Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review
Abstract
:1. Introduction
2. Laccase Production from Lignocellulosic Agricultural Wastes by SSF
2.1. Lignocellulosic Agricultural Wastes
2.2. Supplemental Nutrients
2.3. Potential Inducers
3. Comparison of Laccase Production from Lignocellulosic Agricultural Wastes by SSF or SF
4. Fungal Strains Effective for Laccase Production from Agricultural Wastes
5. Application of Laccase Production from Lignocellulosic Wastes by SSF
5.1. Lignin Degradation
5.2. Dye Decolorization
5.3. Phenolic Compound Degradation and Others
6. Outlook
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garrido-Bazán, V.; Téllez-Téllez, M.; Herrera-Estrella, A.; Díaz-Godínez, G.; Nava-Galicia, S.; Villalobos-López, M.Á.; Arroyo-Becerra, A.; Bibbins-Martinez, M. Effect of textile dyes on activity and differential regulation of laccase genes from Pleurotus ostreatus grown in submerged fermentation. AMB Express. 2016, 6, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, C.; Da Silva, A.M.F.; Ziarelli, F.; Perraud-Gaime, I.; Gutiérrez-Rivera, B.; García-Pérez, J.A.; Alarcon, E. Laccase induction by synthetic dyes in Pycnoporus sanguineus and their possible use for sugar cane bagasse delignification. Appl. Microbiol. Biotechnol. 2017, 101, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Nandal, P.; Ravella, S.R.; Kuhad, R.C. Laccase production by Coriolopsis caperata RCK2011: Optimization under solid state fermentation by Taguchi DOE methodology. Sci. Rep. 2013, 3, 1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, S.; Gupte, A. Optimization and hyper production of laccase from novel agaricomycete Pseudolagarobasidium acaciicola AGST3 and its application in in vitro decolorization of dyes. Ann. Microbiol. 2015, 65, 185–196. [Google Scholar] [CrossRef]
- Zimbardi, A.L.R.L.; Camargo, P.F.; Carli, S.; Neto, S.A.; Meleiro, L.P.; Rosa, J.C.; De Andrade, A.R.; Jorge, J.A.; Furriel, R.P.M. A high redox potential laccase from Pycnoporus sanguineus RP15: Potential application for dye decolorization. Int. J. Mol. Sci. 2016, 17, 672. [Google Scholar] [CrossRef] [Green Version]
- Zeng, S.; Zhao, J.; Xia, L. Simultaneous production of laccase and degradation of bisphenol A with Trametes versicolor cultivated on agricultural wastes. Bioprocess Biosyst. Eng. 2017, 40, 1237–1245. [Google Scholar] [CrossRef] [Green Version]
- Xin, F.; Geng, A. Utilization of horticultural waste for laccase production by Trametes versicolor under solid-state fermentation. Appl. Biochem. Biotechnol. 2011, 163, 235–246. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, K.K.; Jain, A.; Kidwai, M.; Kuhad, R.C. Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Appl. Microbiol. Biotechnol. 2018, 102, 10327–10343. [Google Scholar] [CrossRef]
- Akpinar, M.; Ozturk Urek, R. Induction of fungal laccase production under solid state bioprocessing of new agroindustrial waste and its application on dye decolorization. 3 Biotech 2017, 7, 98. [Google Scholar] [CrossRef] [Green Version]
- Chenthamarakshan, A.; Parambayil, N.; Miziriya, N.; Soumya, P.S.; Lakshmi, M.S.K.; Ramgopal, A.; Dileep, A.; Nambisan, P. Optimization of laccase production from Marasmiellus palmivorus LA1 by Taguchi method of Design of experiments. BMC Biotechnol. 2017, 17, 12. [Google Scholar] [CrossRef] [Green Version]
- Dey, T.B.; Chakraborty, S.; Jain, K.K.; Sharma, A.; Kuhad, R.C. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends Food Sci Technol. 2016, 53, 60–74. [Google Scholar]
- Nguyen, K.A.; Wikee, S.; Lumyong, S. Brief review: Lignocellulolytic enzymes from polypores for efficient utilization of biomass. Mycosphere 2018, 9, 1073–1088. [Google Scholar] [CrossRef]
- Rodríguez-Couto, S. A promising inert support for laccase production and decolouration of textile wastewater by the white-rot fungus Trametes pubescesns. J. Hazard. Mater. 2012, 233, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, A.C.; Cobas, M.; Hormaza, A.; Sanroman, M.A. Degradation of adsorbed azo dye by solid-state fermentation: Improvement of culture conditions, a kinetic study, and rotating drum bioreactor performance. Water Air Soil Pollut. 2017, 228, 205. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, W.; Chen, H. Flavonoid-rich plants used as sole substrate to induce the solid-state fermentation of laccase. Appl. Biochem. Biotechnol. 2014, 172, 3583–3592. [Google Scholar] [CrossRef] [PubMed]
- Akpinar, M.; Urek, R.O. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes. Prep. Biochem. Biotechnol. 2014, 44, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.H.; Ma, H.L.; He, R.H.; Huang, L.R.; Zhu, S.Y.; Ding, Q.Z.; Luo, L. Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT Food Sci. Technol. 2017, 86, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, W.; Mei, C.L.; Huang, Y.H.; Chen, Q.S. Rapid diagnosis of normal and abnormal conditions in solid-state fermentation of bioethanol using fourier transform near-infrared spectroscopy. Energy Fuels 2017, 31, 12959–12964. [Google Scholar] [CrossRef]
- Rodriguez-Couto, S.; Toca-Herrera, J.L. Laccase production at reactor scale by filamentous fungi. Biotechnol. Adv. 2007, 25, 558–569. [Google Scholar] [CrossRef]
- Postemsky, P.D.; Bidegain, M.A.; González-Matute, R.; Figlas, N.D.; Cubitto, M.A. Pilot-scale bioconversion of rice and sunflower agro-residues into medicinal mushrooms and laccase enzymes through solid-state fermentation with Ganoderma lucidum. Bioresour. Technol. 2017, 231, 85–93. [Google Scholar] [CrossRef]
