Taxonomic Distribution of Cytochrome P450 Monooxygenases (CYPs) among the Budding Yeasts (Sub-Phylum Saccharomycotina)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sequence Retrieval
2.2. Phylogenetic Analysis
3. Results
3.1. Sequence Collection and Initial Sorting
3.2. Phylogenetic Analyses
4. Discussion
Funding
Conflicts of Interest
Appendix A
Species | Genomic Accession 1 | Strand | Coordinates |
---|---|---|---|
CYP56 | |||
Aciculoconidium aculeatum | PPJB01000050 2 | + | 74966–76441 |
Alloascoidea hylecoeti | BCKZ01000006 | − | 381233–382128, 382188–382782 |
Barnettozyma populi | PPLZ02000015 | + | 151344–152804 |
Dipodascus albidus | PPJE01000011 | + | 4500–5072, 5133–5489, 5549–6016, 6083–6148 |
Diutina catenulata | PJEZ01000006 2 | + | 67720–69054 |
Kodamaea ohmeri | PPNN01000011 2 | − | 275828–277339 |
Magnusiomyces ingens | UIDE01000004 | − | 435148–435696, 435779–436135, 436192–436770 |
Priceomyces haplophilus | BCIF01000002 2 | + | 1110008–1111489 |
Phaffomyces opuntiae | PPNH01000004 | − | 4783–6303 |
Starmera amethionina | PPNC01000057 | + | 57884–59377 |
Teunomyces kruisii | PPLR01000028 2 | + | 76692–78167 |
Wickerhamia fluorescens | BCGE01000005 2 | − | 792413–793876 |
Yueomyces sinensis | PPMT01000005 | − | 193708–195165 |
Zygotorulaspora mrakii | PPHZ01000005 | + | 324089–325603 |
CYP52 | |||
Alloascoidea hylecoeti | BCKZ01000001 | − | 888959–890518 |
Diddensiella caesifluorescens (1) | PPJD01000017 | + | 195224–196783 |
Diddensiella caesifluorescens (2) | PPJD01000017 | + | 197357–198934 |
Nadsonia starkeyi-henricii (1) | QBLK01000108 | − | 23137–24687 |
Nadsonia starkeyi-henricii (2) | QBLK01000108 | − | 21081–22637 |
Saccharomycopsis fodiens (1) | JNFV01000009 2 | − | 683357–684952 |
Saccharomycopsis fodiens (2) | JNFV01000003 2 | + | 6643–8226 |
Saccharomycopsis fodiens (3) | JNFV01000009 2 | + | 7380–8951 |
Saccharomycopsis fodiens (4) | JNFV01000001 2 | + | 2891–4453 |
Starmerella bombicola (1) | NRDR01000004 | − | 591579–593135 |
Starmerella bombicola (2) | NRDR01000004 | − | 318040–319596 |
Starmerella bombicola (3) | NRDR01000025 | + | 62522–64117 |
Starmerella bombicola (4) | NRDR01000003 | − | 308477–310045 |
Starmerella bombicola (5) | NRDR01000005 | − | 9970–11538 |
Starmerella bombicola (6) | NRDR01000005 | − | 6608–8176 |
Trigonopsis variabilis | PPXM02000002 | − | 1137995–1139512 |
Wickerhamiella versatilis (1) | NRED01000001 | − | 1258441–1259970 |
Wickerhamiella versatilis (2) | NRED01000011 | − | 25516–27039 |
Wickerhamiella versatilis (3) | NRED01000004 | + | 480766–482298 |
Zygoascus ofunaensis | PPMC02000012 | − | 276041–277603 |
CYP501, CYP504 | |||
Alloascoidea hylecoeti | BCKZ01000004 | − | 123913–125610 |
Ascoidea rubescens | NW_017962913 2 | + | 1016180–1017844 |
Blastobotrys mokoenaii | PPJM02000008 | − | 17335–18903 |
Brettanomyces anomalus | LCTY01000003 | − | 955844–957598 |
Citeromyces matritensis | PPHV01003366 | + | 46403–47908 |
Deakozyma indianensis (1) | PPLG02000002 | + | 204898–206562 |
