Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia
Abstract
:1. Background
2. Materials and methods
2.1. Study Area and Sampling
2.2. Yeast Isolation and Identification
2.3. Amplification of the D1/D2 Domains of the Large Subunit (LSU) rDNA Gene
2.4. The D1/D2 Phylogeny Construction
2.5. Habitat Preference of Yeast Isolates
2.6. Seasonality of Yeast Detection
3. Results
3.1. Frequency of Isolation and Loads of Yeasts among Sample Sources
3.2. Comparison of Yeast Counts
3.3. Species Distribution among Sample Sources
3.4. Effect of Seasons and Sample Type Analysis
4. Discussions
4.1. Gene Sequence Comparisons
4.2. Yeast Community Compositions of Different Samples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freeman, B.C.; Beattie, G.A. An Overview of Plant Defenses against Pathogens and Herbivores. Plant Health Instr. 2008. [Google Scholar] [CrossRef]
- Wu, C.H.; Bernard, S.M.; Andersen, G.L.; Chen, W. Developing microbe–plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb. Biotechnol. 2009, 2, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhai, Y.; Cao, L.; Tan, H.; Zhanga, R. Endophytic bacterial and fungal microbiota in sprouts, roots and stems of rice (Oryza sativa L.). Microbiol. Res. 2016, 188–189, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Garbeva, P.; Raaijmakers, J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013, 37, 634–663. [Google Scholar] [CrossRef] [PubMed]
- Bringel, F.; Couée, I. Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front. Microbiol. 2015, 6, 486. [Google Scholar] [CrossRef]
- Lindow, S.E.; Brand, M.T. Microbiology of the Phyllosphere. Appl. Environ. Microbiol. 2003. [Google Scholar] [CrossRef]
- Goddard, M.R.; Greig, D. Saccharomyces cerevisiae: Nomadic yeast with no niche? FEMS Yeast Res. 2015, 15, Fov009. [Google Scholar] [CrossRef]
- Tikka, C.; Osuru, H.P.; Atluri, N.; Raghavulu, P.C.V.; Yellapu, N.K.; Mannur, I.S.; Prasad, U.V.; Aluru, S.; Varma, K.N.; Bhaskar, M. Isolation and characterization of ethanol tolerant yeast strains. Bioinformation 2013, 9, 421–425. [Google Scholar] [CrossRef]
- Jay, J.M.; Moessner, M.J.; Golden, D.A. Modern Food Microbiology, 5th ed.; Springer Science: Berlin/Heidelberg, Germany, 2005; pp. 125–137. [Google Scholar]
- Kalia, A.; Gupta, R.P. Fruit Microbiology. In Handbook of Fruits and Fruit Processing; Hui, Y.H., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2006; pp. 3–28. [Google Scholar]
- Jones, D.H.; Hinsinger, P. The Rhizosphere: Complex by design. Plant Soil 2008, 312, 1–6. [Google Scholar] [CrossRef]
- Yurkov, A.M. Yeasts of the soil–obscure but precious. Yeast 2018, 35, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Fell, J.W.; Boekhout, T. The Yeast a Taxonomic Study, 5th ed.; V-I; Springer: Amsterdam, The Netherlands; Boston, MA, USA; Heidelberg, Germany; London, UK; New York, NY, USA; Oxford, UK, 2011; pp. 138–140. [Google Scholar]
- Wang, Q.M.; Liu, W.Q.; Liti, G.; Wang, S.A.; Bai, F.-Y. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol. Ecol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.S.; Bhadra, B.; Shivaji, S. Isolation and characterization of ethanol-producing yeasts from fruits and tree barks. Lett. Appl. Microbiol. 2008, 47, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Sláviková, L.E.; Vadkertiová1, R.; Vránová, D. Yeasts colonizing the leaf surfaces. J. Basic Microbiol. 2007, 47, 344–350. [Google Scholar] [CrossRef]
- Zaky, A.S.; Tucker, G.A.; Daw, Z.Y.; Du, C. Marine yeast isolation and industrial application. FEMS Yeast Res. 2014, 14, 813–825. [Google Scholar] [CrossRef]
- Medeiros, A.O.; Missagia, B.S.; Brandão, L.R.; Callisto, M.; Barbosa, F.A.R.; Rosa, C.A. Water Quality and Diversity of Yeasts from Tropical Lakes and Rivers from the Rio Doce Basin in Southeastern Brazil. Braz. J. Microbiol. 2012, 2012, 1582–1594. [Google Scholar] [CrossRef]
- Torrado, R.P.; Querol, A. Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products. Front. Microbiol. 2015, 6, 1522. [Google Scholar]