- Hatvani, N.; Mécs, I. Production of laccase and manganese peroxidase by Lentinus edodes on malt-containing by-product of the brewing process. Process Biochem. 2001, 37, 491–496. [Google Scholar] [CrossRef]
- Chen, H.Y.; Xue, D.S.; Feng, X.Y.; Yao, S.J. Screening and Production of Ligninolytic Enzyme by a Marine-Derived Fungal Pestalotiopsis sp. J63. Appl. Biochem. Biotechnol. 2011, 165, 1754–1769. [Google Scholar] [CrossRef] [PubMed]
- Tišma, M.; Žnidaršič-Plazl, P.; Vasić-Rački, Đ.; Zelić, B. Optimization of laccase production by Trametes versicolor cultivated on industrial waste. Appl. Biochem. Biotechnol. 2012, 166, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Soumya, P.S.; Lakshmi, M.S.K.; Nambisan, P. Application of response surface methodology for the optimization of laccase production from Pleurotus ostreatus by solid state fermentation on pineapple leaf substrate. J. Sci. Ind. Res. India 2016, 75, 306–314. [Google Scholar]
- Ren, N.; Wang, A.; Cao, G.; Xu, J.; Gao, L. Bioconversion of lignocellulosic biomass to hydrogen: Potential and challenges. Biotechnol. Adv. 2009, 27, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lai, C.; Zeng, G.; Huang, D.; Xu, P.; Zhang, C.; Cheng, M.; Wan, J. Manganese-enhanced degradation of lignocellulosic waste by Phanerochaete chrysosporium: Evidence of enzyme activity and gene transcription. Appl. Microbiol. Biotechnol. 2017, 101, 6541–6549. [Google Scholar] [CrossRef]
- Kshirsagar, S.D.; Waghmare, P.R.; Loni, P.C.; Patil, S.A.; Govindwar, S.P. Dilute acid pretreatment of rice straw structural characterization and optimization of enzymatic hydrolysis conditions by response surface methodology. RSC Adv. 2015, 5, 46525–46533. [Google Scholar] [CrossRef]
- Iandolo, D.; Piscitelli, A.; Sannia, G.; Faraco, V. Enzyme production by solid substrate fermentation of Pleurotus ostreatus and Trametes versicolor on tomato pomace. Appl. Biochem. Biotechnol. 2011, 163, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Gupta, V.; Khan, M.; Balda, S.; Gupta, N.; Capalash, N.; Sharma, P. Flavonoid-rich agro-industrial residues for enhanced bacterial laccase production by submerged and solid-state fermentation. 3 Biotech 2017, 7, 200. [Google Scholar] [CrossRef]
- Cabrera, R.; Lopez-Pena, D.; Asaff, A.; Esqueda, M.; Valenzuela-Soto, E.M. Bioavailability of Compounds Susceptible to Enzymatic Oxidation Enhances Growth of Shiitake Medicinal Mushroom (Lentinus edodes) in Solid-State Fermentation with Vineyard Prunings. Int. J. Med. Mushrooms 2018, 20, 291–303. [Google Scholar] [CrossRef]
- Anwar, Z.; Gulfraz, M.; Irshad, M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review. J. Radiat. Res. 2014, 7, 163–173. [Google Scholar] [CrossRef]
- Daâssi, D.; Zouari-Mechichi, H.; Frikha, F.; Rodríguez-Couto, S.; Nasri, M.; Mechichi, T. Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization. J. Environ. Health Sci. Eng. 2016, 14, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, S.G.; Faraco, V.; Amore, A.; Letti, L.A.J.; Soccol, V.T.; Soccol, C.R. Statistical Optimization of Laccase Production and Delignification of Sugarcane Bagasse by Pleurotus ostreatus in solid-state fermentation. BioMed Res. Int. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lonappan, L.; Rouissi, T.; Laadila, M.A.; Brar, S.K.; Galan, L.H.; Verma, M.; Suranripalli, R.Y. Agro-industrial produced laccase for degradation of diclofenac and identification of transformation products. ACS Sustain. Chem. Eng. 2017, 5, 5772–5781. [Google Scholar] [CrossRef]
- Meehnian, H.; Jana, A.K.; Jana, M.M. Pretreatment of cotton stalks by synergistic interaction of Daedalea flavida and Phlebia radiata in co-culture for improvement in delignification and saccharification. Int. Biodeterior. Biodegrad. 2017, 117, 68–77. [Google Scholar] [CrossRef]
- Zhang, W.M.; Wu, S.H.; Cai, L.Y.; Liu, X.L.; Wu, H.; Xin, F.X.; Zhang, M.; Jiang, M. Improved Treatment and Utilization of Rice Straw by Coprinopsis cinerea. Appl. Biochem. Biotech. 2018, 184, 616–629. [Google Scholar] [CrossRef]
- Rodriguez-Couto, S.; Sanromán, M.A. Application of solid-state fermentation to ligninolytic enzyme production. Biochem. Eng. J. 2005, 22, 211–219. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the valorization of lignocellulosic materials by biotechnology: An overview. Bioresources 2013, 8, 3157–3176. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, W.; Ng, T.B.; Deng, X.; Lin, J.; Ye, X. Laccases: Production, Expression Regulation, and Applications in Pharmaceutical Biodegradation. Front. Microbiol. 2017, 8, 832. [Google Scholar] [CrossRef]
- Bertrand, B.; Martínez-Morales, F.; Trejo-Hernández, M.R. Upgrading Laccase Production and Biochemical Properties: Strategies and Challenges. Biotechnol. Prog. 2017, 33, 1015–1034. [Google Scholar] [CrossRef]
- Arias, M.; Blánquez, A.; Hernández, M.; Rodríguez, J.; Ball, A.; Jiménez-Morillo, N.T.; Gonzalez-Vila, F.J.; Gonzalez-Perez, J.A. Role of a thermostable laccase produced by Streptomyces ipomoeae in the degradation of wheat straw lignin in solid state fermentation. J. Anal. Appl. Pyrolysis 2016, 122, 202–208. [Google Scholar] [CrossRef]
- Ijoma, G.N.; Selvarajan, R.; Tekere, M. The potential of fungal co-cultures as biological inducers for increased ligninolytic enzymes on agricultural residues. Int. J. Environ. Sci. Technol. 2019, 16, 305–324. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H.; Öz, C. Progress in bioethanol processing. Prog. Energy Combust. Sci. 2008, 34, 551–573. [Google Scholar] [CrossRef]