Deakozyma indianensis (2) | PPLG02000014 | − | 73651–75282 |
Ogataea parapolymorpha | NC_027864 | − | 1260033–1261667 |
Pichia membranifaciens | NW_017566986 | − | 510782–512500 |
Saccharomycopsis capsularis | PPIG01000060 2 | + | 55413–56858 |
Scheffersomyces stipitis | NC_009047 2 | − | 132488–134149 |
CYP548, CYP630, CYP5217, CYP5223, CYP5252 | |||
Alloascoidea hylecoeti | BCKZ01000023 | − | 227089–228648 |
Ambrosiozyma monospora | BCIP01000010 | − | 36354–38219 |
Ascoidea rubescens | NW_017962915 2 | − | 986327–988084 |
Blastobotrys americana | PPJN02000012 | + | 34235–35698 |
Blastobotrys peoriensis | PPJJ02000009 | − | 104592–106094 |
Blastobotrys serpentis | PPJG01000004 | − | 306605–308191 |
Botryozyma nematodophila | PPJC01001041 | − | 443–1888 |
Brettanomyces anomalus | LCTY01000007 | + | 286500–288059 |
Citeromyces matritensis | PPHV01003001 | − | 5839–7305 |
Clavispora lusitaniae | NW_003101576 2 | − | 792130–793887 |
Diddensiella caesifluorescens (1) | PPJD01000014 | + | 6451–7920 |
Diddensiella caesifluorescens (2) | PPJD01000011 | − | 56654–58084 |
Hyphopichia burtonii | NW_017963729 2 | + | 1954183–1955925 |
Lipomyces kononenkoae | PPJW01000001 | + | 112103–112111, 112147–112381, 112443–113550, 113613–113838 |
Nakazawaea holstii | PPKU01000003 3 | + | 174994–176508 |
Pichia membranifaciens | NW_017566985 | + | 474706–476289 |
Scheffersomyces stipitis | NC_009047 2 | + | 1074603–1076360 |
Sporopachydermia quercuum (1) | BCGN01000006 | − | 1022779–1024251 |
Sporopachydermia quercuum (2) | BCGN01000011 | + | 318748–320439 |
Trigonopsis variabilis | PPXM02000001 | − | 657214–658683 |
CYP5078 | |||
Ambrosiozyma kashinagacola | BCGA01000001 | + | 1475803–1477413 |
Ambrosiozyma maleeae | PPLV01000007 | + | 15809–17437 |
Ambrosiozyma oregonensis | PPKY02000013 | + | 3245–4852 |
Ambrosiozyma philentoma | PPKZ02000016 | − | 79288–80895 |
Ambrosiozyma pseudovanderkliftii | PPLW02000009 | − | 377701–379308 |
Ambrosiozyma vanderkliftii | PPHW01000114 | − | 32141–33748 |
Lipomyces suomiensis (1) | PPJQ02000001 | + | 628395–629990 |
Lipomyces suomiensis (2) | PPJQ02000011 | − | 223225–224796 |
Lipomyces suomiensis (3) | PPJQ02000011 | + | 248970–249275, 249341–249604, 249662–250591 |
Lipomyces suomiensis (4) | PPJQ02000063 | + | 4147–4461, 4542–4781, 4846–5757 |
Ogataea glucozyma | PPKO01000004 | + | 345713–347290 |
Ogataea henricii | PPHT01000003 | + | 42457–44139 |
Ogataea methylivora | PPKQ01000003 | + | 112748–114325 |
Ogataea populi-albae | PPIX02000004 | + | 115779–117362 |
Ogataea trehaloabstinens | PPKJ01000015 | + | 25059–26642 |
Ogataea zsoltii | PPKH02000011 | − | 45513–47093 |
Peterozyma toletana | PPKG01000007 3 | − | 78966–80543 |
Peterozyma xylosa | PPKF01000009 3 | − | 77489–79066 |
Sporopachydermia lactativora (1) | PPID01000125 | − | 23315–24868 |
Sporopachydermia lactativora (2) | PPID01000036 | + | 26664–28286 |
Sporopachydermia quercuum | BCGN01000002 | + | 250317–251900 |
References
