Surfactin–Bacillaene Copathway Engineering Strategy Boosts Fengycin Production and Antifungal Activity in Bacillus velezensis HN-Q-8
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Plasmids
2.2. Plasmid and Mutant Strain Construction
2.3. Extraction of Lipopeptide Compounds and Detection of Fengycin
2.4. Antifungal Activity Assay
2.5. Analysis of Volatile Compounds
2.6. Measurement of the Effects of Gene Knockout on Growth and Physiological Traits of HN-Q-8
2.7. Data Analysis
3. Results
3.1. Knockout of Competitive Surfactin–Bacillaene Copathway Associated with Fengycin Synthesis
3.2. Effects of Different Medium Components on Fengycin Production in B. velezensis HN-Q-8
3.3. Antifungal Activity of Fengycin Produced by B. velezensis HN-Q-8
3.4. Effects of srfAA and baeBE on the Synthesis of VOCs in B. velezensis HN-Q-8
3.5. Effects of srfAA and baeBE on the Physiology in B. velezensis HN-Q-8
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| VOCs | Volatile organic compounds |
| HPLC | High-performance liquid chromatography |
| GC-MS | Gas chromatography–mass spectrometry |
| NRPS | Nonribosomal peptide synthetase |
| TFA | Trifluoroacetic acid |
| NIST | National Institute of Standards and Technology |
| antiSMASH | Antibiotics and Secondary Metabolite Analysis Shell |
References
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp: A gold mine of Antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Feng, Y.Q.; Ren, J.; Jing, D.; Wang, C. Anti-tumor role of Bacillus subtilis fmbJ-derived fengycin on human colon cancer HT29 cell line. Neoplasma 2016, 6, 215–222. [Google Scholar] [CrossRef]
- Zhang, L.L.; Sun, C.M. Cyclic lipopeptides fengycins from marine bacterium Bacillus subtilis kill plant pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation. Appl. Environ. Microbiol. 2018, 84, e00445-18. [Google Scholar] [CrossRef]
- Hu, L.B.; Shi, Z.Q.; Zhang, T.; Yang, Z.M. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol. Lett. 2007, 272, 91–98. [Google Scholar] [CrossRef]
- Ke, W.J.; Chang, B.Y.; Lin, T.P.; Liu, S.T. Activation of the promoter of the fengycin synthetase operon by the up element. J. Bacteriol. 2009, 191, 4615–4623. [Google Scholar] [CrossRef]
- Yánez-Mendizábal, V.; Zeriouh, H.; Viñas, I.; Torres, R.; Usall, J.; Vicente, A. Biological control of peach brown rot by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur. J. Plant Pathol. 2011, 132, 609–619. [Google Scholar] [CrossRef]
- Guo, Q.G.; Dong, W.X.; Li, S.Z.; Lu, X.Y.; Wang, P.P. Fengycin produced by Bacillus subtilis NCD-2 plays a major role in biocontrol of cotton seedling damping-off disease. Microbiol. Res. 2014, 169, 7–8, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Guo, Q.; Ma, Y.; Li, S.; Lu, X.; Zhang, X.; Ma, P. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2. Microbiol. Res. 2015, 178, 42–50. [Google Scholar] [CrossRef]
- Yaseen, Y.; Gancel, F.; Drider, D.; Béchet, M.; Jacques, P. Influence of promoters on the production of fengycin in Bacillus spp. Res. Microbiol. 2016, 167, 272–281. [Google Scholar] [CrossRef]