- Osma, J.F.; Herrera, J.L.T.; Rodríguez-Couto, S. Banana skin: A novel waste for laccase production by Trametes pubescens under solid-state conditions. Application to synthetic dye decolouration. Dyes Pigment. 2007, 75, 32–37. [Google Scholar] [CrossRef]
- Omar, F.N.; Hafid, H.S.; Samsu, B.A.; Map, M.; Abdullah, J. Oil palm fiber biodegradation: Physico-chemical and structural relationships. Planta 2017, 246, 567–577. [Google Scholar] [CrossRef]
- Liu, J.; Wang, M.L.; Tonnis, B.; Habteselassie, M.; Liao, X.; Huang, Q. Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresour. Technol. 2013, 135, 39–45. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Zeng, G.M.; Huang, D.L.; Lai, C.; Huang, C.; Wei, Z.; Li, N.J.; Xu, P.; Cheng, M. Utilization of nano-gold tracing technique: Study the adsorption and transmission of laccase in mediator-involved enzymatic degradation of lignin during solid-state fermentation. Biochem. Eng. J. 2014, 91, 149–156. [Google Scholar] [CrossRef]
- Adekunle, A.E.; Zhang, C.; Guo, C.; Liu, C.Z. Laccase production from Trametes versicolor in solid-state fermentation of steam-exploded pretreated cornstalk. Waste Biomass Valorization 2017, 8, 153–159. [Google Scholar] [CrossRef]
- Martani, F.; Beltrametti, F.; Porro, D.; Branduardi, P.; Lotti, M. The importance of fermentative conditions for the biotechnological production of lignin modifying enzymes from white-rot fungi. FEMS Microbiol. Lett. 2017, 364, 134. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Jana, A.K.; Jana, M.M.; Gupta, A. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour. Technol. 2017, 236, 49–59. [Google Scholar] [CrossRef]
- Adekunle, A.E.; Guo, C.; Liu, C.Z. Lignin-Enhanced Laccase Production from Trametes versicolor. Waste Biomass Valorization 2017, 8, 1061–1066. [Google Scholar] [CrossRef]
- Gómez, J.; Pazos, M.; Rodríguez-Couto, S.; Sanromán, M.Á. Chestnut shell and barley bran as potential substrates for laccase production by Coriolopsis rigida under solid-state conditions. Braz. J. Microbiol. 2005, 68, 315–319. [Google Scholar] [CrossRef]
- Srinivasan, C.; Dsouza, T.; Boominathan, K.; Reddy, C. Demonstration of Laccase in the White-rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 1995, 61, 4274–4277. [Google Scholar] [PubMed]
- Rodríguez-Couto, S. Production of laccase and decolouration of the textile dye Remazol Brilliant Blue R in temporary immersion bioreactors. J. Hazard. Mater. 2011, 194, 297–302. [Google Scholar] [CrossRef]
- Liu, J.; Liu, B.; Zhan, L.; Wang, P.; Ju, M.; Wu, W. Solid-state fermentation of ammoniated corn straw to animal feed by Pleurotus ostreatus Pl-5. BioResources 2017, 12, 1723–1736. [Google Scholar] [CrossRef] [Green Version]
- Albornoz, S.; Wyman, V.; Palma, C.; Carvajal, A. Understanding of the contribution of the fungal treatment conditions in a wheat straw biorefinery that produces enzymes and biogas. Biochem. Eng. J. 2018, 140, 140–147. [Google Scholar] [CrossRef]
- Singh, P.; Sulaiman, O.; Hashim, R.; Peng, L.C.; Singh, R.P. Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor. Int. Biodeterior. Biodegrad. 2013, 82, 96–103. [Google Scholar] [CrossRef]
- Aydınoğlu, T.; Sargın, S. Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst. Eng. 2013, 36, 215–222. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Šelo, G.; Zelić, B.; Planinić, M.; Tišma, M. Recovery of phenolic acid and enzyme production from corn silage biologically treated by Trametes versicolor. Appl. Biochem. Biotechnol. 2017, 181, 948–960. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, P.; Saharan, V.; Kapoor, R.K. Simultaneous laccase production and transformation of bisphenol-A and triclosan using Trametes versicolor. 3 Biotech 2019, 9, 129. [Google Scholar] [CrossRef]
- Bazanella, G.C.D.; de Souza, D.F.; Castoldi, R.; Oliveira, R.F.; Bracht, A.; Peralta, R.M. Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization. Folia Microbiol. 2013, 58, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Economou, C.N.; Diamantopoulou, P.A.; Philippoussis, A.N. Valorization of spent oyster mushroom substrate and laccase recovery through successive solid state cultivation of Pleurotus, Ganoderma, and Lentinula strains. Appl. Microbiol. Biotechnol. 2017, 101, 5213–5222. [Google Scholar] [CrossRef] [PubMed]
- Moilanen, U.; Winquist, E.; Mattila, T.; Hatakka, A.; Eerikäinen, T. Production of manganese peroxidase and laccase in a solid-state bioreactor and modeling of enzyme production kinetics. Bioprocess Biosyst. Eng. 2014, 38, 57–68. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, T.C.; Reis, N.; Silva, T.P.; Machado, F.D.P.; Bonomo, R.C.F.; Franco, M. Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by Aspergillus niger. Food Sci. Biotechnol. 2016, 25, 205–211. [Google Scholar] [CrossRef]
- dos Santos, T.C.; de Brito, A.R.; Bonomo, R.C.F.; Pires, A.J.V.; Aguiar-Oliveira, E.; Silva, T.P.; Franco, M. Statistical optimization of culture conditions and characterization for ligninolytic enzymes produced from Rhizopus Sp. using prickly palm cactus husk. Chem. Eng. Commun. 2017, 204, 55–63. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Kaur, S.; Brar, S.K. In-vitro decolorization of recalcitrant dyes through an ecofriendly approach using laccase from Trametes versicolor grown on brewer’s spent grain. Int. Biodeterior. Biodegrad. 2012, 72, 67–75. [Google Scholar] [CrossRef]
