Endogenous Hypersensitivity Infection: A Unifying Framework for Cutibacterium acnes-Associated Sarcoidosis
Abstract
1. Introduction
2. Evolution of the Concept of Endogenous Infection
3. Conceptual Framework of Endogenous Hypersensitivity Infection
4. Broader Relevance of the EHI Concept
4.1. Inflammatory Bowel Disease (IBD)
4.2. Chronic Rhinosinusitis (CRS)
4.3. Atopic Dermatitis (AD)
4.4. SAPHO Syndrome and Localized Commensal Infections
4.5. Conceptual Integration and Implications
5. Clinical and Translational Implications
5.1. Diagnostic Applications
5.2. Therapeutic Implications
6. Conclusion and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AD | Atopic dermatitis |
| AMPK | AMP-activated protein kinase |
| ATG16L1 | Autophagy-related protein 16-like 1 |
| C. acnes | Cutibacterium acnes |
| CRS | Chronic rhinosinusitis |
| EHI | Endogenous Hypersensitivity Infection |
| FOXP3 | Forkhead box P3 |
| H&E | Hematoxylin and eosin stain |
| HLA | Human leukocyte antigen |
| IBD | Inflammatory bowel disease |
| IFN-γ | Interferon gamma |
| IHC | Immunohistochemistry |
| IRGM | Immunity-related GTPase family M protein |
| ISH | In situ hybridization |
| mTOR | Mechanistic target of rapamycin |
| NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells |
| NOD1 | Nucleotide-binding oligomerization domain-containing protein 1 |
| NOD2 | Nucleotide-binding oligomerization domain-containing protein 2 |
| PCR | Polymerase chain reaction |
| P. acnes | Propionibacterium acnes (former name of C. acnes) |
| qPCR | Quantitative polymerase chain reaction |
| SPF | Specific pathogen-free |
| Th1 | T helper type 1 |
| Th17 | T helper type 17 |
| TNF-α | Tumor necrosis factor alpha |
| Treg(s) | Regulatory T cell(s) |
References
- Waly, Y.M.; Sharafeldin, A.B.K.; Akhtar, M.U.; Chilmeran, Z.; Fredericks, S. A review of sarcoidosis etiology, diagnosis and treatment. Front. Med. 2025, 12, 1558049. [Google Scholar] [CrossRef] [PubMed]
- Rossides, M.; Darlington, P.; Kullberg, S.; Arkema, E. V Sarcoidosis: Epidemiology and clinical insights. J. Intern. Med. 2023, 293, 668–680. [Google Scholar] [CrossRef] [PubMed]
- Eishi, Y. Potential Association of Cutibacterium acnes with Sarcoidosis as an Endogenous Hypersensitivity Infection. Microorganisms 2023, 11, 289. [Google Scholar] [CrossRef] [PubMed]
- Sawahata, M.; Uchida, K.; Furukawa, A.; Eishi, Y.; Maemondo, M. Latent microbial reactivation and immune dysregulation in sarcoidosis: Bridging pathogenesis and precision therapeutics. Front. Med. 2025, 12, 1625915. [Google Scholar] [CrossRef]
- Homma, J.Y.; Abe, C.; Chosa, H.; Ueda, K.; Saegusa, J.; Nakayama, M.; Homma, H.; Washizaki, M.; Okano, H. Bacteriological investigation on biopsy specimens from patients with sarcoidosis. Jpn. J. Exp. Med. 1978, 48, 251–255. [Google Scholar]
- Abe, C.; Iwai, K.; Mikami, R.; Hosoda, Y. Frequent isolation of Propionibacterium acnes from sarcoidosis lymph nodes. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 1984, 256, 541–547. [Google Scholar] [CrossRef]
- Ishige, I.; Usui, Y.; Takemura, T.; Eishi, Y. Quantitative PCR of mycobacterial and propionibacterial DNA in lymph nodes of Japanese patients with sarcoidosis. Lancet 1999, 354, 120–123. [Google Scholar] [CrossRef]
- Eishi, Y.; Suga, M.; Ishige, I.; Kobayashi, D.; Yamada, T.; Takemura, T.; Takizawa, T.; Koike, M.; Kudoh, S.; Costabel, U.; et al. Quantitative analysis of mycobacterial and propionibacterial DNA in lymph nodes of Japanese and European patients with sarcoidosis. J. Clin. Microbiol. 2002, 40, 198–204. [Google Scholar] [CrossRef]
- Yamada, T.; Eishi, Y.; Ikeda, S.; Ishige, I.; Suzuki, T.; Takemura, T.; Takizawa, T.; Koike, M. In situ localization of Propionibacterium acnes DNA in lymph nodes from sarcoidosis patients by signal amplification with catalysed reporter deposition. J. Pathol. 2002, 198, 541–547. [Google Scholar] [CrossRef]
- Negi, M.; Takemura, T.; Guzman, J.; Uchida, K.; Furukawa, A.; Suzuki, Y.; Iida, T.; Ishige, I.; Minami, J.; Yamada, T.; et al. Localization of propionibacterium acnes in granulomas supports a possible etiologic link between sarcoidosis and the bacterium. Mod. Pathol. 2012, 25, 1284–1297. [Google Scholar] [CrossRef]