- Fan, H.Y.; Ru, J.J.; Zhang, Y.Y.; Wang, Q.; Li, Y. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol. Res. 2017, 199, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Hanif, A.; Zhang, F.; Li, P.; Li, C.; Xu, Y.; Zubair, M.; Zhang, M.; Jia, D.; Zhao, X.; Liang, J.; et al. Fengycin produced by Bacillus amyloliquefaciens FZB42 inhibits Fusarium graminearum growth and Mycotoxins biosynthesis. Toxins 2019, 11, 295. [Google Scholar] [CrossRef]
- Zhang, D.; Qiang, R.; Zhou, Z.J.; Pan, Y.; Yu, S.Q.; Yuan, W.; Cheng, J.N.; Wang, J.H.; Zhao, D.M.; Zhu, J.H.; et al. Biocontrol and action mechanism of Bacillus subtilis lipopeptides’ fengycins against Alternaria solani in potato as assessed by a transcriptome analysis. Front. Microbiol. 2022, 13, 861113. [Google Scholar] [CrossRef] [PubMed]
- Deleu, M.; Paquot, M.; Nylander, T. Effect of fengycin, a lipopeptide produced by Bacillus subtilis on model biomembranes. Biophys. J. 2008, 94, 2667–2679. [Google Scholar] [CrossRef] [PubMed]
- González-Jaramillo, L.M.; Aranda, F.J.; Teruel, J.A.; Villegas-Escobar, V.; Ortiz, A. Antimycotic activity of fengycin C biosurfactant and its interaction with phosphatidylcholine model membranes. Colloids Surf. B Biointerfaces 2017, 156, 114–122. [Google Scholar] [CrossRef]
- Dong, L.; Wang, P.; Zhao, W.; Su, Z.; Zhang, X.; Lu, X.; Li, S.; Ma, P.; Guo, Q. Surfactin and fengycin contribute differentially to the biological activity of Bacillus subtilis NCD-2 against cotton verticillium wilt. Biol. Control 2022, 174, 104999. [Google Scholar] [CrossRef]
- Gao, G.R.; Hou, Z.J.; Ding, M.Z.; Bai, S.; Wei, S.Y.; Qiao, B.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Improved production of Fengycin in Bacillus subtilis by integrated strain engineering strategy. ACS Synth. Biol. 2022, 11, 4065–4076. [Google Scholar] [CrossRef]
- Wu, J.Y.; Liao, J.H.; Shieh, C.J.; Hsieh, F.C.; Liu, Y.C. Kinetic analysis on precursors for iturin A production from Bacillus amyloliquefaciens BPD1. J. Biosci. Bioeng. 2018, 126, 630–635. [Google Scholar] [CrossRef]
- Wang, B.; Li, C.; Yang, X.; Wang, Y.; Zhang, F.; Cheng, H.; Zhang, L.; Liu, H. Genomics-guided isolation and identification of active secondary metabolites of Bacillus velezensis BA-26. Biotechnol. Biotechnol. Equip. 2021, 35, 895–904. [Google Scholar] [CrossRef]
- Gao, G.R.; Wei, S.Y.; Ding, M.Z.; Hou, Z.J.; Wang, D.J.; Xu, Q.M.; Cheng, J.S.; Yuan, Y.J. Enhancing fengycin production in the co-culture of Bacillus subtilis and Corynebacterium glutamicum by engineering proline transporter. Bioresour. Technol. 2023, 383, 129229. [Google Scholar] [CrossRef]
- Wei, Y.H.; Wang, L.C.; Chen, W.C.; Chen, S.Y. Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int. J. Mol. Sci. 2010, 11, 4526–4538. [Google Scholar] [CrossRef]