- Böhmer, U.; Frömmel, S.; Bley, T.; Müller, M.; Frankenfeld, K.; Miethe, P. Solid-state fermentation of lignocellulotic materials for the production of enzymes by the white-rot fungus Trametes hirsuta in a modular bioreactor. Eng. Life Sci. 2011, 11, 395–401. [Google Scholar] [CrossRef]
- Wang, P.; Hu, X.; Cook, S.; Begonia, M.; Lee, K.S.; Hwang, H.M. Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J. Microbiol. Biotechnol. 2008, 24, 2205–2212. [Google Scholar] [CrossRef]
- Kaluskar, V.M.; Kapadnis, B.P.; Jaspers, C.; Penninckx, M.J. Production of laccase by immobilized cells of Agaricus sp.: Induction effect of xylan and lignin derivatives. Appl. Biochem. Biotechnol. 1999, 76, 161–170. [Google Scholar] [CrossRef]
- Tavares, A.; Coelho, M.; Agapito, M.; Coutinho, J.; Xavier, A. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl. Biochem. Biotechnol. 2006, 134, 233–248. [Google Scholar] [CrossRef]
- Breen, A.; Singleton, F.L. Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 1999, 10, 252–258. [Google Scholar] [CrossRef]
- Jing, D. Improving the simultaneous production of laccase and lignin peroxidase from Streptomyces lavendulae by medium optimization. Bioresour. Technol. 2010, 101, 7592–7597. [Google Scholar] [CrossRef] [PubMed]
- Stajić, M.; Persky, L.; Friesem, D.; Hadar, Y.; Wasser, S.P.; Nevo, E.; Vukojevic, J. Effect of different carbon and nitrogen sources on laccase and peroxidases production by selected Pleurotus species. Enzym. Microb. Technol. 2006, 38, 65–73. [Google Scholar] [CrossRef]
- Elisashvili, V.; Parlar, H.; Kachlishvili, E.; Chichua, D.; Bakradze, M.; Kokhreidze, N.; Kvesitadze, G. Ligninolytic activity of basidiomycetes grown under submerged and solid-state fermentation on plant raw material (sawdust of grapevine cuttings). Adv. Food Sci. 2001, 23, 117–123. [Google Scholar]
- Rosales, E.; Rodríguez-Couto, S.; Ángeles Sanromán, M. Reutilisation of food processing wastes for production of relevant metabolites: Application to laccase production by Trametes hirsuta. J. Food Eng. 2005, 66, 419–423. [Google Scholar] [CrossRef]
- Cilerdzic, J.; Galic, M.; Ivanovic, Z.; Brceski, I.; Vukojevic, J.; Stajic, M. Stimulation of Wood Degradation by Daedaleopsis confragosa and D. tricolor. Appl. Biochem. Biotech. 2019, 187, 1371–1383. [Google Scholar] [CrossRef]
- Tavares, A.; Coelho, M.; Coutinho, J.; Xavier, A. Laccase improvement in submerged cultivation: Induced production and kinetic modelling. J. Chem. Technol. Biotechnol. 2005, 80, 669–676. [Google Scholar] [CrossRef]
- Fillat, Ú.; Martín-Sampedro, R.; Macaya-Sanz, D.; Martín, J.A.; Ibarra, D.; Martínez, M.J. Screening of eucalyptus wood endophytes for laccase activity. Process Biochem. 2016, 51, 589–598. [Google Scholar] [CrossRef]
- Li, H.; Zhang, R.; Tang, L.; Zhang, J.; Mao, Z. Manganese peroxidase production from cassava residue by Phanerochaete chrysosporium in solid state fermentation and its decolorization of indigo carmine. Chin. J. Chem. Eng. 2015, 23, 227–233. [Google Scholar] [CrossRef]
- Meehnian, H.; Jana, A.K.; Jana, M.M. Effect of particle size, moisture content, and supplements on selective pretreatment of cotton stalks by Daedalea flavida and enzymatic saccharification. 3 Biotech 2016, 6, 235. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Liu, J.; Ning, Y.; Liao, X.; Jia, Y. Eichhornia crassipes: Agro-waster for a novel thermostable laccase production by Pycnoporus sanguineus SYBC-L1. J. Biosci. Bioeng. 2017, 123, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Songulashvili, G.; Spindler, D.; Jimenéztobón, G.A.; Jaspers, C.; Kerns, G.; Penninckx, M.J. Production of a high level of laccase by submerged fermentation at 120-L scale of Cerrena unicolor C-139 grown on wheat bran. C. R. Biol. 2015, 338, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Z.; He, Q. Value-added bioconversion of biomass by solid-state fermentation. J. Chem. Technol. Biotechnol. 2012, 87, 1619–1625. [Google Scholar] [CrossRef]
- Kaur, H.; Kapoor, S.; Kaur, G. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ. Monit. Assess. 2016, 188, 588. [Google Scholar] [CrossRef]
- Wang, H.; Peng, L.; Ding, Z.Y.; Wu, J.Y.; Shi, G.Y. Stimulated laccase production of Pleurotus ferulae JM301 fungus by Rhodotorula mucilaginosa yeast in co-culture. Process Biochem. 2015, 50, 901–905. [Google Scholar] [CrossRef]
- Bertrand, B.; Martínez-Morales, F.; Tinoco-Valencia, R.; Rojas, S.; Acosta-Urdapilleta, L.; Trejo-Hernández, M.R. Biochemical and molecular characterization of laccase isoforms produced by the white-rot fungus Trametes versicolor under submerged culture conditions. J. Mol. Catal. B Enzym. 2015, 122, 339–347. [Google Scholar] [CrossRef]
- Irbe, I.; Elisashvili, V.; Asatiani, M.D.; Janberga, A.; Andersone, I.; Andersons, B.; Biziks, V.; Grinins, J. Lignocellulolytic activity of Coniophora puteana and Trametes versicolor in fermentation of wheat bran and decay of hydrothermally modified hardwoods. Int. Biodeterior. Biodegrad. 2014, 86, 71–78. [Google Scholar] [CrossRef]
- Sharma, D.; Garlapati, V.K.; Goel, G. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions. Bioengineered 2016, 7, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Li, P.; Yang, Y.H.; Liu, Y.F. Overproduction of laccase from a newly isolated Ganoderma lucidum using the municipal food waste as main carbon and nitrogen supplement. Bioprocess Biosyst. Eng. 2015, 38, 957–966. [Google Scholar]