- Hittinger, C.T.; Rokas, A.; Bai, F.Y.; Boekhout, T.; Gonçalves, P.; Jeffries, T.W.; Kominek, J.; Lachance, M.A.; Libkind, D.; Rosa, C.A.; et al. Genomics and the making of yeast biodiversity. Curr. Opin. Genet. Dev. 2015, 35, 100–109. [Google Scholar] [CrossRef]
- Riley, R.; Haridas, S.; Wolfe, K.H.; Lopes, M.R.; Hittinger, C.T.; Göker, M.; Salamov, A.A.; Wisecaver, J.H.; Long, T.M.; Calvey, C.H.; et al. Comparative genomics of biotechnologically important yeasts. Proc. Natl. Acad. Sci. USA 2016, 113, 9882–9887. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.X.; Opulente, D.A.; Kominek, J.; Zhou, X.; Steenwyk, J.L.; Buh, K.V.; Haase, M.A.B.; Wisecaver, J.H.; Wang, M.; Doering, D.T.; et al. Tempo and mode of genome evolution in the budding yeast subphylum. Cell 2018, 175, 1533–1545. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.D.; Pribat, A.; Waller, J.C.; de Crécy-Lagard, V. ‘Unknown’ proteins and ‘orphan’ enzymes: The missing half of the engineering parts list--and how to find it. Biochem. J. 2009, 425, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.R. Cytochrome P450 diversity in the tree of life. Biochim. Biophys. Acta Proteins Proteom. 2018, 1866, 141–154. [Google Scholar] [CrossRef] [PubMed]
- Crešnar, B.; Petrič, S. Cytochrome P450 enzymes in the fungal kingdom. Biochim. Biophys. Acta 2011, 1814, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Hannemann, F.; Bichet, A.; Ewen, K.M.; Bernhardt, R. Cytochrome P450 systems—Biological variations of electron transport chains. Biochim. Biophys. Acta 2007, 1770, 330–344. [Google Scholar] [CrossRef]
- Nebert, D.W.; Nelson, D.R.; Coon, M.J.; Estabrook, R.W.; Feyereisen, R.; Fujii-Kuriyama, Y.; Gonzalez, F.J.; Guengerich, F.P.; Gunsalus, I.C.; Johnson, E.F.; et al. The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol. 1991, 10, 1–14. [Google Scholar] [CrossRef]
- Kelly, S.L.; Lamb, D.C.; Corran, A.J.; Baldwin, B.C.; Parks, L.W.; Kelly, D.E. Purification and reconstitution of activity of Saccharomyces cerevisiae P450 61, a sterol delta 22-desaturase. FEBS Lett. 1995, 377, 217–220. [Google Scholar] [CrossRef]
- Turi, T.G.; Kalb, V.F.; Loper, J.C. Cytochrome P450 lanosterol 14 alpha-demethylase (ERG11) and manganese superoxide dismutase (SOD1) are adjacent genes in Saccharomyces cerevisiae. Yeast 1991, 7, 627–630. [Google Scholar] [CrossRef]
- Briza, P.; Eckerstorfer, M.; Breitenbach, M. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble ll-dityrosine-containing precursor of the yeast spore wall. Proc. Natl. Acad. Sci. USA 1994, 91, 4524–4528. [Google Scholar] [CrossRef] [PubMed]
- Briza, P.; Winkler, G.; Kalchhauser, H.; Breitenbach, M. Dityrosine is a prominent component of the yeast ascospore wall. A proof of its structure. J. Biol. Chem. 1986, 261, 4288–4294. [Google Scholar] [PubMed]
- Sanglard, D.; Loper, J.C. Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: Identification of a new P450 gene family. Gene 1989, 76, 121–136. [Google Scholar] [CrossRef]