- Chanchaichaovivat, A.; Ruenwongsa, P.; Panijpan, B. Screening and identification of yeast strains from fruits and vegetables: Potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol. Control 2007, 42, 326–335. [Google Scholar] [CrossRef]
- Carvalho, N.M.; Costa, E.M.; Silva, S.; Pimentel, L.; Fernandes, T.H.; Pintado, M.E. Fermented Foods and Beverages in Human Diet and Their Influence on Gut Microbiota and Health. Fermentation 2018, 4, 90. [Google Scholar] [CrossRef]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018. [Google Scholar] [CrossRef]
- Rachamontree, P.; Phusantisampan, T.; Woravutthikul, N.; Pornwongthong, P.; Sriariyanun, M. Selection of Pichia kudriavzevii Strain for the Production of Single-Cell Protein from Cassava Processing Waste. World Acad. Sci. Eng. Technol. Inter. J. Biol. Food Veter. Agric. Eng. 2015, 9, 460–464. [Google Scholar]
- Maina, S.; Pateraki, C.; Kopsahelis, N.; Paramithiotis, S.; Drosinos, E.H.; Papanikolaou, S.; Koutinas, A. Microbial oil production from various carbon sources by newly isolated oleaginous yeasts. Eng. Life Sci. 2017, 17, 333–344. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Kamzolova, S.V.; Lunina, J.N. Citric Acid Production by Yarrowia lipolytica Yeast on Different Renewable Raw Materials. Fermentation 2018, 4, 36. [Google Scholar] [CrossRef]
- Sarris, D.; Papanikolaou, S. Biotechnological production of ethanol: Biochemistry, processes and technologies. Eng. Life Sci. 2016, 16, 307–329. [Google Scholar] [CrossRef]
- Cheng, S.; Hiwatashi, Y.; Imai, H.; Naito, M.; Numata, T. Deforestation and degradation of natural resources in Ethiopia: Forest management implications from a case study in the Belete-Gera Forest. J. For. Res. 1998, 3, 199–204. [Google Scholar] [CrossRef]
- Makimura, K.; Murayama, Y.S.; Yamaguchi, H. Detection of a wide range of medically important fungi by the polymerase chain reaction. J. Med. Microbiol. 1994, 40, 358–364. [Google Scholar] [CrossRef]
- Bai, F.Y.; Zhao, J.H.; Takashima, M.; Jia, J.H.; Boekhout, T.; Nakase, T. Reclassification of the Sporobolomyces roseus and Sporidiobolus pararescues complexes, with the description of Sporobolomyces phaffii sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 2309–2314. [Google Scholar]
- Kurtzman, C.P.; Robnett, C.J. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- Fell, J.W.; Boekhout, T.; Fonseca, A.; Scorzetti, G.; Statzell-Tallman, A. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int. J. Syst. Evol. Microbiol. 2000, 50, 1351–1371. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- SAS Institute Inc. Using JMP® 13; SAS Institute Inc.: Cary, NC, USA, 2016. [Google Scholar]
- Heras-Vazquez, F.J.L.; Mingorance-Cazorla, L.; Clemente-Jimenez, J.M.; Rodriguez-Vico, F. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and the two internal transcribed spacers. FEMS Yeast Res. 2003, 3, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Scorzetti, G.; Fell, J.W.; Fonseca, A.; Statzell-Tallman, A. Systematics of basidiomycetous yeasts: A comparison of large subunit D1/D2 and internal transcribed spacer rDNA regions. FEMS Yeast Res. 2002, 2, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Schocha, C.L.; Seifertb, K.A.; Huhndorf, S.; Robert, V.; Spougea, J.L.; Levesque, A.; Chen, W.; Consortiuma, F.B. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA 2012, 109, 6241–6246. [Google Scholar] [CrossRef]
- Tomaszewska, L.; Rymowicz, W. Microbial Quality of Avocado and Guava Fruits used for Preparation of Freshly Squeezed Juices from Juice Houses of Bahir Dar Town, Northwest Ethiopia. Int. J. Sci. Res. Pub. 2018, 8, 2250–3153. [Google Scholar]
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Simons, A. Agroforest Tree Database: A Tree Reference and Selection Guide Version 4.0. 2009. Available online: http://old.worldagroforestry.org/treedb2/AFTPDFS/Ficus_sycomorus.PDF (accessed on 12 November 2019).