- Sieracki, J.C.; Fisher, E.R. The ceroid nature of the so-called “Hamazaki-Wesenberg bodies”. Am. J. Clin. Pathol. 1973, 59, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Sreeja, C.; Priyadarshini, A.; Nachiammai, N. Sarcoidosis: A review article. J. Oral Maxillofac. Pathol. 2022, 26, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Sève, P.; Pacheco, Y.; Durupt, F.; Jamilloux, Y.; Gerfaud-Valentin, M.; Isaac, S.; Boussel, L.; Calender, A.; Androdias, G.; Valeyre, D.; et al. Sarcoidosis: A clinical overview from symptoms to diagnosis. Cells 2021, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Weeratunga, P.; Moller, D.R.; Ho, L.P. Immune mechanisms of granuloma formation in sarcoidosis and tuberculosis. J. Clin. Investig. 2024, 134, e175264. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef]
- Adouli, J.; Fried, A.; Swier, R.; Ghio, A.; Petrache, I.; Tilley, S. Cellular Recycling Gone Wrong: The Role of Dysregulated Autophagy and Hyperactive mTORC1 in the Pathogenesis of Sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2023, 40, e2023016. [Google Scholar] [CrossRef]
- Miyara, M.; Amoura, Z.; Parizot, C.; Badoual, C.; Dorgham, K.; Trad, S.; Kambouchner, M.; Valeyre, D.; Chapelon-Abric, C.; Debré, P.; et al. The immune paradox of sarcoidosis and regulatory T cells. J. Exp. Med. 2006, 203, 359–370, Erratum in J. Exp. Med. 2006, 203, 477. [Google Scholar] [CrossRef]
- Facco, M.; Cabrelle, A.; Teramo, A.; Olivieri, V.; Gnoato, M.; Teolato, S.; Ave, E.; Gattazzo, C.; Fadini, G.P.; Calabrese, F.; et al. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax 2011, 66, 144–150. [Google Scholar] [CrossRef]
- Jain, R.; Yadav, D.; Puranik, N.; Guleria, R.; Jin, J.O. Sarcoidosis: Causes, diagnosis, clinical features, and treatments. J. Clin. Med. 2020, 9, 1081. [Google Scholar] [CrossRef]
- Eishi, Y. Etiologic aspect of sarcoidosis as an allergic endogenous infection caused by Propionibacterium acnes. Biomed Res. Int. 2013, 2013, 935289. [Google Scholar] [CrossRef]
- Polverino, F.; Balestro, E. Clinical presentation, pathogenesis, and therapy of sarcoidosis: State of the art. Eur. Respir. Rev. 2020, 29, 2363. [Google Scholar] [CrossRef]
- Spagnolo, P.; Miedema, J.; Cinetto, F.; Smed-s, A. The immunopathogenesis of sarcoidosis. J. Autoimmun. 2024, 149, 103247. [Google Scholar] [CrossRef] [PubMed]
- Lederberg, J. Infectious History. Science 2000, 288, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.S. Causation and disease: The Henle-Koch postulates revisited. Yale J. Biol. Med. 1976, 49, 175–195. [Google Scholar] [PubMed]
- Parija, S.C.; Khurana, S. Revisiting Koch’s postulates: A tailored approach for clinical parasitology. Trop. Parasitol. 2025, 15, 8–11. [Google Scholar] [CrossRef]
- Gradmann, C. Robert Koch and the invention of the carrier state: Tropical medicine, veterinary infections and epidemiology around 1900. Stud. Hist. Philos. Biol. Biomed. Sci. 2010, 41, 232–240. [Google Scholar] [CrossRef]
- Falkow, S. Molecular Koch’s postulates applied to microbial pathogenicity. Rev. Infect. Dis. 1988, 10, S274–S276. [Google Scholar] [CrossRef]
- Relman, D.A. The human microbiome: Ecosystem resilience and health. Nutr. Rev. 2012, 70, S2–S9. [Google Scholar] [CrossRef]
- Perdijk, O.; Azzoni, R.; Marsland, B.J. The microbiome: An integral player in immune homeostasis and inflammation in the respiratory tract. Physiol. Rev. 2024, 104, 835–879. [Google Scholar] [CrossRef]
- Chandra, H.; Sharma, K.K.; Tuovinen, O.H.; Sun, X.; Chandra, H. Pathobionts: Mechanisms of survival, expansion, and interaction with host with a focus on Clostridioides difficile. Gut Microbes 2021, 13, 1979882. [Google Scholar] [CrossRef]
- Ram, E.; Quintero-lira, A.; Contreras-l, E.; Jaimez-ordaz, J.; Castañeda-ovando, A.; Añorve-morga, J.; Calder, Z.; Arias-rico, J. Impact of the Gut Microbiota Balance on the Health—Disease Relationship: The Importance of Consuming Probiotics and Prebiotics. Foods 2021, 10, 1261. [Google Scholar]
- Escherich, T. Die Darmbakterien des Säuglings und ihre Beziehungen zur Physiologie der Verdauung (The Intestinal Bacteria of Infants and Their Relation to the Physiology of Digestion, in German); F.C.W. Vogel: Leipzig, Germany, 1886; Available online: https://archive.org/details/diedarmbakterien00esch (accessed on 5 October 2025).
- Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 1977, 31, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Bäumler, A.J.; Sperandio, V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016, 535, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef]
- Blaser, M.J. The microbiome revolution. J. Clin. Investig. 2014, 124, 4162–4165. [Google Scholar] [CrossRef]
- Pankow, W. Die Bedeutung der ruhenden Infektion für die Geburtshilfe nebst Bemerkungen über deciduale Veränderungen in Polypen der Portio (On the Significance of Dormant Infection in Obstetrics, with Remarks on Decidual Changes in Polyps of the Cervix, in German). Arch. Für Gynäkologie 1912, 95, 1–33. [Google Scholar]
- Heidler, H. Beitrag zur Bedeutung der ruhenden Infektion für die Geburtshilfe nebst Bemerkungen über deciduale Veränderung in Polypen der Portio (On the Significance of Latent Infection for Obstetrics, with Remarks on Decidual Changes in Polyps of the Cervix, in German). Arch. Für Gynäkologie 1924, 121, 429–445. [Google Scholar] [CrossRef]
- Goymerac, B.; Woollard, G. Focal infection: A new perspective on an old theory. Gen. Dent. 2004, 52, 357–361. [Google Scholar]
- Hunter, W. The Coming of Age of Oral Sepsis. Br. Med. J. 1921, 1, 859–861. [Google Scholar] [CrossRef]
- Billings, F. Chronic focal infections and their etiologic relations to arthritis and nephritis. Arch. Intern. Med. 1912, 9, 484–498. [Google Scholar] [CrossRef]
- Gibbons, R.V. Germs, Dr. Billings, and the theory of focal infection. Clin. Infect. Dis. 1998, 27, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Rocca, J.-P.; Fornaini, C.; Wang, Z.; Tan, L.; Merigo, E. Focal Infection and Periodontitis: A Narrative Report and New Possible Approaches. Int. J. Microbiol. 2020, 2020, 8875612. [Google Scholar] [CrossRef] [PubMed]
- Peřina, V.; Šmucler, R.; Němec, P.; Barták, V. Update on Focal Infection Management: A Czech Interdisciplinary Consensus. Int. Dent. J. 2024, 74, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Fishbein, S.R.S.; Mahmud, B.; Dantas, G. Antibiotic perturbations to the gut microbiome. Nat. Rev. Microbiol. 2023, 21, 772–788. [Google Scholar] [CrossRef]
- Lathakumari, R.H.; Vajravelu, L.K.; Satheesan, A.; Ravi, S.; Thulukanam, J. Antibiotics and the gut microbiome: Understanding the impact on human health. Med. Microecol. 2024, 20, 100106. [Google Scholar] [CrossRef]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of antibiotics and antibiotic resistance and their impacts on drug development: A narrative review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- The Integrative Human Microbiome Project Consortium. The integrative human microbiome project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef]
- Chow, J.; Tang, H.; Mazmanian, S.K. Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr. Opin. Immunol. 2011, 23, 473–480. [Google Scholar] [CrossRef]
- Pereira, M.S.; Kriegel, M.A. Evolving concepts of host-pathobiont interactions in autoimmunity. Curr. Opin. Immunol. 2023, 80, 102265. [Google Scholar] [CrossRef]
- Byrd, A.L.; Segre, J.A. Infectious disease. Adapting Koch’s postulates. Science 2016, 351, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhang, W.; Cheng, D.; You, L.; Huang, Y.; Lu, Y. Investigating dysbiosis and microbial treatment strategies in inflammatory bowel disease based on two modified Koch’s postulates. Front. Med. 2022, 9, 1023896. [Google Scholar] [CrossRef] [PubMed]
- Albillos, A.; Martin-Mateos, R.; Van der Merwe, S.; Wiest, R.; Jalan, R.; Álvarez-Mon, M. Cirrhosis-associated immune dysfunction. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 112–134. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef]
- Egger, G. In Search of a Germ Theory Equivalent for Chronic Disease. Prev. Chronic Dis. 2012, 9, 5–11. [Google Scholar] [CrossRef]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef]
- Zeng, J.; Wang, G. Interaction between microbiota and immunity: Molecular mechanisms, biological functions, diseases, and new therapeutic opportunities. Mol. Oncol. 2025, 19, e70265. [Google Scholar] [CrossRef]
- Minami, J.; Eishi, Y.; Ishige, Y.; Kobayashi, I.; Ishige, I.; Kobayashi, D.; Ando, N.; Uchida, K.; Ikeda, S.; Sorimachi, N.; et al. Pulmonary granulomas caused experimentally in mice by a recombinant trigger-factor protein of Propionibacterium acnes. J. Med. Dent. Sci. 2003, 50, 265–274. [Google Scholar]