- Van Bogaert, I.N.; De Mey, M.; Develter, D.; Soetaert, W.; Vandamme, E.J. Importance of the cytochrome P450 monooxygenase CYP52 family for the sophorolipid-producing yeast Candida bombicola. FEMS Yeast Res. 2009, 9, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.J.; Kominek, J.; Opulente, D.A.; Shen, X.X.; Zhou, X.; Langdon, Q.K.; DeVirgilio, J.; Hulfachor, A.B.; Kurtzman, C.P.; Rokas, A.; et al. Functional and evolutionary characterization of a secondary metabolite gene cluster in budding yeasts. Proc. Natl. Acad. Sci. USA 2018, 115, 11030–11035. [Google Scholar] [CrossRef] [PubMed]
- Gore-Lloyd, D.; Sumann, I.; Brachmann, A.O.; Schneeberger, K.; Ortiz-Merino, R.A.; Moreno-Beltrán, M.; Schläfli, M.; Kirner, P.; Santos Kron, A.; Rueda-Mejia, M.P.; et al. Snf2 controls pulcherriminic acid biosynthesis and antifungal activity of the biocontrol yeast Metschnikowia pulcherrima. Mol. Microbiol. 2019, 112, 317–332. [Google Scholar] [CrossRef]
- Nelson, D.R. The cytochrome p450 homepage. Hum. Genom. 2009, 4, 59–65. [Google Scholar]
- Moktali, V.; Park, J.; Fedorova-Abrams, N.D.; Park, B.; Choi, J.; Lee, Y.H.; Kang, S. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genom. 2012, 13, 525. [Google Scholar] [CrossRef]
- Chen, W.; Lee, M.K.; Jefcoate, C.; Kim, S.C.; Chen, F.; Yu, J.H. Fungal cytochrome P450 monooxygenases: Their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 2014, 6, 1620–1634. [Google Scholar] [CrossRef]
- Katoh, K.; Kuma, K.; Toh, H.; Miyata, T. MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33, 511–518. [Google Scholar] [CrossRef]
- Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Lefort, V.; Longueville, J.E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef]
- Le, S.; Gascuel, O. An improved general amino-acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.E.; Krasevec, N.; Mullins, J.; Nelson, D.R. The CYPome (Cytochrome P450 complement) of Aspergillus nidulans. Fungal Genet. Biol. 2009, 46, S53–S61. [Google Scholar] [CrossRef]
- Krassowski, T.; Coughlan, A.Y.; Shen, X.X.; Zhou, X.; Kominek, J.; Opulente, D.A.; Riley, R.; Grigoriev, I.V.; Maheshwari, N.; Shields, D.C.; et al. Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat. Commun. 2018, 9, 1887. [Google Scholar] [CrossRef]
- Kitazume, T.; Takaya, N.; Nakayama, N.; Shoun, H. Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. J. Biol. Chem. 2000, 275, 39734–39740. [Google Scholar] [CrossRef]
- Nakayama, N.; Takemae, A.; Shoun, H. Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum. J. Biochem. 1996, 119, 435–440. [Google Scholar] [CrossRef]
- Venter, P.; Kock, J.L.; Kumar, G.S.; Botha, A.; Coetzee, D.J.; Botes, P.J.; Bhatt, R.K.; Falck, J.R.; Schewe, T.; Nigam, S. Production of 3R-hydroxy-polyenoic fatty acids by the yeast Dipodascopsis uninucleata. Lipids 1997, 32, 1277–1283. [Google Scholar] [CrossRef]
- Smith, D.P.; Kock, J.L.F.; van Wyk, P.W.J.; Venter, P.; Coetzee, D.J.; van Heerden, E.; Linke, D.; Nigam, S. The occurrence of 3-hydroxy oxylipins in the ascomycetous yeast family Lipomycetaceae. S. Afr. J. Sci. 2000, 96, 247–249. [Google Scholar]