- Ćilerdžić, J.; Stajić, M.; Vukojević, J. Degradation of wheat straw and oak sawdust by Ganoderma applanatum. Int. Biodeterior. Biodegrad. 2016, 114, 39–44. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Chen, Y.Z.; Xu, Z.H.; Peng, L.; Xu, G.H.; Gu, Z.H.; Zhang, L.; Shi, G.Y.; Zhang, K.C. Production and characterization of laccase from Pleurotus ferulae in submerged fermentation. Ann. Microbiol. 2014, 64, 121–129. [Google Scholar] [CrossRef]
- Silvério, S.C.; Moreira, S.; Milagres, A.M.; Macedo, E.A.; Teixeira, J.A.; Mussatto, S.I. Laccase production by free and immobilized mycelia of Peniophora cinerea and Trametes versicolor: A comparative study. Bioprocess Biosyst. Eng. 2013, 36, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.J.; Yoon, D.E.; Kim, H.I.; Kwon, O.C.; Yoo, Y.B.; Kong, W.S.; Lee, C.S. Overproduction of laccase by the white-rot fungus Pleurotus ostreatus Using Apple Pomace as Inducer. Mycobiology 2014, 42, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Elisashvili, V.; Kachlishvili, E. Physiological regulation of laccase and manganese peroxidase production by white-rot Basidiomycetes. J. Biotechnol. 2009, 144, 37–42. [Google Scholar] [CrossRef]
- Kuhar, F.; Castiglia, V.; Levin, L. Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int. Biodeterior. Biodegrad. 2015, 104, 238–243. [Google Scholar] [CrossRef]
- Hatakka, A. Lignin-modifying enzymes from selected white-rot fungi: Production and role from in lignin degradation. FEMS Microbiol. Rev. 1994, 13, 125–135. [Google Scholar] [CrossRef]
- Kuhar, S.; Kapoor, M.; Kapoor, R.; Sharma, K.K.; Singh, A.; Kuhad, R. Biodiversity of Ligninolytic Fungi. In Lignocellulose Biotechnology: Future Prospects; Kuhad, R.C., Singh, A., Eds.; IK International: New Delhi, India, 2007; pp. 37–53. [Google Scholar]
- Diaz, A.B.; Blandino, A.; Webb, C.; Caro, I. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues. Appl. Microbiol. Biotechnol. 2016, 100, 9555–9566. [Google Scholar] [CrossRef] [Green Version]
- Adak, A.; Tiwari, R.; Singh, S.; Sharma, S.; Nain, L. Laccase production by a novel white-rot fungus Pseudolagarobasidium acaciicola LA 1 through solid-state fermentation of parthenium biomass and its application in dyes decolorization. Waste Biomass Valorization 2016, 7, 1427–1435. [Google Scholar] [CrossRef]
- Bugni, T.S.; Ireland, C.M. Marine-derived fungi: A chemically and biologically diverse group of microorganisms. Nat. Prod. Rep. 2004, 21, 143–163. [Google Scholar] [CrossRef]
- Jones, E.; Stanley, S.J.; Pinruan, U. Marine endophyte sources of new chemical natural products: A review. Bot. Mar. 2008, 51, 163–170. [Google Scholar] [CrossRef]
- Raghukumar, C.; D’souza, T.; Thorn, R.; Reddy, C. Lignin-modifying enzymes of Flavodon flavus a basidiomycete isolated from a coastal marine environment. Appl. Environ. Microbiol. 1999, 65, 2103–2111. [Google Scholar]
- Hariharan, S.; Nambisan, P. Optimization of lignin peroxidase, manganese peroxidase, and Lac production from Ganoderma lucidum under solid state fermentation of pineapple leaf. BioResources 2012, 8, 250–271. [Google Scholar] [CrossRef] [Green Version]
- Ordaz, A.; Favela, E.; Meneses, M.; Mendoza, G.; Loera, O. Hyphal morphology modification in thermal adaptation by the white-rot fungus Fomes sp. EUM1. J. Basic Microbiol. 2012, 52, 167–174. [Google Scholar] [CrossRef]
- Yan, J.; Chen, Y.; Niu, J.; Chen, D.; Chagan, I. Laccase produced by a thermotolerant strain of Trametes trogii LK13. Braz. J. Microbiol. 2015, 46, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Chhaya, U.; Gupte, A. Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate Fusarium incarnatum LD-3 under solid substrate fermentation. Ann. Microbiol. 2013, 63, 215–223. [Google Scholar] [CrossRef]
- Wang, Z.; Cai, Y.; Liao, X.; Zhang, F.; Zhang, D.; Li, Z. Production and characterization of a novel laccase with cold adaptation and high thermal stability from an isolated fungus. Appl. Biochem. Biotechnol. 2009, 162, 280–294. [Google Scholar] [CrossRef]
- Jiao, X.Y.; Li, G.Q.; Wang, Y.; Nie, F.; Cheng, X.; Abdullah, M.; Lin, Y.; Cai, Y.P. Systematic Analysis of the Pleurotus ostreatus Laccase Gene (PoLac) Family and Functional Characterization of PoLac2 Involved in the Degradation of Cotton-Straw Lignin. Molecules 2018, 23, 880. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Jana, A.K.; Jana, M.; Gupta, A. Fungal pretreatment of sweet sorghum bagasse with supplements: Improvement in lignin degradation, selectivity and enzymatic saccharification. 3 Biotech 2017, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Hideno, A. Short-time alkaline peroxide pretreatment for rapid pulping and efficient enzymatic hydrolysis of rice straw. Bioresour. Technol. 2017, 230, 140–142. [Google Scholar] [CrossRef]
- Tang, C.L.; Shan, J.Q.; Chen, Y.J.; Zhong, L.X.; Shen, T.; Zhu, C.J.; Ying, H. Organic amine catalytic organosolv pretreatment of corn stover for enzymatic saccharification and high-quality lignin. Bioresour. Technol. 2017, 232, 222–228. [Google Scholar] [CrossRef]
- Ghorbani, F.; Karimi, M.; Biria, D.; Kariminia, H.R.; Jeihanipour, A. Enhancement of fungal delignification of rice straw by Trichoderma viride sp. to improve its saccharification. Biochem. Eng. J. 2015, 101, 77–84. [Google Scholar] [CrossRef]