- Chandwaskar, R.; Dalal, R.; Gupta, S.; Sharma, A. Dysregulation of T cell response in the pathogenesis of inflammatory bowel disease. Scand. J. Immunol. 2024, 100, e13412. [Google Scholar] [CrossRef]
- Almansour, N.; Al-Rashed, F.; Choudhry, K.; Alqaderi, H.; Sindhu, S.; Al-Mulla, F.; Ahmad, R. Gut microbiota: A promising new target in immune tolerance. Front. Immunol. 2025, 16, 1607388. [Google Scholar] [CrossRef]
- Levin, A.M.; Adrianto, I.; Datta, I.; Iannuzzi, M.C.; Trudeau, S.; Li, J.; Drake, W.P.; Montgomery, C.G.; Rybicki, B.A. Association of HLA-DRB1 with Sarcoidosis Susceptibility and Progression in African Americans. Am. J. Respir. Cell Mol. Biol. 2015, 53, 206–216. [Google Scholar] [CrossRef]
- Grunewald, J.; Brynedal, B.; Darlington, P.; Nisell, M.; Cederlund, K.; Hillert, J.; Eklund, A. Different HLA-DRB1 allele distributions in distinct clinical subgroups of sarcoidosis patients. Respir. Res. 2010, 11, 25. [Google Scholar] [CrossRef]
- Hampe, J.; Franke, A.; Rosenstiel, P.; Till, A.; Teuber, M.; Huse, K.; Albrecht, M.; Mayr, G.; De La Vega, F.M.; Briggs, J.; et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 2007, 39, 207–211. [Google Scholar] [CrossRef]
- Rioux, J.D.; Xavier, R.J.; Taylor, K.D.; Silverberg, M.S.; Goyette, P.; Huett, A.; Green, T.; Kuballa, P.; Barmada, M.M.; Datta, L.W.; et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 2007, 39, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Meng, Q.; Chen, Y.; Liu, Y.; Li, X.; Zhou, J.; Ma, Y.; Yu, Z.; Chen, X. Interaction between gut microbiota and immunity in health and intestinal disease. Front. Immunol. 2025, 16, 1673852. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Furukawa, A.; Uchida, K.; Ogawa, T.; Tamura, T.; Sakonishi, D.; Wada, Y.; Suzuki, Y.; Ishige, Y.; Minami, J.; et al. Autophagy Induced by Intracellular Infection of Propionibacterium acnes. PLoS ONE 2016, 11, e0156298. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, Y.; Lim, C.X.; Weichhart, T.; Valeyre, D.; Bentaher, A.; Calender, A. Sarcoidosis and the mTOR, Rac1, and Autophagy Triad. Trends Immunol. 2020, 41, 286–299. [Google Scholar] [CrossRef]
- Zhao, M.; Chu, J.; Feng, S.; Guo, C.; Xue, B.; He, K.; Li, L. Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: A review. Biomed. Pharmacother. 2023, 164, 114985. [Google Scholar] [CrossRef]
- Lou, I.X.; Zhou, H.; Wan, H. The critical role of Th17 cells and IL-17A in autoimmune and inflammation-associated neurological diseases: Mechanisms and therapeutic perspectives. Front. Immunol. 2025, 16, 1656422. [Google Scholar] [CrossRef]
- Schnell, A.; Littman, D.R.; Kuchroo, V.K. T(H)17 cell heterogeneity and its role in tissue inflammation. Nat. Immunol. 2023, 24, 19–29. [Google Scholar] [CrossRef]
- Gilliland, A.; Chan, J.J.; De Wolfe, T.J.; Yang, H.; Vallance, B.A. Pathobionts in Inflammatory Bowel Disease: Origins, Underlying Mechanisms, and Implications for Clinical Care. Gastroenterology 2024, 166, 44–58. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, R.; Li, M.; Lu, M. Current insights and trends in atopic dermatitis and microbiota interactions: A systematic review and bibliometric analysis. Front. Microbiol. 2025, 16, 1613315. [Google Scholar] [CrossRef] [PubMed]
- Fischer, J.L.; Lee, J.T. Update on the Role of the Microbiome in Chronic Rhinosinusitis. Curr. Treat. Options Allergy 2024, 11, 17–33. [Google Scholar] [CrossRef]
- Nishiwaki, T.; Yoneyama, H.; Eishi, Y.; Matsuo, N.; Tatsumi, K.; Kimura, H.; Kuriyama, T.; Matsushima, K. Indigenous pulmonary Propionibacterium acnes primes the host in the development of sarcoid-like pulmonary granulomatosis in mice. Am. J. Pathol. 2004, 165, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Rahaman, M.; Wangchuk, P.; Sarker, S. Microbial Pathogenesis A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb. Pathog. 2025, 205, 107608. [Google Scholar] [CrossRef]
- Pedersen, T.K.; Brown, E.M.; Plichta, D.R.; Johansen, J.; Twardus, S.W.; Delorey, T.M.; Lau, H.; Vlamakis, H.; Moon, J.J.; Xavier, R.J.; et al. The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn’s disease. Immunity 2022, 55, 1909–1923.e6. [Google Scholar] [CrossRef]
- Bretto, E.; Urp, M. The Role of Gut Microbiota in Gastrointestinal Immune Homeostasis and Inflammation: Implications for Inflammatory Bowel Disease. Biomedicines 2025, 13, 1807. [Google Scholar] [CrossRef]
- Tanabe, T.; Ishige, I.; Suzuki, Y.; Aita, Y.; Furukawa, A.; Ishige, Y.; Uchida, K.; Suzuki, T.; Takemura, T.; Ikushima, S.; et al. Sarcoidosis and NOD1 variation with impaired recognition of intracellular Propionibacterium acnes. Biochim. Biophys. Acta 2006, 1762, 794–801. [Google Scholar] [CrossRef]