- Melo, N.R.; Moran, G.P.; Warrilow, A.G.; Dudley, E.; Smith, S.N.; Sullivan, D.J.; Lamb, D.C.; Kelly, D.E.; Coleman, D.C.; Kelly, S.L. CYP56 (Dit2p) in Candida albicans: Characterization and investigation of its role in growth and antifungal drug susceptibility. Antimicrob. Agents Chemother. 2008, 52, 3718–3724. [Google Scholar] [CrossRef] [PubMed]
- Van Bogaert, I.N.; Holvoet, K.; Roelants, S.L.; Li, B.; Lin, Y.C.; Van de Peer, Y.; Soetaert, W. The biosynthetic gene cluster for sophorolipids: A biotechnological interesting biosurfactant produced by Starmerella bombicola. Mol. Microbiol. 2013, 88, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Saerens, K.M.; Saey, L.; Soetaert, W. One-step production of unacetylated sophorolipids by an acetyltransferase negative Candida bombicola. Biotechnol. Bioeng. 2011, 108, 2923–2931. [Google Scholar] [CrossRef] [PubMed]
- Saerens, K.M.; Roelants, S.L.; Van Bogaert, I.N.; Soetaert, W. Identification of the UDP-glucosyltransferase gene UGTA1, responsible for the first glucosylation step in the sophorolipid biosynthetic pathway of Candida bombicola ATCC 22214. FEMS Yeast Res. 2011, 11, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Saerens, K.M.; Zhang, J.; Saey, L.; Van Bogaert, I.N.; Soetaert, W. Cloning and functional characterization of the UDP-glucosyltransferase UgtB1 involved in sophorolipid production by Candida bombicola and creation of a glucolipid-producing yeast strain. Yeast 2011, 28, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Gojković, Z.; Sandrini, M.P.; Piskur, J. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 2001, 158, 999–1011. [Google Scholar] [PubMed]
- Kurtzman, C.P.; Price, N.P.; Ray, K.J.; Kuo, T.M. Production of sophorolipid biosurfactants by multiple species of the Starmerella(Candida) bombicola yeast clade. FEMS Microbiol. Lett. 2010, 311, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Song, X.; Zhang, H.; Qu, Y.B.; Miao, J.Y. Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb. Technol. 2006, 39, 501–506. [Google Scholar] [CrossRef]
- Mingot, J.M.; Peñalva, M.A.; Fernández-Cañón, J.M. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 mono-oxygenase catalyzing phenylacetate 2-hydroxylation, resulting in penicillin overproduction. J. Biol. Chem. 1999, 274, 14545–14550. [Google Scholar] [CrossRef]
- Ferrer-Sevillano, F.; Fernández-Cañón, J.M. Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3, 4-dihydroxyphenylacetate 6-hydroxylase activities. Eukaryot. Cell 2007, 6, 514–520. [Google Scholar] [CrossRef]
- Middelhoven, W.J. Catabolism of benzene compounds by ascomycetous and basidiomycetous yeasts and yeastlike fungi. A literature review and an experimental approach. Antonie Van Leeuwenhoek 1993, 63, 125–144. [Google Scholar] [CrossRef]
- Nelson, D.R. Metazoan cytochrome P450 evolution. Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 1998, 121, 15–22. [Google Scholar] [CrossRef]