- Vahidinasab, M.; Adiek, I.; Hosseini, B.; Akintayo, S.O.; Abrishamchi, B.; Pfannstiel, J.; Henkel, M.; Lilge, L.; Voegele, R.T.; Hausmann, R. Characterization of Bacillus velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42. Microorganisms 2022, 10, 2225. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Lin, F.; Lu, Z.; Lu, Y. CodY, ComA, DegU and Spo0A controlling lipopeptides biosynthesis in Bacillus amyloliquefaciens fmbJ. J. Appl. Microbiol. 2021, 131, 1289–1304. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Zhao, X.; Ma, G.; Liu, N.; Zheng, Y.; Tan, J.; Qi, G. Systemically engineering Bacillus amyloliquefaciens for increasing its antifungal activity and green antifungal lipopeptides production. Front. Bioeng. Biotechnol. 2022, 10, 961535. [Google Scholar] [CrossRef]
- López, D.; Fischbach, M.A.; Chu, F.; Losick, R.; Kolter, R. Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2009, 106, 280–285. [Google Scholar] [CrossRef]
- Bai, X.; Li, Q.; Zhang, D.; Zhao, Y.; Zhao, D.; Pan, Y.; Wang, J.; Yang, Z.; Zhu, J. Bacillus velezensis strain HN-Q-8 induced resistance to Alternaria solani and stimulated growth of potato plant. Biology 2023, 12, 856. [Google Scholar] [CrossRef] [PubMed]
- Idris, E.E.; Iglesias, D.J.; Talon, M.; Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 2007, 20, 619–626. [Google Scholar] [CrossRef]
- Wang, X.F.; Miao, C.H.; Qiao, B.; Xu, S.J.; Cheng, J.S. Coculture of Bacillus amyloliquefaciens and recombinant Pichia pastoris for utilizing kitchen waste to produce fengycins. J. Biosci. Bioeng. 2022, 133, 560–566. [Google Scholar] [CrossRef]
- Luo, C.; Liu, X.; Zhou, H.; Wang, X.; Chen, Z. Nonribosomal peptide synthase gene clusters for lipopeptide biosynthesis in Bacillus subtilis 916 and their phenotypic functions. Appl. Environ. Microbiol. 2015, 81, 422–431. [Google Scholar] [CrossRef]
- Pan, F.D.; Liu, S.; Xu, Q.M.; Chen, X.Y.; Cheng, J.S. Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme-producing fungi and Bacillus amyloliquefaciens HM618. Biochem. Eng. J. 2021, 172, 108036. [Google Scholar] [CrossRef]
- Chopra, L.; Singh, G.; Kumar Jena, K.; Sahoo, D.K. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci. Rep. 2015, 5, 13412. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yang, N.; Zheng, S.Y.; Yan, F.; Jiang, C.H.; Yu, Y.Y.; Chen, Y. The spo0A-sinI-sinR regulatory circuit plays an essential role in biofilm formation, nematicidal activities, and plant protection in Bacillus cereus AR156. Mol. Plant-Microbe Interact. 2017, 30, 603–619. [Google Scholar] [CrossRef]
- Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.W.; Schwalen, C.J.; Kautsar, S.A.; Medema, M.H. AntiSMASH 4.0—Improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 2017, 45, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Wang, H.; Wu, P.; Li, T.; Tang, Y.; Naseer, N.; Zheng, H.; Masson-Boivin, C.; Zhong, Z.; Zhu, J. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island. Proc. Natl. Acad. Sci. USA 2016, 113, 13875–13880. [Google Scholar] [CrossRef]
- Chen, X.Y.; Sun, H.Z.; Qiao, B.; Miao, C.H.; Hou, Z.J.; Xu, S.J.; Xu, Q.M.; Cheng, J.S. Improved the lipopeptide production of Bacillus amyloliquefaciens HM618 under co-culture with the recombinant Corynebacterium glutamicum producing high-level proline. Bioresour. Technol. 2022, 349, 26863. [Google Scholar] [CrossRef]
