Synthetic Microbial Communities Enhance Artificial Cyanobacterial Crusts Formation via Spatiotemporal Synergy
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Identification of Functional Strains
2.2. Determination of Metabolic Activity of Functional Strains
2.3. Plate Confrontation Assay for Functional Strains
2.4. Preparation of SynComs Liquid Inoculum and Cultivation of ACCs
2.5. Physicochemical Property Determination of ACCs
2.6. Quantitative Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Functional Strain Screening and Identification
3.1.1. Screening and Identification of Highly Active Functional Strains
3.1.2. Comparison of Inhibition Zone Diameters Among Highly Active Functional Strains
3.2. Effects of Different Functional SynComs on Physicochemical Properties of ACCs
3.2.1. Chl-a Content Responses to Different Functional SynComs
3.2.2. EPS Content as Affected by Different Functional SynComs
3.2.3. Organic Matter Content Responses to Different Functional SynComs
3.2.4. Responses of Ammonium Nitrogen Content and Urease Activity to Different Functional SynComs
3.2.5. 16S rRNA Gene Copy Number Responses to Different Functional SynComs
3.2.6. Impact of Different Functional SynComs on the Correlation Between Soil Physicochemical and Biomass
4. Discussion
4.1. Potential Analysis of Strains for SynComs Construction in ACCs
4.2. Mechanism Insights into SynComs-Mediated ACCs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.; Si, J.; He, X.; Jia, B.; Zhou, D.; Wang, C.; Zhu, X.; Qin, J.; Ndayambaza, B. The impact of desertification on soil health stability in Semi-Arid alpine Regions: A case study of the Qilian Mountains in the northeastern Tibetan Plateau, China. Ecol. Indic. 2024, 163, 112098. [Google Scholar] [CrossRef]
- Qi, H.; Gao, X.; Lei, J.; Meng, X.; Hu, Z. Transforming desertification patterns in Asia: Evaluating trends, drivers, and climate change impacts from 1990 to 2022. Ecol. Indic. 2024, 161, 111948. [Google Scholar] [CrossRef]
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–506. [Google Scholar]
- Bowker, M.A.; Reed, S.C.; Maestre, F.T.; Eldridge, D.J. Biocrusts: The living skin of the earth. Plant Soil 2018, 429, 1–7. [Google Scholar] [CrossRef]
- Gall, C.; Ohan, J.; Glaser, K.; Karsten, U.; Schloter, M.; Scholten, T.; Schulz, S.; Seitz, S.; Kurth, J.K. Biocrusts: Overlooked hotspots of managed soils in mesic environments. J. Plant Nutr. Soil Sci. 2022, 185, 745–751. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Zhang, Q.; Rong, X.; Tao, Y.; Lu, Y.; Yin, B.; Zhou, X.; Zhang, Y. Surface soil physical properties and stability: Determined by biological soil crust type and driven by aridity in the desert regions of Northwest China. Soil Sci. Soc. Am. J. 2025, 89, e70092. [Google Scholar] [CrossRef]
- Huang, W.Y.; Huang, T.; Zhao, Y.G.; Liu, B.Y. Effects of biological soil crust on soil erosion and its modeling. J. Hydrol. 2025, 661, 133629. [Google Scholar] [CrossRef]
- Sun, F.; Xiao, B.; Kidron, G.J.; Heitman, J. Biocrusts critical regulation of soil water vapor transport (diffusion, sorption, and late-stage evaporation) in Drylands. Water Resour. Res. 2024, 60, e2023WR036520. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Han, Y.; Zhang, D.; Zhang, C.; Hu, C. Carbon cycle in the microbial ecosystems of biological soil crusts. Soil Biol. Biochem. 2022, 171, 108729. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.Z.; Li, C.N.; Kou, Y.P.; Li, J.B.; Yao, M.J.; Zhang, B.C.; Wang, L.X.; Xu, H.W.; You, C.M.; et al. Disentangling the relative importance of precipitation, biocrust succession, and shrub cover in mediating soil phoD-harbouring communities and organic phosphorus mineralisation. Soil Biol. Biochem. 2023, 186, 109165. [Google Scholar] [CrossRef]