- Limtong, S.; Kaewwichian, R.; Yongmanitchai, W.; Kawasaki, H. Diversity of culturable yeasts in phylloplane of sugarcane in Thailand and their capability to produce indole-3-acetic acid. World J. Microbiol. Biotechnol. 2014, 30, 1785–1796. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, L.; Rywińska, A.; Gładkowski, W. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 2012, 39, 1333–1343. [Google Scholar] [CrossRef] [Green Version]
- Do, D.T.H.; Theron, C.W.; Fickers, P. Organic Wastes as Feedstocks for Non-Conventional Yeast-Based Bioprocesses. Microorganisms 2019, 7, 229. [Google Scholar] [CrossRef] [Green Version]
- Vandermies, M.; Fickers, P. Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Kordowska-Wiater, M. Production of arabitol by yeasts: Current status and future prospects. J. Appl. Microbiol. 2015, 119, 303–314. [Google Scholar] [CrossRef]
- Bashir, M.; Kassim, I. Isolation and Characterization of Pollulan Produced by A Local Isolate of Aureobasidium Pullulans. Qatar Univ. Sci. J. 2000, 20, 105–110. [Google Scholar]
- Hyma, K.E.; Fay, J.C. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Mol. Ecol. 2013, 22, 2917–2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dashko, S.; Liu, P.; Volk, H.; Butinar, L.; Piškur, J.; Fay, J.C. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine Fermentations. Front. Microbiol. 2016, 7, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, N.H.; Suh, S.-O.; Blackwell, M. Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia 2017, 99, 842–858. [Google Scholar] [CrossRef]
- Wang, K.; Sipilä, T.P.; Overmyer, K. The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Sci. Rep. 2016, 6, 39403. [Google Scholar] [CrossRef] [PubMed]
- Pathan, S.I.; Ceccherini, M.T.; Sunseri, F.; Lupini, A. Rhizosphere as Hotspot for Plant-Soil-Microbe interaction. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer Nature: Basel, Switzerland, 2019; pp. 17–43. [Google Scholar]
- Sarabia, M.; Cazaresa, S.; González-Rodrígueza, A.; Moraa, F.; Carreón-Abudb, Y.; Larsen, J. Plant growth promotion traits of rhizosphere yeasts and their response to soil characteristics and crop cycle in maize agroecosystems. Rhizosphere 2018, 6, 67–73. [Google Scholar] [CrossRef]
- Vadkertiová, R.; Dudášová, H.; Balaščáková, M. Yeasts in agricultural and managed soils. In Yeasts in Natural Ecosystems: Diversity; Buzzini, P., Lachance, M.A., Yurkov, A.M., Eds.; Springer: Basel, Switzerland, 2017; pp. 117–144. [Google Scholar]
- Vadkertiová, R.; Dudášová, H.; Stratilová, E.; Balaščáko, M. Diversity of yeasts in the soil adjacent to fruit trees of the Rosaceae family. Yeast 2019, 2019, 1–15. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 105, 11–17. [Google Scholar] [CrossRef]