- Stevens, W.W.; Lee, R.J.; Schleimer, R.P.; Cohen, N.A. Chronic rhinosinusitis pathogenesis. J. Allergy Clin. Immunol. 2015, 136, 1442–1453. [Google Scholar] [CrossRef]
- Gómez-García, M.; Moreno-Jimenez, E.; Morgado, N.; García-Sánchez, A.; Gil-Melcón, M.; Pérez-Pazos, J.; Estravís, M.; Isidoro-García, M.; Dávila, I.; Sanz, C. The Role of the Gut and Airway Microbiota in Chronic Rhinosinusitis with Nasal Polyps: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 8223. [Google Scholar] [CrossRef]
- Shaghayegh, G.; Cooksley, C.; Ramezanpour, M.; Wormald, P.-J.; Psaltis, A.J.; Vreugde, S. Chronic Rhinosinusitis, S. aureus Biofilm and Secreted Products, Inflammatory Responses, and Disease Severity. Biomedicines 2022, 10, 1362. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Rha, M.-S. Revisiting T cells in chronic rhinosinusitis. Allergy Asthma Immunol. Res. 2024, 16, 585–600. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Song, X.; Jin, M.; Lu, J. Characterization of the Immune Microenvironment and Identification of Biomarkers in Chronic Rhinosinusitis with Nasal Polyps Using Single-Cell RNA Sequencing and Transcriptome Analysis. J. Inflamm. Res. 2024, 17, 253–277. [Google Scholar] [CrossRef] [PubMed]
- Chegini, Z.; Didehdar, M.; Khoshbayan, A.; Karami, J.; Yousefimashouf, M.; Shariati, A. The role of Staphylococcus aureus enterotoxin B in chronic rhinosinusitis with nasal polyposis. Cell Commun. Signal. 2022, 20, 29. [Google Scholar] [CrossRef]
- Hülpüsch, C.; Rohayem, R.; Reiger, M.; Traidl-Hoffmann, C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J. Allergy Clin. Immunol. 2024, 154, 31–41. [Google Scholar] [CrossRef]
- Kim, H.B.; Alexander, H.; Um, J.Y.; Chung, B.Y.; Park, C.W.; Flohr, C.; Kim, H.O. Skin microbiome dynamics in atopic dermatitis: Understanding host–microbiome interactions. Allergy Asthma Immunol. Res. 2025, 17, 165–180. [Google Scholar] [CrossRef]
- Mohammad, S.; Karim, R.; Iqbal, S.; Hyeok, J.; Mathiyalagan, R.; Ju, Y.; Uk, D.; Chun, D. Atopic dermatitis: Pathophysiology, microbiota, and metabolome—A comprehensive review. Microbiol. Res. 2024, 281, 127595. [Google Scholar] [CrossRef]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef]
- Scharschmidt, T.C.; Segre, J.A. Skin microbiome and dermatologic disorders. J. Clin. Investig. 2025, 135, e184315. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nagao, K. Host-microbial dialogues in atopic dermatitis. Int. Immunol. 2019, 31, 449–456. [Google Scholar] [CrossRef]
- Assmann, G.; Simon, P. The SAPHO syndrome—Are microbes involved? Best Pract. Res. Clin. Rheumatol. 2011, 25, 423–434. [Google Scholar] [CrossRef]
- Kotilainen, P.; Merilahti-Palo, R.; Lehtonen, O.P.; Manner, I.; Helander, I.; Möttönen, T.; Rintala, E. Propionibacterium acnes isolated from sternal osteitis in a patient with SAPHO syndrome. J. Rheumatol. 1996, 23, 1302–1304. [Google Scholar] [PubMed]
- Cavallo, I.; Sivori, F.; Truglio, M.; De Maio, F.; Lucantoni, F.; Cardinali, G.; Pontone, M.; Bernardi, T.; Sanguinetti, M.; Capitanio, B.; et al. Skin dysbiosis and Cutibacterium acnes biofilm in inflammatory acne lesions of adolescents. Sci. Rep. 2022, 12, 21104. [Google Scholar] [CrossRef] [PubMed]
- Renz, N.; Mudrovcic, S.; Perka, C.; Trampuz, A. Orthopedic implant-associated infections caused by Cutibacterium spp.—A remaining diagnostic challenge. PLoS ONE 2018, 13, e0202639. [Google Scholar] [CrossRef]
- Alexeyev, O.A.; Marklund, I.; Shannon, B.; Golovleva, I.; Olsson, J.; Andersson, C.; Eriksson, I.; Cohen, R.; Elgh, F. Direct Visualization of Propionibacterium acnes in Prostate Tissue by Multicolor Fluorescent In Situ Hybridization Assay. J. Clin. Microbiol. 2007, 45, 3721–3728. [Google Scholar] [CrossRef]
- Shinohara, D.B.; Vaghasia, A.M.; Yu, S.-H.; Mak, T.N.; Brüggemann, H.; Nelson, W.G.; De Marzo, A.M.; Yegnasubramanian, S.; Sfanos, K.S. A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 2013, 73, 1007–1015. [Google Scholar] [CrossRef]
- Bae, Y.; Ito, T.; Iida, T.; Uchida, K.; Sekine, M.; Nakajima, Y.; Kumagai, J.; Yokoyama, T.; Kawachi, H.; Akashi, T.; et al. Intracellular Propionibacterium acnes infection in glandular epithelium and stromal macrophages of the prostate with or without cancer. PLoS ONE 2014, 9, e90324. [Google Scholar] [CrossRef]