- Witzgall, K.; Hesse, B.D.; Pacay-Barrientos, N.L.; Jansa, J.; Seguel, O.; Oses, R.; Buegger, F.; Guigue, J.; Rojas, C.; Rousk, K.; et al. Soil carbon and nitrogen cycling at the atmosphere-soil interface: Quantifying the responses of biocrust-soil interactions to global change. Glob. Change Biol. 2024, 30, e17519. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Li, J.; Wen, J.; Lyu, L.; Mai, Z.; Xue, R.; He, D.; Zhang, S. Biocrusts facilitate organic carbon preservation in tropical coral islands undergoing primary succession. Geoderma 2025, 463, 117552. [Google Scholar] [CrossRef]
- Kidron, G.J.; Xiao, B.; Benenson, I. Data variability or paradigm shift? Slow versus fast recovery of biological soil crusts—A review. Sci. Total Environ. 2020, 721, 137683. [Google Scholar] [CrossRef]
- Rodriguez-Caballero, E.; Belnap, J.; Büdel, B.; Büdel, B.; Crutzen, P.J.; Andreae, M.O.; Pöschl, U.; Weber, B. Dryland photoautotrophic soil surface communities endangered by global change. Nat. Geosci. 2018, 11, 185–189. [Google Scholar] [CrossRef]
- Rodriguez-Caballero, E.; Stanelle, T.; Egerer, S.; Cheng, Y.; Su, H.; Canton, Y.; Belnap, J.; Andreae, M.O.; Tegen, I.; Reick, C.H.; et al. Global cycling and climate effects of aeolian dust controlled by biological soil crusts. Nat. Geosci. 2022, 15, 458–463. [Google Scholar] [CrossRef]
- Ramsey, M.L.; Kollath, D.R.; Antoninka, A.J.; Barker, B.M. Proposed relationships between climate, biological soil crusts, human health, and in arid ecosystems. GeoHealth 2025, 9, e2024GH001217. [Google Scholar] [CrossRef]
- Zhao, Y.; Lian, Y.; Xu, W.; Zhao, Y.; Han, G.; Zhao, Y. Research progress and prospect of artificial cyanobacteria crusts in China. J. Desert Res. 2023, 43, 214–222. [Google Scholar] [CrossRef]
- Lu, Q.; Xiao, Y.; Lu, Y. Employment of algae-based biological soil crust to control desertification for the sustainable development: A mini-review. Algal Res. 2022, 65, 102747. [Google Scholar] [CrossRef]
- Rossi, F.; Mugnai, G.; De Philippis, R. Cyanobacterial biocrust induction: A comprehensive review on a soil rehabilitation-effective biotechnology. Geoderma 2022, 415, 115766. [Google Scholar] [CrossRef]
- Li, X.; Hui, R.; Tan, H.; Zhao, Y.; Liu, R.T.; Song, N.P. Biocrust research in China: Recent progress and application in land degradation control. Front. Plant Sci. 2021, 12, 751521. [Google Scholar] [CrossRef]
- Zhou, X.; Zhao, Y.; Belnap, J.; Zhang, B.; Bu, C.; Zhang, Y. Practices of biological soil crust rehabilitation in China: Experiences and challenges. Restor. Ecol. 2020, 28, 45–55. [Google Scholar] [CrossRef]
- Lian, Y.; Zhao, Y.; Xu, W.; Zhao, Y.; Zhao, Y. Maize stalk mulching significantly influences the cyanobacterial communities and alpha diversity in artificial cyanobacterial crusts in arid sandy areas. Appl. Soil Ecol. 2025, 211, 106093. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, F.; Yang, T.; Liu, X.; Jiang, Q.; Shang, H.; Zheng, C. Wind erosion control of bare surface soil in arid mining area by cyanobacterial inoculation and biochar amendment. Catena 2025, 250, 108765. [Google Scholar] [CrossRef]
- Imminger, S.; Meier, D.V.; Schintlmeister, A.; Legin, A.; Schnecker, J.; Richter, A.; Gillor, O.; Eichorst, S.A.; Woebken, D. Survival and rapid resuscitation permit limited productivity in desert microbial communities. Nat. Commun. 2024, 15, 3056. [Google Scholar] [CrossRef]