- Arias, C.R.; Burns, J.K.; Friedrich, L.M.; Goodrich, R.M.; Parish, M.E. Yeast Species Associated with Orange Juice: Evaluation of Different Identification Methods. Appl. Environ. Microbiol. 2002, 68, 1955–1961. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Liu, G.-L.; Chi, Z.; Chi, Z.-M. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy 2010, 34, 101–107. [Google Scholar] [CrossRef]
- Juszczyka, P.; Rymowicza, W.; Kitab, A.; Rywińskaa, A. Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Ind. Crop. Prod. 2019, 138, 111590. [Google Scholar]
- Rywinska, A.; Juszczyk, P.; Wojtatowicz, M.; Robak, M.; Lazar, Z. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 2013, 48, 148–166. [Google Scholar] [CrossRef]
- Buenrostro-Figueroaa, D.J.; Tafolla-Arellanob, J.C.; Flores-Gallegosa, A.C.; Rodríguez-Herreraa, R.; De la garza-Toledoc, H.; Aguilara, C.N. Native yeasts for alternative utilization of overripe mango pulp for ethanol production. Rev. Argent. Microbiol. 2018, 50, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Abranches, P.; Vital, M.J.S.; Starmer, W.T.; Mendonga-Hagler, L.C.; Hagler, A.N. The yeast community and Mycocin producers of guava fruit in Rio de Janeiro, Brazil. Mycologia 2000, 92, 16–22. [Google Scholar] [CrossRef]
- Shehata, A.M.E.-T. Yeasts Isolated from Sugar Cane and Its Juice during the Production of Aguardente de Cana. Appl. Microbiol. 1960, 8, 73–75. [Google Scholar] [PubMed]
Sample ID | Common Name | Scientific Name | Sample Type | Sampling Location | No. of Samples in | Ranges of Yeast Count (CFUs) | |
---|---|---|---|---|---|---|---|
Spring | Summer | ||||||
1 | Harbuu/Shola | Ficus sycomorus (L.) | Bark | BF | 20 | 20 | 8.00 × 104–2.21 × 105 |
2 | Qilxuu/Warka | Ficus vasta | Bark | BF | 20 | 20 | 7.60 × 104–2.17× 105 |
3 | Hadaamii/Kulkual | Euphorbia candelabrum | Bark | BF | 3 | 2 | 9.00 × 103–1.30 × 104 |
7 | Rhizosphere soil | Soil | BF | 4 | 3 | 6.50 × 104–2.15 × 105 | |
4 | Lemon | Citrus Limon (L.) | Fruit | JD | 8 | 7 | 3.70 × 102–1.08 × 103 |
5 | Mango | Mangifera indica | Fruit | JD | 2 | 2 | 1.70 × 102–8.10 × 102 |
6 | Guava/Zayitunaa | Psidium guajava | Fruit | JD | 2 | 2 | 1.30 × 102–7.40 × 102 |
8 | Sugarcane | Saccharum officinarum | Wax | JD | 3 | 2 | 1.40 × 102–6.50 × 102 |
Sample ID | Species Name | Sample Sources | Strain ID | Accession Numbers | Sequence Identity (%) with Reference sp. |
---|---|---|---|---|---|
1 | Aureobasidium pullulans | Mango fruit | M-2A | MN075224 | 100 |
2 | Candida albicans | Lemon fruit | L-5 | MN075225 | 100 |
3 | Candida blattae | H-Bark | H-15 | MN075226 | 99.6 |