- Kakegawa, T.; Bae, Y.; Ito, T.; Uchida, K.; Sekine, M.; Nakajima, Y.; Furukawa, A.; Suzuki, Y.; Kumagai, J.; Akashi, T.; et al. Frequency of Propionibacterium acnes infection in prostate glands with negative biopsy results is an independent risk factor for prostate cancer in patients with increased serum PSA titers. PLoS ONE 2017, 12, e0169984. [Google Scholar] [CrossRef]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. Host-pathogen interactions: Redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 1999, 67, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L. Microbiology: Ditch the term pathogen. Nature 2014, 516, 165–166. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R.; Schneider, D.S.; Soares, M.P. Disease Tolerance as a Defense Strategy. Science 2012, 335, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Karol, B.; Piotrowski, W.J.; Bonella, F. Challenges in diagnosis of sarcoidosis. Curr. Opin. Immunol. 2025, 97, 102652. [Google Scholar] [CrossRef]
- Hama, H.O.; Aboudharam, G.; Barbieri, R.; Lepidi, H.; Drancourt, M. Immunohistochemical diagnosis of human infectious diseases: A review. Pathogens 2022, 11, 5. [Google Scholar]
- Kim, J.; Dwivedi, G.; Boughton, A.B.A.; Sharma, A.; Lee, S. Advances in cellular and tissue-based imaging techniques for sarcoid granulomas. Am. J. Physiol. Cell Physiol. 2025, 328, C1–C12. [Google Scholar] [CrossRef]
- Ji, H.; Xi, N.; Mohan, C.; Yan, X.; Jain, K.G.; Zang, Q.S.; Gahtan, V.; Zhao, R. Biomarkers and molecular endotypes of sarcoidosis: Lessons from omics and non-omics studies. Front. Immunol. 2024, 14, 1342429. [Google Scholar] [CrossRef]
- van der Mark, S.C.; Bajnath, V.W.S.; Veltkamp, M. Biomarkers in sarcoidosis: Beginning of a new era? Clin. Chest Med. 2024, 45, 33–43. [Google Scholar] [CrossRef]
- Papanikolaou, I.C.; Chytopoulos, K.; Kaitatzis, D.; Kostakis, N.; Bogiatzis, A.; Steiropoulos, P.; Drakopanagiotakis, F. Phenotypes and endotypes in sarcoidosis: Unraveling prognosis and disease course. J. Clin. Med. 2025, 14, 287. [Google Scholar] [CrossRef]
- Furusawa, H.; Suzuki, Y.; Miyazaki, Y.; Inase, N.; Eishi, Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir. Investig. 2012, 50, 104–109. [Google Scholar] [CrossRef]
- Yorozu, P.; Furukawa, A.; Uchida, K.; Akashi, T.; Kakegawa, T.; Ogawa, T.; Minami, J.; Suzuki, Y.; Awano, N.; Furusawa, H.; et al. Propionibacterium acnes catalase induces increased Th1 immune response in sarcoidosis patients. Respir. Investig. 2015, 53, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Kraaijvanger, R.; Veltkamp, M. The Role of Cutibacterium acnes in Sarcoidosis: From Antigen to Treatable Trait? Microorganisms 2022, 10, 1649. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Uchida, K.; Takemura, T.; Sekine, M.; Tamura, T.; Furukawa, A.; Hebisawa, A.; Sakakibara, Y.; Awano, N.; Amano, T.; et al. Propionibacterium acnes-derived insoluble immune complexes in sinus macrophages of lymph nodes affected by sarcoidosis. PLoS ONE 2018, 13, e0192408. [Google Scholar] [CrossRef] [PubMed]
- Uchida, K.; Furukawa, A.; Yoneyama, A.; Furusawa, H.; Kobayashi, D.; Ito, T.; Yamamoto, K.; Sekine, M.; Miura, K.; Akashi, T.; et al. Propionibacterium acnes-derived circulating immune complexes in sarcoidosis patients. Microorganisms 2021, 9, 2194. [Google Scholar] [CrossRef]
- Patterson, K.C.; Miller, W.T.; Hancock, W.W.; Akimova, T. FOXP3+ regulatory T cells are associated with the severity and prognosis of sarcoidosis. Front. Immunol. 2023, 14, 1301991. [Google Scholar] [CrossRef]
- Kumari, R.; Chakraborty, S.; Jain, R.; Mitra, S.; Mohan, A.; Guleria, R.; Pandey, S.; Chaudhury, U.; Mitra, D.K. Inhibiting OX40 Restores Regulatory T-Cell Function and Suppresses Inflammation in Pulmonary Sarcoidosis. Chest 2021, 160, 969–982. [Google Scholar] [CrossRef]
- Qin, D.; Fan, L.-L.; Zhong, Y.; Shen, Y.; Cheng, D. Diagnostic accuracy of interleukin-2 receptor in sarcoidosis: A systematic review and meta-analysis. Expert Rev. Respir. Med. 2023, 17, 495–505. [Google Scholar] [CrossRef]
- Tana, C.; Jiang, Y.; Jiang, D.; Costabel, U. A transcriptomics-based meta-analysis identifies a cross-tissue signature for sarcoidosis. Front. Med. 2022, 9, 960266. [Google Scholar] [CrossRef]
- Melani, A.S.; Bigliazzi, C.; Cimmino, F.A.; Bergantini, L.; Bargagli, E. A Comprehensive Review of Sarcoidosis Treatment for Pulmonologists. Pulm. Ther. 2021, 7, 325–344. [Google Scholar] [CrossRef]
- Baughman, R.P.; Valeyre, D.; Korsten, P.; Mathioudakis, A.G.; Wuyts, W.A.; Wells, A.; Rottoli, P.; Nunes, H.; Lower, E.E.; Judson, M.A.; et al. ERS clinical practice guidelines on treatment of sarcoidosis. Eur. Respir. J. 2021, 58, 2004079. [Google Scholar] [CrossRef]