- Fang, L.; Hu, Z.; Cui, Q.; Yang, Y.; Liang, Y.; Cai, P.; Qu, C.; Gao, C.; Jiao, S.; Liu, Y.; et al. Construction and application of synthetic communities: A new strategy to improve soil health. Acta Pedol. Sin. 2025, 62, 1233–1245. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, M.; Lyu, L.; Nie, L.; Xu, X.; Sun, R.; Xu, X.; Chen, S.; He, S.; Zhang, Y.; et al. Principles for rigorous design and application of synthetic microbial communities. Adv. Sci. 2025, e14750. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.; Li, W.; Zuo, X.; Tang, L.; Wang, B.; Qin, C.; Gao, Y. Carbon sequestration and PAH degradation in soils by a synthetic community of archaea and bacteria. J. Hazard Mater. 2025, 499, 140218. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Han, X.; Wang, L.; Zhang, Y. Synthetic microbial community promotes straw humification and improves soil organic carbon in cropland. Environ. Sci. Technol. 2025, 59, 25960–25972. [Google Scholar] [CrossRef]
- Feng, Z.; Sun, H.; Qin, Y.; Zhou, Y.; Zhu, H.; Yao, Q. A synthetic community of siderophore-producing bacteria increases soil selenium bioavailability and plant uptake through regulation of the soil microbiome. Sci. Total Environ. 2023, 871, 162076. [Google Scholar] [CrossRef]
- Li, H.; Peng, J.; Yang, K.; Zhang, Y.; Chen, Q.; Zhu, Y.; Cui, L. Single-cell exploration of active phosphate-solubilizing bacteria across diverse soil matrices for sustainable phosphorus management. Nat. Food 2024, 5, 673–683. [Google Scholar] [CrossRef]
- Li, L.; Cheng, K.; Du, Y.; Zhang, Y.; Zhou, Y.; Jin, Y.; He, X. Rhizosphere microbes from populus euphratica conferred salt stress resistance to Populus alba × Populus glandulosa. Plant Cell Environ. 2025, 48, 8743–8755. [Google Scholar] [CrossRef]
- Ma, Z.; Jiang, M.; Liu, C.; Wang, E.; Bai, Y.; Yuan, M.M.; Shi, S.; Zhou, J.; Ding, J.; Xie, Y.; et al. Quinolone-mediated metabolic cross-feeding develops aluminium tolerance in soil microbial consortia. Nat. Commun. 2024, 15, 10148. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S.; He, Q.; Yang, X.; Zhao, B.; Zhang, H.; Deng, Y. Ecological design of high-performance synthetic microbial communities: From theoretical foundations to functional optimization. ISME Commun. 2025, 5, ycaf133. [Google Scholar] [CrossRef]
- Hao, X.; Wang, X.; Chen, C.; Liu, R.; Yin, Y.; Yao, J.; Xiao, Z.; Liu, X.; Shen, X.; Liu, X. Synthetic bacterial communities reshape microbial communities and enhance nutrient supply in desertified land of northwest china. Appl. Soil Ecol. 2023, 189, 104972. [Google Scholar] [CrossRef]
- You, T.; Liu, Q.; Chen, M.; Tang, S.; Ou, L.; Li, D. Synthetic microbial communities enhance pepper growth and root morphology by regulating rhizosphere microbial communities. Microorganisms 2025, 13, 148. [Google Scholar] [CrossRef]
- Lei, G.; Han, Z.; Wang, X.; Malacrinò, A.; Kang, T.; Zhang, D.; Zhang, J.; Zhang, Z.; Wu, H. Synthetic microbial communities rescues strawberry from soil-borne disease by enhancing soil functional microbial abundance and multifunctionality. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Ren, M. Effect of Algae-Bacteria Biological Crust on Soil Water and Fertilizer Conservation and Crop Growth. Master’s Thesis, Tianjin Agricultural University, Tianjin, China, 2018. [Google Scholar] [CrossRef]