- Machado, A.D.S.; Ferraz, A. Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresour. Technol. 2017, 225, 17–22. [Google Scholar] [CrossRef]
- Bule, M.V.; Chaudhary, I.; Gao, A.H.; Chen, S. Effects of extracellular proteome on wheat straw pretreatment during solid-state fermentation of Phlebia radiata ATCC 64658. Int. Biodeterior. Biodegrad. 2016, 109, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Kasprzycka, A.; Lalak-Kanczugowska, J.; Tys, J. Flammulina velutipes treatment of non-sterile tall wheat grass for enhancing biodegradability and methane production. Bioresour. Technol. 2018, 263, 660–664. [Google Scholar] [CrossRef]
- Rastogi, S.; Soni, R.; Kaur, J.; Soni, S.K. Unravelling the capability of Pyrenophora phaeocomes S-1 for the production of ligno-hemicellulolytic enzyme cocktail and simultaneous bio-delignification of rice straw for enhanced enzymatic saccharification. Bioresour. Technol. 2016, 222, 458–469. [Google Scholar] [CrossRef]
- Yamagishi, K.; Kimura, T.; Watanabe, T. Treatment of rice straw with selected Cyathus stercoreus strains to improve enzymatic saccharification. Bioresour. Technol. 2011, 102, 6937–6943. [Google Scholar] [CrossRef]
- Ruqayyah, T.I.; Jamal, P.; Alam, M.Z.; Mirghani, M.E. Biodegradation potential and ligninolytic enzyme activity of two locally isolated Panus tigrinus strains on selected agro-industrial wastes. J. Environ. Manag. 2013, 118, 115–121. [Google Scholar] [CrossRef]
- Knežević, A.; Stajić, M.; Vukojević, J.; Milovanović, I. The effect of trace elements on wheat straw degradation by Trametes gibbosa. Int. Biodeterior. Biodegrad. 2014, 96, 152–156. [Google Scholar] [CrossRef]
- Ahmad, Z.; Asgher, M.; Hussain, F.; Randhawa, M.A. A novel approach to delignify lignocellulosic materials by using ligninolytic enzyme consortium. Bioresources 2016, 11, 10511–10527. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Singh, A.; Balan, V.; Pareek, N.; Vivekanand, V. Biological treatment of lignocellulosic biomass by Chaetomium globosporum: Process derivation and improved biogas production. Int. J. Biol. Macromol. 2019, 128, 176–183. [Google Scholar] [CrossRef]
- Muktham, R.; Taha, M.; Shahsavari, E.; Bhargava, S.K.; Bankupalli, S.; Ball, A.S. Pongamia pinnata seed residue—A low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production. Renew. Energy 2016, 103, 682–687. [Google Scholar]
- Yaghoubi, K.; Pazouki, M.; Shojaosadati, S.A. Variable optimization for biopulping of agricultural residues by Ceriporiopsis Subvermispora. Bioresour. Technol. 2008, 99, 4321–4328. [Google Scholar] [CrossRef]
- Hayes, D.J.M. Mass and compositional changes relevant to biorefining, in Miscanthus × giganteus plants over the harvest window. Bioresour. Technol. 2013, 142, 591–602. [Google Scholar] [CrossRef]
- Kuijk, S.J.A.V.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W. Fungal treated lignocellulosic biomass as ruminant feed ingredient: A review. Biotechnol. Adv. 2015, 33, 191–202. [Google Scholar] [CrossRef]
- Vats, A.; Mishra, S. Decolorization of complex dyes and textile effluent by extracellular enzymes of Cyathus bulleri cultivated on agro-residues/domestic wastes and proposed pathway of degradation of Kiton blue A and reactive orange 16. Environ. Sci. Pollut. Res. Int. 2017, 24, 1–13. [Google Scholar] [CrossRef]
- Sharma, A.; Shrivastava, B.; Kuhad, R.C. Reduced toxicity of malachite green decolorized by laccase produced from Ganoderma sp. rckk-02 under solid-state fermentation. 3 Biotech 2015, 5, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Pazarbasi, M.B.; Kocyigit, A.; Ozdemir, G.; Yasa, I.; Karaboz, I. Decolorization of various leather dyes and leather industry effluent by Trametes trogii TEM H2. Fresenius Environ. Bull. 2012, 21, 1410–1416. [Google Scholar]
- Diwaniyan, S.; Kharb, D.; Raghukumar, C.; Kuhad, R.C. Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water Air Soil Pollution. 2010, 210, 409–419. [Google Scholar] [CrossRef]
- Lallawmsanga, L.V.V.; Passari, A.K.; Muniraj, I.K.; Uthandi, S.; Hashem, A.; Abd Allah, E.F.; Alqarawi, A.A.; Singh, B.P. Elevated levels of laccase synthesis by Pleurotus pulmonarius BPSM10 and its potential as a dye decolorizing agent. Saudi J. Biol. Sci. 2019, 26, 464–468. [Google Scholar] [CrossRef]
- Yu, G.; Wen, X.; Li, R.; Qian, Y. In vitro degradation of a reactive azo dye by crude ligninolytic enzymes from nonimmersed liquid culture of Phanerochaete chrysosporium. Process Biochem. 2006, 41, 1987–1993. [Google Scholar] [CrossRef]
- Chicatto, J.A.; Rainert, K.T.; Goncalves, M.J.; Helm, C.V.; Altmajer-Vaz, D.; Tavares, L.B.B. Decolorization of textile industry wastewater in solid state fermentation with Peach-Palm (Bactris gasipaes) residue. Braz. J. Biol. 2018, 78, 718–727. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.; Figueroa, D.; Hormaza, A. Diseño estadístico para la remoción eficiente del colorante rojo 40 sobre tuza de maíz. Producción Limpia 2012, 7, 9–19. [Google Scholar]
- Xu, L.; Sun, K.; Wang, F.; Zhao, L.T.; Hu, J.H.; Ma, H.L.; Ding, Z.Y. Laccase production by Trametes versicolor in solid-state fermentation using tea residues as substrate and its application in dye decolorization. J. Ind. Microbiol. Biot. 2019. Submitted. [Google Scholar]
- Liu, H.; Zhang, Z.; Xie, S.; Xing, H. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking. Chemosphere 2019, 224, 743–750. [Google Scholar]