- Sanders, J.M.; Jeyamogan, S.; Mathew, J.M.; Leventhal, J.R. Foxp3+ regulatory T cell therapy for tolerance in autoimmunity and solid organ transplantation. Front. Immunol. 2022, 13, 1055466. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021, 54, 437–453. [Google Scholar] [CrossRef] [PubMed]
- Gan, T.; Qu, S.; Zhang, H.; Zhou, X.-J. Modulation of the immunity and inflammation by autophagy. MedComm 2023, 4, e311. [Google Scholar] [CrossRef] [PubMed]
- Riffaud, C.M.; Rucks, E.A.; Ouellette, S.P. Persistence of obligate intracellular pathogens: Alternative strategies to overcome host-specific stresses. Front. Cell. Infect. Microbiol. 2023, 13, 1185571. [Google Scholar] [CrossRef]
- Cadwell, K.; Abraham, C.; Bel, S.; Chauhan, S.; Coers, J.; Colombo, M.I.; Davis, J.R.; Hofius, D.; Nguyen, H.T.T.; Ogawa, M.; et al. Autophagy and Bacterial infections. Autophagy Rep. 2025, 4, 2542904. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, T.; Gu, J.; Lu, L. Targeting the metabolism of tumor-infiltrating regulatory T cells. Trends Immunol. 2023, 44, 598–612. [Google Scholar] [CrossRef]
- Patel, C.H.; Powell, J.D. More TOR: The expanding role of mTOR in regulating immune responses. Immunity 2025, 58, 1629–1645. [Google Scholar] [CrossRef]
- Zhang, R.; Zhao, Y.; Chen, X.; Zhuang, Z.; Li, X.; Shen, E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int. Rev. Immunol. 2024, 43, 113–137. [Google Scholar] [CrossRef]
- Saadoun, D.; Rosenzwajg, M.; Joly, F.; Six, A.; Carrat, F.; Thibault, V.; Sene, D.; Cacoub, P.; Klatzmann, D. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N. Engl. J. Med. 2011, 365, 2067–2077. [Google Scholar] [CrossRef]
- Graßhoff, H.; Comdühr, S.; Monne, L.R.; Müller, A.; Lamprecht, P.; Riemekasten, G.; Humrich, J.Y. Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Front. Immunol. 2021, 12, 648408. [Google Scholar] [CrossRef]
- Raeber, M.E.; Caspar, D.P.; Zurbuchen, Y.; Guo, N.; Schmid, J.; Michler, J.; Martin, A.C.; Steiner, U.C.; Moor, A.E.; Koning, F.; et al. Interleukin-2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue-homing characteristics. Immunity 2024, 57, 2232–2250.e10. [Google Scholar] [CrossRef] [PubMed]
- Barde, F.; Lorenzon, R.; Vicaut, E.; Rivière, S.; Cacoub, P.; Cacciatore, C.; Rosenzwajg, M.; Daguenel-Nguyen, A.; Fain, O.; Klatzmann, D.; et al. Induction of regulatory T cells and efficacy of low-dose interleukin-2 in systemic sclerosis: Interventional open-label phase 1-phase 2a study. RMD Open 2024, 10. [Google Scholar] [CrossRef]
- Drake, W.P.; Culver, D.A.; Baughman, R.P.; Judson, M.A.; Crouser, E.D.; James, W.E.; Ayers, G.D.; Ding, T.; Abel, K.; Green, A.; et al. Phase II Investigation of the Efficacy of Antimycobacterial Therapy in Chronic Pulmonary Sarcoidosis. Chest 2021, 159, 1902–1912. [Google Scholar] [CrossRef]
- Bachelez, H.; Senet, P.; Cadranel, J.; Kaoukhov, A.; Dubertret, L. The use of tetracyclines for the treatment of sarcoidosis. Arch. Dermatol. 2001, 137, 69–73. [Google Scholar] [CrossRef]
- Moorman, C.D.; Sohn, S.J.; Phee, H. Emerging Therapeutics for Immune Tolerance: Tolerogenic Vaccines, T cell Therapy, and IL-2 Therapy. Front. Immunol. 2021, 12, 657768. [Google Scholar] [CrossRef]
- Arve-Butler, S.; Moorman, C.D. A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action. Front. Immunol. 2024, 15, 1494499. [Google Scholar] [CrossRef]



| Era/Period | Key Figures/Publications | Conceptual Focus | Relevance to EHI Framework |
|---|---|---|---|
| Late 19th century (1880s) | Theodor Escherich (1886) [32] Die Darmbakterien des Säuglings… | Discovery of intestinal commensals; distinction between symbionts and pathogens | Established the idea that indigenous microbes play physiological roles. |
| Early 20th century (1910s–1920s) | Pankow (1912) [37]; Heidler (1924) [38] | Endogene Infektion/Selbstinfektion—disease from resident microbes | Introduced endogenous infection arising from internal microbial imbalance. |
| 1910s–1930s | Hunter (1921) [40]; Billings (1912) [41] | Focal Infection Theory | Linked local microbial persistence to systemic chronic inflammation. |
| 1940s–1960s (Antibiotic era) | Penicillin era; dominance of Koch’s paradigm | Exogenous infection emphasized; endogenous infection marginalized | Shifted medicine toward eradication of microbes, neglecting tolerance. |