- Fifani, B.; Steels, S.; Helmus, C.; Delacuvellerie, A.; Deracinois, B.; Phalip, V.; Delvigne, F.; Jacques, P. Coculture of Trichoderma harzianum and Bacillus velezensis based on metabolic cross-feeding modulates lipopeptide production. Microorganisms 2022, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Chavarria-Quicaño, E.; De la Torre-González, F.; González-Riojas, M.; Rodríguez-González, J.; Asaff-Torres, A. Nematicidal lipopeptides from Bacillus paralicheniformis and Bacillus subtilis: A comparative study. Appl. Microbiol. Biotechnol. 2023, 107, 5–6, 1537–1549. [Google Scholar] [CrossRef]
- Cheng, Y.C.; Ke, W.J.; Liu, S.T. Regions involved in fengycin synthetases enzyme complex formation. J. Microbiol. Immunol. Infect. 2017, 50, 755–762. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Cui, W.; Munir, S.; He, P.; Huang, R.; Li, X.; Wu, Y.; Wang, Y.; Yang, J.; Tang, P.; et al. Fengycin produced by Bacillus subtilis XF-1 plays a major role in the biocontrol of Chinese cabbage clubroot via direct effect and defense stimulation. J. Cell. Physiol. 2024, 239, e30991. [Google Scholar] [CrossRef]
- Chen, B.; Wen, J.; Zhao, X.; Ding, J.; Qi, G. Surfactin: A quorum-sensing signal molecule to relieve CCR in Bacillus amyloliquefaciens. Front. Microbiol. 2020, 11, 631. [Google Scholar] [CrossRef]
- Brandac, S.S.; Vik, A.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef]
- Peters, B.M.; Jabra-Rizk, M.A.; Scheper, M.A.; Leid, J.G.; Costerton, J.W.; Shirtliff, M.E. Microbial interactions and differential protein expression in Staphylococcus aureus–Candida albicans dual-species biofilms. FEMS Immunol. Med. Microbiol. 2010, 59, 493–503. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, F.; Chai, Y.R.; Liu, H.G.; Kolter, R.; Losick, R.; Guo, J.H. Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation. Environ. Microbiol. 2012, 15, 848–864. [Google Scholar] [CrossRef] [PubMed]
- Arnaouteli, S.; Bamford, N.C.; Stanley-Wall, N.R.; Kovács, Á.T. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Microbiol. 2021, 19, 600–614. [Google Scholar] [CrossRef] [PubMed]
- Berlanga-Clavero, M.V.; Molina-Santiago, C.; Caraballo-Rodríguez, A.M.; Petras, D.; Díaz-Martínez, L.; Pérez-García, A.; de Vicente, A.; Carrión, V.J.; Dorrestein, P.C.; Romero, D. Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nat. Microbiol. 2022, 7, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Aleti, G.; Lehner, S.; Bacher, M.; Compant, S.; Nikolic, B.; Plesko, M.; Schuhmacher, R.; Sessitsch, A.; Brader, G. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ. Microbiol. 2016, 18, 2634–2645. [Google Scholar] [CrossRef]
- Wang, M.; Yu, H.; Li, X.; Shen, Z. Single-gene regulated non-spore-forming Bacillus subtilis: Construction, transcriptome responses, and applications for producing enzymes and surfactin. Metab. Eng. 2020, 62, 235–248. [Google Scholar] [CrossRef]






| Strains and Plasmids | Origin/Key Feature | Purpose in This Study |
|---|---|---|
| B. velezensis HN-Q-8 | Wild-type, isolated from potato rhizosphere [25] | Wild-type strain |
| B. velezensis HN-Q-8-ΔsrfAA | srfAA knockout of HN-Q-8 (this study) | Surfactin mutant strain |
