10.3390/microorganisms7090329
Chicago/Turabian StyleBradáčová, Klára, Maximilian Sittinger, Katharina Tietz, Benjamin Neuhäuser, Ellen Kandeler, Nils Berger, Uwe Ludewig, and Günter Neumann. 2019. "Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils" Microorganisms 7, no. 9: 329. https://doi.org/10.3390/microorganisms7090329
APA StyleBradáčová, K., Sittinger, M., Tietz, K., Neuhäuser, B., Kandeler, E., Berger, N., Ludewig, U., & Neumann, G. (2019). Maize Inoculation with Microbial Consortia: Contrasting Effects on Rhizosphere Activities, Nutrient Acquisition and Early Growth in Different Soils. Microorganisms, 7(9), 329. https://doi.org/10.3390/microorganisms7090329