4 | Candida catenulate | H-Bark | Q-16 | MN075227 | 100 |
5 | Candida humilis | H *-Bark | H-11 | MN075228 | 100 |
6 | Candida glabrata | Q-Bark | H-6 | MN075229 | 99 |
7 | Candida intermedia | Rhizosphere | R-7 | MN075230 | 99.4 |
8 | Candida melibiosica | Lemon fruit | L-3 | MN075231 | 100 |
9 | Candida pararugosa | H-Bark | Q-45A | MN075232 | 100 |
10 | Debaryomyces hansenii | Guava fruit | G-1 | MN075234 | 100 |
11 | Debaryomyces prosopidis | Lemon fruit | L-6 | MN075233 | 99.1 |
12 | Geotrichum silvicola | Sugarcane | Sc-3 | MN075235 | 99.3 |
13 | Hanseniaspora opuntiae | H-Bark | HD-4 | MN075237 | 100 |
14 | Hanseniaspora uvarum | Q-Bark | HD-6 | MN075236 | 100 |
15 | Kluyveromyces marxianus | Sugarcane | SC-1 | MN075238 | 99.04 |
16 | Kodamaea ohmeri | Guava fruit | G-1B | MN075239 | 100 |
17 | Lachancea thermotolerans | Rhizosphere | R-11 | MN075240 | 99.7 |
18 | Lodderomyces elongisporus | Mango fruit | M-3 | MN075241 | 99.2 |
19 | Meyerozyma guilliermondii | Sugarcane | SC-4 | MN075242 | 100 |
20 | Pichia barkeri | Guava fruit | G-2B | MN075243 | 99.8 |
21 | Pichia occidentalis | Q-Bark | H-1 | MN075244 | 100 |
22 | Pichia kudriavzevii | Rhizosphere | R-4 | MN075245 | 100 |
23 | Rhodotorula mucilaginosa | Mango fruit | M-5 | MN075246 | 100 |
24 | Saccharomyces cerevisiae | H-Bark | Q-44 | MN075247 | 99.3 |
25 | Saccharomycopsis malanga | H-Bark | Q-3 | MN075248 | 99.6 |
26 | Torulaspora delbrueckii | Q-Bark | H-12 | MN075249 | 99.5 |
27 | Yarrowia lipolytica | Sugarcane | SC-2 | MN075250 | 99.2 |
Species | Ficus sycomorus (L.) | Ficus vasta | Euphorbia candelabrum | Guava or | ||||
---|---|---|---|---|---|---|---|---|
Name | (Harbuu/Shola) | (Qilxuu/Warka) | (Hadaamii/Kulkual) | Rhizosphere | Lemon | Mango | Zeytun | Sugarcane |
Aureobasidium pullulans | 1 (2.22) | 1(14.28) | ||||||
Candida albicans | 2 (6.06) | 2 (7.01) | ||||||
Candida blattae | 16 (35.56) | 16 (32.65) | 1 (20) | 3 (11.11) | ||||
Candida catenulata | 2 (4.44) | 1 (2.04) | 1 (20) | |||||
Candida glabrata | 4 (8.89) | 5 (10.2) | ||||||
Candida humilis | 3 (6.67) | 3 (6.12) | 2 (40) | 2 (6.06) | ||||
Candida intermedia | 2 (6.06) | 3 (11.11) | ||||||
Candida melibiosica | 1 (2.22) | 1 (3.7) | ||||||
Candida pararugosa | 1 (2.22) | |||||||
Debaryomyces hansenii | 3 (11.11) | 1 (9.09) | ||||||
Debaryomyces prosopidis | 2 (7.01) | 1 (9.09) | ||||||
Geotrichum silvicola | 1 (2.04) | 1 (20) | ||||||
Hanseniaspora opuntiae | 1 (2.22) | |||||||
Hanseniaspora uvarum | 2 (4.08) | 2 (6.06) | 3 (42.86) | |||||
Kluyveromyces marxianus | 3 (9.09) | 1 (20) | ||||||
Kodamaea ohmeri | 5 (18.52) | 3 (27.27) | ||||||