- Zhou, M.F.; Yuan, X.Z.; Zhong, H.; Liu, Z.F.; Li, H.; Jiang, L.L.; Zeng, G.M. Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Appl. Biochem. Biotechnol. 2011, 164, 103–114. [Google Scholar] [CrossRef]
- Koutrotsios, G.; Larou, E.; Mountzouris, K.C.; Zervakis, G.I. Detoxification of olive mill wastewater and bioconversion of olive crop residues into high-value-added biomass by the choice edible mushroom Hericium erinaceus. Appl. Biochem. Biotechnol. 2016, 180, 195–209. [Google Scholar] [CrossRef]
- Elbatal, A.I.; Elkenawy, N.M.; Yassin, A.S.; Amin, M.A. Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol. Rep. 2015, 5, 31–39. [Google Scholar] [CrossRef] [Green Version]
Fungus | Support | Cultivation Vessel | Period (Day) | Enzyme Substrate | Laccase Activity | Reference |
---|---|---|---|---|---|---|
Pleurotus ostreatus | Sugarcane bagasse | Erlenmeyer flask (250 mL) | 5 | ABTS ** | 151.6 U/g | [33] |
Ganoderma lucidum | Rice husks and straw | Polyethylene bags (2 L) | 10 | ABTS | 10.927 U/g | [20] |
Sunflower seed hulls | 5 | ABTS | 16.442 U/g | |||
Trametes pubescens | Sunflower seed | Immersion bioreactor (--) | 21 | ABTS | 4000–6000 UI/L | [54] |
Pseudolagarobasidium acaciicola | Wheat bran | Erlenmeyer flask (250 mL) | 12 | ABTS | 535,000 U/g | [4] |
Coriolopsis gallica | Sawdust waste | Erlenmeyer flask (250 mL) | 15 | 2,6-Dimethoxyphenol | 4880 U/L | [32] |
Pleurotus ostreatus | Ammoniated corn straw | Fermentation tray (10.8 L) | 20 | ABTS | 661 U/g | [55] |
Wheat straw | Erlenmeyer flask (250 mL) | 9 | ABTS | 6364 ± 64 U/kg | [56] | |
Trametes versicolor | Oil palm trunk | Erlenmeyer flask (2 L) | 28 | 2,6-Dimethoxyphenol | 218.66 U/L | [57] |
Olive leaf | Erlenmeyer flask (250 mL) | 12 | ABTS | 276.62 ± 25.67 U/gds | [58] | |
Wheat bran and corn straw | Erlenmeyer flask (250 mL) | 10 | ABTS | 32.09 U/g ds | [6] | |
Steam-exploded pretreated cornstalk | Erlenmeyer flask (250 mL) | 13 | Catechol | 2765.81 U/g | [48] | |
Corncob waste | Erlenmeyer flask (50 mL) | 14 | ABTS | 8.49 U/gdm | [14] | |
Corn silage | Erlenmeyer flask (250 mL) | 4 | ABTS | 180.2 U/L | [59] | |
Apple pomace | Erlenmeyer flask (500 mL) | 14 | ABTS | 49.16 ± 4.5 U/gds | [34] | |
Pulp and paper solid waste | 52.4 ± 2.2 U/gds | |||||
Alfa fibers | 14.26 ± 0.8 U/gds | |||||
Sugarcane leaves | Erlenmeyer flask (250 mL) | 17 | Guaiacol | 165 U/g | [60] | |
Wheat straw | 150 U/g | |||||
Rice straw | 145 U/g | |||||
Pleurotus pulmonarius | Wheat bran | Erlenmeyer flask (250 mL) | 10 | ABTS | 2860 ± 250 U/L | [61] |
Pineapple peel | 2450 ± 230 U/L | |||||
Bagasse | 2100 ± 270 U/L | |||||
Spent mushroom substrate | Glass tubes (141 mL) | 20 | Syringaldazine | 44,363.22 U/g | [62] | |
Cerrena unicolor | Oat husks | Mixed bench-scale bioreactor (20 L) | 19 | ABTS | 28.2 U/g DM * | [63] |
Aspergillus niger | Prickly palm cactus husk | Erlenmeyer flask (--) | 12 | Syringaldazine | 9023.67 UI/L | [64] |
Funalia trogii | Kudzu vine root | Erlenmeyer flask (250 mL) | 14 | ABTS | 42.5 IU/g | [15] |
Daedalea flavida and Phlebia radiata | Cotton stalks | Petri plate (--) | 15 | ABTS | 14.19 ± 0.85 IU/g | [35] |
Coriolus versicolor | Sweet sorghum bagasse | Erlenmeyer flask (250 mL) | 16 | ABTS | 205.01 ± 10.1 U/g | [50] |
Rhizopus sp. | Prickly palm cactus husk | Erlenmeyer flask (--) | 3 | Syringaldazine | 1.65 U/g | [65] |
Marasmiellus palmivorus | Pineapple leaves | Erlenmeyer flask (250 mL) | 5 | ABTS | 667.4 ± 13 IU/mL | [10] |
Pycnoporus sanguineus | Wheat bran and corncob | Erlenmeyer flask (250 mL) | 8 | ABTS | 138.6 ± 13.2 U/g | [5] |
Trametes versicolor | Brewer’s spent grain | Erlenmeyer flask (500 mL) | 12 | ABTS | 10,108 ± 157.4 IU/g | [66] |
Plastic tray bioreactor (12 L) | 13,506.2±138.2 IU/g | |||||
Trametes hirsuta | Pine wood chips/orange peels (1:1) | Rotary drum bioreactor (20 L) | 35 | ABTS | 10498 U/L * | [67] |
Species | Support | Carbon/Nitrogen Source | Concentration | Laccase Activity | Reference |
---|---|---|---|---|---|
Pleurotus ostreatus | Dry, ground mandarin peels Grapevine sawdust | Glucose | 0.333 g/mL | 4.80 ± 0.08 U/L | [73] |
Maltose | 6.9 ± 0.4 U/L | ||||
Pseudolagarobasidium acaciicola | Decayed wood | Glucose | 0.775 g/L | 379,000 U/gs | [4] |
0.6625 g/L | 535,000 U/gs | ||||
0.55 g/L | 479,000 U/gs | ||||
P. ostreatus | Sawdust | Glucose | 5 g/L | 10.90 ± 0.36 U/g dry wt | [74] |
10 g/L | 19.42 ± 0.14 U/g dry wt | ||||
15 g/L | 26.00 ± 0.98 U/g dry wt | ||||
P. ostreatus | Sugarcane bagasse | Yeast extract | 6.4 g/L | 151.6 U/g | [33] |
(NH4)2SO4 | 2.5 g/L | 9.942 U/g | |||
Trametes hirsuta | Kiwifruit | NH4Cl | 0.150 g/L | 1079.8–1139.8 U/L * | [75] |
0.400 g/L | 359.9–479.9 U/L * | ||||
0.600 g/L | 839.8–959.8 U/L * | ||||
P. ostreatus | E. benthamii and bagasse of cassava | (NH4)2SO4 | 0.111 g/gs | 10.11 ± 1.04 U/g ds | [43] |
Saltpetre | 13.0 ± 1.29 U/g ds | ||||
soybean | 23.32 ± 2.33 U/g ds | ||||
Trametes versicolor | Olive leaves | NH4NO3 | 20 g/L | 38.47 ± 3.12 U/gds | [58] |
Yeast extract | 1% | 276.62 ± 25.6 U/gds | |||
Daedaleopsis confragosa | Cherry sawdust | Peptone | 0.9 mM | 20,204.8 U/L | [76] |
D. tricolor | 16,501.7 U/L |
Strain | Support | Inducer | Inducer Concentration | Laccase Activity | Reference |
---|---|---|---|---|---|
Pleurotus ostreatus | Bagasse | CuSO4 and | 150 µM | 86.8 U/g | [79] |
ferulic acid | 2 mM | 167 U/g | |||
Trametes versicolor | Apple pomace | CuSO4 | 3 mmol/kg ds | 49.16 ± 4.5 U/gds | [34] |
Pulp and paper solid waste | 52.4 ± 2.2 U/gds | ||||
Alfa fibers | 14.26 ± 0.8 U/gds | ||||