- Bai, C. Soil Enzyme Activity in MU Us Sandy Land and Screening and Soil Crust Effect of High-Yield Extracellular Polysaccharide Bacteria. Master’s Thesis, Northwest A&F University, Xianyang, China, 2017. [Google Scholar] [CrossRef]
- Tao, Y.; Zhou, X.; Li, Y.; Liu, H.; Zhang, Y. Short-term N and P additions differentially alter the multiple functional traits and trait associations of a desert ephemeral plant in China. Environ. Exp. Bot. 2022, 200, 104932. [Google Scholar] [CrossRef]
- Schalk, I.J. Bacterial siderophores: Diversity, uptake pathways and applications. Nat. Rev. Microbiol. 2025, 23, 24–40. [Google Scholar] [CrossRef]
- Luo, L.; Wu, Y.; Chen, G.; Wang, H.; Wang, Y.; Tong, X.; Bai, Y.; Xu, Y.; Zhang, Z.; Ikuno, N.; et al. Chlorine-resistant bacteria (CRB) in the reverse osmosis system for wastewater reclamation: Isolation, identification and membrane fouling mechanisms. Water Res. 2022, 209, 117966. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, K.; Bai, D.; Bai, X.; Bi, Y.; Chen, A.; Chen, B.; Chen, F.; Chen, J.; Chen, T.; et al. The Microbiome Protocols eBook initiative: Building a bridge to microbiome research. iMeta 2024, 3, e182. [Google Scholar] [CrossRef]
- Gao, H.B.; He, X.; Jia, W.; Guo, C.H.; Xu, R. The Efficient Isolation of Growth-Promoting Endophytic Bacteria from Pioneer Plants in Mining Areas and the Stable Construction of Microbial Communities. In Microbiome Protocols eBook; Bio-101; Bio-Protocol: Palo Alto, CA, USA, 2024; p. e2405584. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Yu, G.; Rossi, F.; Huo, D.; Philippis, R.D.; Cheng, X.; Wang, W.; Li, R. Multiple diversity facets of crucial microbial groups in biological soil crusts promote soil multifunctionality. Glob. Ecol. Biogeogr. 2021, 30, 1204–1217. [Google Scholar] [CrossRef]
- Lu, R. Methods of Soil and Agro-Chemical Analysis, 3rd ed.; China Agricultural Science and Technology Press: Beijing, China, 2000; pp. 1–638. [Google Scholar]
- Colica, G.; Li, H.; Rossi, F.; Li, D.; Liu, Y.; De Philippis, R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol. Biochem. 2014, 68, 62–70. [Google Scholar] [CrossRef]
- Nan, L.; Guo, Q.; Cao, S.; Zhan, Z. Diversity of bacterium communities in saline-alkali soil in arid regions of Northwest China. BMC Microbiol. 2022, 22, 11. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Xiao, K.; Xu, H.; Li, Y.; Xue, Q.; Xue, W.; Zhang, A.; Wen, X.; Xu, G.; Huang, X. Spectroscopic fingerprints profiling the polysaccharide/protein/humic architecture of stratified extracellular polymeric substances (EPS) in activated sludge. Water Res. 2023, 235, 119866. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, Y.; Qu, C.; Huang, Q.; Cai, P. Microbial extracellular polymeric substances (EPS) in soil: From interfacial behaviour to ecological multifunctionality. Geo-Bio Interfaces 2024, 1, e4. [Google Scholar] [CrossRef]
- Adessi, A.; de Carvalho, R.C.; De Philippis, R.; Branquinho, C.; da Silva, J.M. Microbial extracellular polymeric substances improve water retention in dryland biological soil crusts. Soil Biol. Biochem. 2018, 116, 67–69. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, L.; Mai, Z.; Li, J.; Zhang, S. Isolation and characterization of sand fixation ability of bacteria in biological soilcrusts of the tropical islands. J. Trop. Oceanogr. 2023, 42, 101–110. [Google Scholar] [CrossRef]
- Wang, N.; Wang, T.; Chen, Y.; Wang, M.; Lu, Q.; Wang, K.; Dou, Z.; Chi, Z.; Qiu, W.; Dai, J.; et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize. Nat. Commun. 2024, 15, 839. [Google Scholar] [CrossRef]