- Steenwyk, J.L.; Opulente, D.A.; Kominek, J.; Shen, X.X.; Zhou, X.; Labella, A.L.; Bradley, N.P.; Eichman, B.F.; Čadež, N.; Libkind, D.; et al. Extensive loss of cell-cycle and DNA repair genes in an ancient lineage of bipolar budding yeasts. PLoS Biol. 2019, 17, e3000255. [Google Scholar] [CrossRef]
- Hausjell, J.; Halbwirth, H.; Spadiut, O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci. Rep. 2018, 38, BSR20171290. [Google Scholar] [CrossRef]
CYP Family | Species | Accession Number |
---|---|---|
51 (ERG11) | Saccharomyces cerevisiae | NP_011871 |
52 (ALK) | Candida tropicalis | XP_002546278 |
56 (DIT2) | Saccharomyces cerevisiae | NP_010690 |
61 (ERG5) | Saccharomyces cerevisiae | NP_013728 |
501 | Meyerozyma guillermondii | XP_001485863 |
504 | Meyerozyma guillermondii | XP_001483214 |
548 | Yarrowia lipolytica | XP_501196 |
5217 | Candida albicans | XP_715414 |
5223 | Yarrowia lipolytica | XP_503945 |
5251 (PUL2) | Kluyveromyces lactis | XP_453057 |
5252 | Cyberlindnera fabianii | CDR39009 |
Species | Protein Accession | Top Assigned Asp. nidulans CYP Hit (Identity/Similarity) |
---|---|---|
Group I (CYP617-like) | ||
Lipomyces starkeyi | ODQ70065 | XP_659488 (31%/50%) |
Lipomyces starkeyi | ODQ69649 | XP_659488 (32%/50%) |
Lipomyces starkeyi | ODQ71312 | XP_659488 (32%/51%) |
Lipomyces starkeyi | ODQ70063 | XP_659488 (34%/55%) |
Lipomyces starkeyi | ODQ72725 | XP_659488 (34%/51%) |
Tortispora caseinolytica | ODV92859 | XP_659488 (27%/47%) |
Group II (CYP540) | ||
Lipomyces starkeyi | ODQ75312 | XP_682188 (46%/65%) 1 |
Group III (CYP59-like) | ||
Lipomyces starkeyi | ODQ74007 2 | XP_681077 (38%/55%) 3 |
Group IV (CYP677) | ||
Lipomyces starkeyi | ODQ75272 | XP_681884 (44%/60%) |
Group V | ||
Geotrichum candidum | CDO53625 | XP_661721 (22%/41%) |
Lipomyces starkeyi | ODQ69471 | XP_661721 (23%/40%) |
Lipomyces starkeyi | ODQ74469 | XP_661721 (23%/36%) |
Lipomyces starkeyi | ODQ69396 | XP_660953 (27%/45%) |
Lipomyces starkeyi | ODQ72272 | XP_661721 (22%/40%) |
Lipomyces starkeyi | ODQ72285 | XP_682522 (31%/48%) |
Group VI (CYP505) | ||
Lipomyces starkeyi | ODQ75335 | XP_664439 (46%/58%) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linder, T. Taxonomic Distribution of Cytochrome P450 Monooxygenases (CYPs) among the Budding Yeasts (Sub-Phylum Saccharomycotina). Microorganisms 2019, 7, 247. https://doi.org/10.3390/microorganisms7080247
Linder T. Taxonomic Distribution of Cytochrome P450 Monooxygenases (CYPs) among the Budding Yeasts (Sub-Phylum Saccharomycotina). Microorganisms. 2019; 7(8):247. https://doi.org/10.3390/microorganisms7080247
Chicago/Turabian StyleLinder, Tomas. 2019. "Taxonomic Distribution of Cytochrome P450 Monooxygenases (CYPs) among the Budding Yeasts (Sub-Phylum Saccharomycotina)" Microorganisms 7, no. 8: 247. https://doi.org/10.3390/microorganisms7080247
APA StyleLinder, T. (2019). Taxonomic Distribution of Cytochrome P450 Monooxygenases (CYPs) among the Budding Yeasts (Sub-Phylum Saccharomycotina). Microorganisms, 7(8), 247. https://doi.org/10.3390/microorganisms7080247