Lachancea thermotolerans | 3 (6.67) | 2 (6.06) | 1 (3.7) | |||||
Lodderomyces elongisporus | 2 (4.44) | 2 (4.08) | 1 (14.28) | |||||
Meyerozyma guilliermondii | 1 (2.04) | 8 (24.24) | 1 (3.7) | 4 (36.36) | 1 (20) | |||
Pichia barkeri | 1 (2.22) | 2 (18.18) | ||||||
Pichia kudriavzevii | 4 (8.89) | 10 (20.41) | 1 (20) | 12 (36.36) | 1 (3.7) | 1 (20) | ||
Pichia occidentalis | 1 (2.04) | |||||||
Rhodotorula mucilaginosa | 1 (2.22) | 4 (14.81) | 1 (14.28) | |||||
Saccharomyces cerevisiae | 4 (8.89) | 5 (10.2) | 1 (3.7) | |||||
Saccharomycopsis malanga | 1 (2.22) | |||||||
Torulaspora delbrueckii | 1 (2.04) | |||||||
Yarrowia lipolytica | 1 (2.04) | 1 (14.28) | 1 (20) |
Sample ID | Species Name | Spring | Summer | Total |
---|---|---|---|---|
1 | Aureobasidium pullulans | 2 | 2 | |
2 | Candida albicans | 3 | 1 | 4 |
3 | Candida blattae | 26 | 10 | 36 |
4 | Candida catenulata | 4 | 4 | |
5 | Candida glabrata | 7 | 2 | 9 |
6 | Candida humilis | 7 | 3 | 10 |
7 | Candida intermedia | 5 | 5 | |
8 | Candida melibiosica | 2 | 2 | |
9 | Candida pararugosa | 1 | 1 | |
10 | Debaryomyces hansenii | 2 | 2 | 4 |
11 | Debaryomyces prosopidis | 2 | 1 | 3 |
12 | Geotrichum silvicola | 2 | 2 | |
13 | Hanseniaspora opuntiae | 1 | 1 | |
14 | Hanseniaspora uvarum | 4 | 3 | 7 |
15 | Kluyveromyces marxianus | 3 | 1 | 4 |
16 | Kodamaea ohmeri | 6 | 2 | 8 |
17 | Lachancea thermotolerans | 5 | 1 | 6 |
18 | Lodderomyces elongisporus | 3 | 2 | 5 |
19 | Meyerozyma guilliermondii | 11 | 4 | 15 |
20 | Pichia barkeri | 2 | 1 | 3 |
21 | Pichia kudriavzevii | 20 | 9 | 29 |
22 | Pichia occidentalis | 1 | 1 | |
23 | Rhodotorula mucilaginosa | 4 | 2 | 6 |
24 | Saccharomyces cerevisiae | 9 | 1 | 10 |
25 | Saccharomycopsis malanga | 1 | 1 | |
26 | Torulaspora delbrueckii | 1 | 1 | |
27 | Yarrowia lipolytica | 2 | 1 | 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabassa Koricha, A.; Han, D.-Y.; Bacha, K.; Bai, F.-Y. Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia. Microorganisms 2019, 7, 633. https://doi.org/10.3390/microorganisms7120633
Dabassa Koricha A, Han D-Y, Bacha K, Bai F-Y. Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia. Microorganisms. 2019; 7(12):633. https://doi.org/10.3390/microorganisms7120633
Chicago/Turabian StyleDabassa Koricha, Anbessa, Da-Yong Han, Ketema Bacha, and Feng-Yan Bai. 2019. "Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia" Microorganisms 7, no. 12: 633. https://doi.org/10.3390/microorganisms7120633
APA StyleDabassa Koricha, A., Han, D.-Y., Bacha, K., & Bai, F.-Y. (2019). Occurrence and Molecular Identification of Wild Yeasts from Jimma Zone, South West Ethiopia. Microorganisms, 7(12), 633. https://doi.org/10.3390/microorganisms7120633