- Gu, S.; Shao, Z.; Qu, Z.; Zhu, S.; Shao, Y.; Zhang, D.; Allen, R.; He, R.; Shao, J.; Xiong, G.; et al. Siderophore synthetase-receptor gene coevolution reveals habitat and pathogen-specific bacterial iron interaction networks. Sci. Adv. 2025, 11, eadq5038. [Google Scholar] [CrossRef]
- Wei, Z.; Gu, S.; Vollenweider, V.; Zuo, Y.; Li, Z.; Kummerli, R. Microbial siderophores for one health. Trends Microbiol. 2025, 33, 1277–1285. [Google Scholar] [CrossRef]
- Neubauer, U.; Nowack, B.; Furrer, G.; Schulin, R. Heavy Metal sorption on clay minerals affected by the siderophore desferrioxamine B. Environ. Sci. Technol. 2000, 34, 2749–2755. [Google Scholar] [CrossRef]
- Wang, W.; Xia, Y.; Zhang, P.; Zhu, M.; Huang, S.; Sun, X.; Xu, Z.; Zhang, N.; Xun, W.; Shen, Q.; et al. Narrow-Spectrum resource-utilizing bacteria drive the stability of synthetic communities through enhancing metabolic interactions. Nat. Commun. 2025, 16, 6088. [Google Scholar] [CrossRef]
- Wang, X.; Teng, Y.; Wang, X.; Xu, Y.; Li, R.; Sun, Y.; Dai, S.; Hu, W.; Wang, H.; Li, Y. Nitrogen transfer and cross-feeding between Azotobacter Chroococcum and Paracoccus Aminovorans promotes pyrene degradation. ISME J. 2023, 17, 2169–2181. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Huang, Y.; Li, N.; Yao, H.; Yang, E.; Soromotin, A.; Kuzyakov, Y.; Cheptsov, V.; Yang, Y.; An, S.S. Initial soil formation by biocrusts: Nitrogen demand and clay protection control microbial necromass accrual and recycling. Soil Biol. Biochem. 2022, 167, 108607. [Google Scholar] [CrossRef]
- Xie, Y.; Wen, X.; Tu, Y.; He, Y.; Wang, Y.; Luo, S.; Ge, H.; Zhang, D. Mechanisms of artificial biological soil crusts development for anti-desertification engineering on the Qinghai-Tibetan Plateau. Environ. Technol. Innov. 2024, 33, 103542. [Google Scholar] [CrossRef]
- Rossi, F.; De Philippis, R. Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 2015, 5, 1218–1238. [Google Scholar] [CrossRef]
- Heredia-Velásquez, A.M.; Sarkar, S.; Thomas, F.W.; Baza, A.; Garcia-Pichel, F. Urea-based mutualistic transfer of nitrogen in biological soil crusts. ISME J. 2025, 19, wrae246. [Google Scholar] [CrossRef]
- Bi, Y.; Zhou, K.; Xia, L.; Song, S.; Zhu, J.; Hu, Y. Establishment of montmorillonite-based artificial cyanobacterial biocrusts and its mechanism of lead fixation in semi-arid mining area. Metal Mine 2023, 52, 91–100. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, Q.; Zhu, P.; Tian, G.; Cui, Q.; Zhang, P.; Dong, L.; Min, C.; Fang, L. Synthetic Microbial Communities Enhance Artificial Cyanobacterial Crusts Formation via Spatiotemporal Synergy. Microorganisms 2026, 14, 243. https://doi.org/10.3390/microorganisms14010243
Li Q, Zhu P, Tian G, Cui Q, Zhang P, Dong L, Min C, Fang L. Synthetic Microbial Communities Enhance Artificial Cyanobacterial Crusts Formation via Spatiotemporal Synergy. Microorganisms. 2026; 14(1):243. https://doi.org/10.3390/microorganisms14010243
Chicago/Turabian StyleLi, Qi, Pingting Zhu, Guoxia Tian, Qingliang Cui, Pengyu Zhang, Lingyan Dong, Chensi Min, and Linchuan Fang. 2026. "Synthetic Microbial Communities Enhance Artificial Cyanobacterial Crusts Formation via Spatiotemporal Synergy" Microorganisms 14, no. 1: 243. https://doi.org/10.3390/microorganisms14010243
APA StyleLi, Q., Zhu, P., Tian, G., Cui, Q., Zhang, P., Dong, L., Min, C., & Fang, L. (2026). Synthetic Microbial Communities Enhance Artificial Cyanobacterial Crusts Formation via Spatiotemporal Synergy. Microorganisms, 14(1), 243. https://doi.org/10.3390/microorganisms14010243