| 1990s–2000s (Microbiome era) | Belkaid & Hand [15]; Honda & Littman [55] | Commensals as immunoregulatory partners; pathobiont concept | Reintroduced tolerance and host–microbe balance as essential for health. |
| 2010s–2020s (EHI concept) | Eishi (2013, 2023) [3,20] | EHI—immune tolerance failure to latent commensals | Integrates classical and modern insights into a host-centered framework. |
| Feature | Classical Infection | Endogenous Hypersensitivity Infection (EHI) | Autoimmunity |
|---|---|---|---|
| Etiologic agent | Exogenous pathogen | Endogenous commensal microbe | None (self-antigen) |
| Immune target | Non-self | Semi-self (commensal antigens) | Self |
| Transmission | Contagious | Non-contagious | Non-contagious |
| Dominant response | Pathogen elimination | Hypersensitivity to commensals | Self-directed immunity |
| Therapeutic focus | Antimicrobial therapy | Immune regulation ± antimicrobial | Immunosuppression |
| Component | Description | Consequence |
|---|---|---|
| Latent reservoirs | Intracellular persistence of C. acnes within macrophages | Subclinical latency |
| Endogenous reactivation | Reactivation under immune or metabolic stress | Limited intracellular proliferation |
| Antigen presentation | APCs present C. acnes antigens | Th1/Th17 activation |
| Effector axis | Dominant Th1/Th17 polarization | Granuloma formation |
| Tolerance axis | Treg dysfunction + impaired autophagy | Failure to terminate responses |
| Outcome | Formation of new latent foci | Relapsing or persistent disease |
| Feature | Self-Remitting Type | Refractory–Relapsing Type |
|---|---|---|
| Latent bacterial load | Small, contained | Large, recurrently reactivated |
| Treg competence | Preserved | Impaired |
| Effector activity | Transient | Persistent |
| Autophagy | Functional | Defective |
| Granuloma resolution | Regression | Fibrosis/persistence |
| Clinical course | Spontaneous remission | Chronic relapse |
| Disease | Commensal Driver | Tolerance Failure | Pattern of Inflammation |
|---|---|---|---|
| Sarcoidosis | Cutibacterium acnes | Treg dysfunction; impaired autophagy | Systemic noncaseating granulomas |
| Crohn’s disease | Escherichia coli and other gut pathobionts | NOD2/ATG16L1/IRGM defects | Chronic intestinal granulomatous inflammation |
| Chronic rhinosinusitis (CRS) | Staphylococcus aureus | Failure to control superantigenic stimulation; reduced Treg activity | Persistent nasal polyps; chronic mucosal inflammation |
| Atopic dermatitis (AD) | Staphylococcus aureus | Skin barrier breakdown + Treg dysregulation | Eczematous flares; relapsing inflammation |
| SAPHO syndrome | Cutibacterium acnes | Osteoarticular microbial persistence | Chronic osteitis and hyperostosis |
| Therapeutic Target | Representative Approaches | Proposed Mechanism |
|---|---|---|
| Regulatory T cell (Treg) activation |
| Expands and stabilizes Tregs; suppresses excessive Th1/Th17 activity; promotes resolution of granulomas. |
| Autophagy enhancement |
| Restores intracellular degradation of C. acnes, reduces antigen release, re-establishes immune homeostasis. |
| Host–microbe equilibrium modulation |
| Rebalances immune recognition of commensals; prevents hypersensitivity activation. |
| Targeted antimicrobial therapy |
| Reduces latent C. acnes burden; macrolides also provide immunomodulation. |
| Combined immunoregulatory–antimicrobial therapy |
| Addresses both microbial persistence and tolerance failure; supports durable remission. |
| Biomarker-guided precision therapy (future direction) |
| Enables individualized therapy according to microbial persistence and tolerance status. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Eishi, Y. Endogenous Hypersensitivity Infection: A Unifying Framework for Cutibacterium acnes-Associated Sarcoidosis. Microorganisms 2026, 14, 147. https://doi.org/10.3390/microorganisms14010147
Eishi Y. Endogenous Hypersensitivity Infection: A Unifying Framework for Cutibacterium acnes-Associated Sarcoidosis. Microorganisms. 2026; 14(1):147. https://doi.org/10.3390/microorganisms14010147
Chicago/Turabian StyleEishi, Yoshinobu. 2026. "Endogenous Hypersensitivity Infection: A Unifying Framework for Cutibacterium acnes-Associated Sarcoidosis" Microorganisms 14, no. 1: 147. https://doi.org/10.3390/microorganisms14010147
APA StyleEishi, Y. (2026). Endogenous Hypersensitivity Infection: A Unifying Framework for Cutibacterium acnes-Associated Sarcoidosis. Microorganisms, 14(1), 147. https://doi.org/10.3390/microorganisms14010147