Pycnoporus sanguineus | Wheat bran and corncob | CuSO4 | 50 mmol/L | 138.6 ± 13.2 U/g | [5] |
Marasmiellus palmivorus | Pineapple leaves | CuSO4 | 3 mM | 627.7 IU/mL | [10] |
Daedalea flavida | Cotton stalks | Cu2+ | 0.5 mM/g | 7.74 ± 0.45 IU/g | [80] |
Gallic acid | 6.26 ± 0.55 IU/g | ||||
Coriolus versicolor | Sweet Sorghum bagasse | CuSO4 | 2.2 µmol/g | 58.2 ± 4.3 U/g | [50] |
Gallic acid | 4.4 µmol/g | 42.1 ± 3.6 U/g | |||
Syringic acid | 8.8 µmol/g | 67.4 ± 7.7 U/g | |||
Pycnoporus sanguineus | Eichhornia crassipes and sawdust | CuSO4 and gallic acid | 1.5 mM and 40 mM | 32.02 U/g ds | [81] |
Trametes versicolor | Corn silage | CuSO4 | 0.1 mol/dm3 | 1539.4 U/dm3 | [59] |
Daedaleopsis tricolor | Cherry sawdust | Veratryl alcohol | 0.5% v/v | 27,610.92 U/L | [76] |
Support | Fungus | Scale of Cultivate | Type of Cultivation | Period | Laccase Activity | Reference |
---|---|---|---|---|---|---|
Rice bran | Ganoderma lucidum | Erlenmeyer flask (--) | SF | 28 d | 100.13 U/mL | [84] |
SSF | 156.82 U/g | |||||
Wheat bran | Pleurotus ferulae co-cultured with yeast | Erlenmeyer flask (--) | SF | 7 d | 10,575 U/L | [85] |
Oak sawdust | Trametes versicolor | Erlenmeyer flask (--) | SF | 7 d | 0.8 U/mL | [86] |
Wheat bran | Trametes versicolor | Erlenmeyer flask (250 mL) | SF | 7 d | 0.93 U/mL | [87] |
SSF | 14 d | 1.54 U/mL | ||||
Wheat bran | Cerrena unicolor | Stirred bioreactor (120 L) | SF | 12 d | 416.4 U/mL | [82] |
Wheat bran | Cotylidia pannosa | Erlenmeyer flask (--) | SF | 77 h | 13 U/mL | [88] |
Food waste | Ganoderma lucidum | Bioreactor (15 L) | SF | 8 d | 54,000 U/L | [89] |
Wheat straw | Ganoderma applanatum | Erlenmeyer flask (100 mL) | SF | 14 d | 11,007 U/L | [90] |
SSF | 4000 U/L | |||||
Wheat bran | Pleurotus ferulae | Erlenmeyer flask (--) | SF | 7 d | 6832.86 U/L | [91] |
Synthetic fiber | Peniophora cinerea Trametes versicolor | Stirred tank bioreactor (1.6 L) | SF | 15 d | 3500 U/L | [92] |
8 d | 75 U/L |
Support | Fungus | Laccase Activity | Degradation Rate (%, w/w) | Time (Day) | Reference | ||
---|---|---|---|---|---|---|---|
Lignin | Cellulose | Hemicellulose | |||||
Sweet sorghum bagasse | Coriolus versicolor | 205.01 ± 10.1 U/g | 45.80 | 9.81 | 20 | [50] | |
Rice straw | Pyrenophora phaeocomes | 10,859.51 IU/gds | 63 | 51 | 40 | [116] | |
Wheat bran | Pleurotus ferulae | 68.9 U/L | 62.1 | 35.6 | 62.6 | 19 | [119] |
Wheat bran | Ganoderma lucidum | -- -- -- | 58.5 | -- -- -- | -- -- -- | -- -- -- | [120] |
Sugarcane bagasse | Trametes versicolor | 46 | |||||
Rice straw | Pleurotus ostreatus | 52 | |||||
Cotton stalk | Daedalea flavida and Phlebia radiata | ~5 IU/g | 35.13 | -- | -- | 20 | [35] |
Hardwoods | Coniophora puteana and Trametes versicolor | 1.54 U/mL | -- | 30.2–38.7 | -- | 42 | [87] |
Sugarcane bagasse | Ceriporiopsis subvermispora | -- | 48 | -- | -- | 60 | [113] |
Wheat straw | Phlebia radiata | -- | 9.9 | -- | -- | 21 | [114] |
Wheat straw | Ganoderma applanatum | 3000 U/L | 23.5 | 10 | 7 | 14 | [90] |
Oak sawdust | 1800 U/L | 20.5 | 15.05 | 13 | |||
Steam-exploded cornstalk | Trametes versicolor | 2600.33 ± 81.89 U/g | 7.8 | 38.1 | 27.2 | 16 | [48] |
Cornstalk | 1241.07 ± 70.93 U/g | 4.2 | 23.2 | 16.9 | |||
Rice straw | Trametes viride | -- | 74 | -- | -- | 30 | [112] |
Wheat straw | Chaetomium globosporum | -- | 45 | -- | -- | -- | [121] |
Pearl millet straw | -- | 48 | -- | -- | -- |
Strain | Support for SSF | Dye | Dye Concentration (mg/L) | Laccase Concentration | Time (h) | Decolorization Rate (%) | Reference |
---|---|---|---|---|---|---|---|
Pseudolagarobasidium acaciicola | Wheat bran | Violet P3P | 100 | 10,000 U/mL 20,000 U/mL 10,000 U/mL | 24 | 97.2 | [4] |
Green ME4BL | 100 | 80.3 | |||||
Blue 3R | 100 | 91.3 | |||||
Ganoderma sp. | Wheat bran | Malachite green | 100 | 30 U/mL | 16 | ~100 | [127] |
200 | 20 | ~100 | |||||
300 | 24 | 72 | |||||
400 | 28 | 62 | |||||
500 | 32 | 55 | |||||
Coriolopsis gallica | Sawdust | Reactive black Acid Orange 51 | 50 50 | -- | 24 | 67 75 | [32] |
Pycnoporus sanguineus | Wheat bran and corncob | Bromophenol blue | 25 | 5 U/mL | 2 | 90 | [5] |
Remazol brilliant blue R | 100 | 80 | |||||
Reactive blue 4 | 100 | 60 | |||||
Trametes pubescens | Sunflower-seed shells | Remazol brilliant blue R | 133.33 | 100 U/L | 2 | 79.4 | [54] |
Trametes versicolor | Brewer’s spent grain | Methyl green | 7.5 | 100 U/L | 24 | 87.7 | [66] |
Aniline blue | 25 | 78.48 | |||||
Ganoderma lucidum | Peach palm | Remazol brilliant blue R | 50 | 53.94 U/L | 32 | 93.97 | [132] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Xu, L.; Zhao, L.; Ding, Z.; Ma, H.; Terry, N. Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review. Microorganisms 2019, 7, 665. https://doi.org/10.3390/microorganisms7120665
Wang F, Xu L, Zhao L, Ding Z, Ma H, Terry N. Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review. Microorganisms. 2019; 7(12):665. https://doi.org/10.3390/microorganisms7120665
Chicago/Turabian StyleWang, Feng, Ling Xu, Liting Zhao, Zhongyang Ding, Haile Ma, and Norman Terry. 2019. "Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review" Microorganisms 7, no. 12: 665. https://doi.org/10.3390/microorganisms7120665
APA StyleWang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., & Terry, N. (2019). Fungal Laccase Production from Lignocellulosic Agricultural Wastes by Solid-State Fermentation: A Review. Microorganisms, 7(12), 665. https://doi.org/10.3390/microorganisms7120665