| B. velezensis HN-Q-8-ΔbaeBE | baeBE knockout of HN-Q-8 (this study). | Bacillaene mutant strain |
| B. velezensis HN-Q-8-ΔsrfAAΔbaeBE | srfAA baeBE double knockout of HN-Q-8 (this study) | Double mutant strain |
| PYC127 | Expression vector | Knockout vector backbone |
| E. coli DH5α | Competent cells | Cloning host |
| Primer Names | Sequences (5′–3′) |
|---|---|
| bae-up-F | GAAAAGTGCCACCTGACGTATGGATCATACATATGAAGTGCATC |
| bae-up-R | ATACTGCACTATCAACACACTAGCCATTCATCACCAGAAATC |
| ErR-F | GATTTCTGGTGATGAATGGCTAGTGTGTTGATAGTGCAGTAT |
| ErR-R | CATGAGACTGTAAGCAACTCTCCCGATACAAATTCCCCGT |
| bae-down-F | ACGGGGAATTTGTATCGGGAGAGTTGCTTACAGTCTCATG |
| bae-down-R | CGCCCAGCCTAAACGGATTCAACACGTTTGCAAAAATGAAC |
| Experimental Stage | Medium | Temperature | Agitation (rpm) | Key Purpose |
|---|---|---|---|---|
| Seed culture | Seed medium | 37 °C | 180 | Inoculum preparation |
| Fermentation | Fermentation medium | 37 °C | 200 | Fengycin production |
| Growth curve | LB broth | 37 °C | 220 | Growth kinetics |
| Biofilm formation | LBGM medium | 37 °C | Static (0 rpm) | Biofilm assay |
| VOC collection | LB broth | 37 °C | 200 | VOC production |
| Compound Name | Peak Area (×106, Mean ± SD) | |||
|---|---|---|---|---|
| WT | ΔsrfAA | ΔbaeBE | ΔsrfAAΔbaeBE | |
| Benzaldehyde | 0.463 ± 0.104 | 0.599 ± 0.021 | 0.197 ± 0.137 | 0 |
| 2,4-Di-tert-butylphenol | 0.407 ± 0.068 | 0.922 ± 0.800 | 0.541 ± 0.210 | 1.035 ± 0.581 |
| 2,5-Dimethylpyrazine | 0.074 ± 0.032 | 0.142 ± 0.050 | 0 | 0 |
| Acetoin | 0.655 ± 0.180 | 0.750 ± 0.190 | 2.549 ± 0.147 | 1.812 ± 0.130 |
| 2-Nonanone | 1.033 ± 0.598 | 0.770 ± 0.060 | 0.315 ± 0.217 | 0.615 ± 0.030 |
| Dodecanal | 10.141 ± 3.595 | 2.042 ± 0.024 | 3.547 ± 1.672 | 2.435 ± 0.376 |
| Indole | 0.154 ± 0.043 | 0.068 ± 0.010 | 0.071 ± 0.009 | 0.040 ± 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Gao, Y.; Zhao, L.; Zhang, D.; Zhao, D.; Li, Q.; Jiang, H.; Pan, Y.; Zhu, J.; Yang, Z. Surfactin–Bacillaene Copathway Engineering Strategy Boosts Fengycin Production and Antifungal Activity in Bacillus velezensis HN-Q-8. Microorganisms 2026, 14, 246. https://doi.org/10.3390/microorganisms14010246
Gao Y, Zhao L, Zhang D, Zhao D, Li Q, Jiang H, Pan Y, Zhu J, Yang Z. Surfactin–Bacillaene Copathway Engineering Strategy Boosts Fengycin Production and Antifungal Activity in Bacillus velezensis HN-Q-8. Microorganisms. 2026; 14(1):246. https://doi.org/10.3390/microorganisms14010246
Chicago/Turabian StyleGao, Yuzhu, Liuhui Zhao, Dai Zhang, Dongmei Zhao, Qian Li, Haibin Jiang, Yang Pan, Jiehua Zhu, and Zhihui Yang. 2026. "Surfactin–Bacillaene Copathway Engineering Strategy Boosts Fengycin Production and Antifungal Activity in Bacillus velezensis HN-Q-8" Microorganisms 14, no. 1: 246. https://doi.org/10.3390/microorganisms14010246
APA StyleGao, Y., Zhao, L., Zhang, D., Zhao, D., Li, Q., Jiang, H., Pan, Y., Zhu, J., & Yang, Z. (2026). Surfactin–Bacillaene Copathway Engineering Strategy Boosts Fengycin Production and Antifungal Activity in Bacillus velezensis HN-Q-8. Microorganisms, 14(1), 246. https://doi.org/10.3390/microorganisms14010246
