Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Media Preparation
2.2. Isolation and Selection of LAB
2.3. Bacterial Species Identification
16S rRNA Sequencing
2.4. Maldi-TOF Mass Spectrometry Analysis
2.5. Assessment of Resistance to Acid and Bile Salt
2.6. Antimicrobial Activity
2.7. pH Measurement
2.8. Surface Hydrophobicity Measurement
2.9. Organic Acids Production
2.10. Emulsion Index (EI)
2.11. Antibiotic Susceptibility
2.12. Hemolytic Activity
2.13. Statistical Analysis
3. Results
3.1. Screening and Identification of the LAB Strains
3.2. Resistance to Acid and Bile Salt
3.3. Surface Hydrophobicity
3.4. Emulsion Index
3.5. Antibacterial Activity
3.6. pH Measurement
3.7. Organic Acid Production
3.8. Antibiotic Susceptibility
3.9. Hemolytic Activity
4. Discussion
4.1. Identification
4.2. Microbial Profiling
4.3. Metabolic Profiling
4.4. Safety
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fanzo, J.; Bellows, A.L.; Spiker, M.L.; Thorne-Lyman, A.L.; Bloem, M.W. The importance of food systems and the environment for nutrition. Am. J. Clin. Nutr. 2021, 113, 7–16. [Google Scholar] [CrossRef]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils—A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef]
- Liu, X.; Steele, J.C.; Meng, X.-Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017, 223, 161–169. [Google Scholar] [CrossRef]
- Lai, W.W.-P.; Lin, Y.-C.; Wang, Y.-H.; Guo, Y.L.; Lin, A.Y.-C. Occurrence of emerging contaminants in aquaculture waters: Cross-contamination between aquaculture systems and surrounding waters. Water Air Soil. Pollut. 2018, 229, 249. [Google Scholar] [CrossRef]
- Long, D. FDA Rejections of Antibiotic Contaminated Indian Shrimp Continue in September—Southern Shrimp Alliance 2018. Available online: https://shrimpalliance.com/fda-rejections-of-antibiotic-contaminated-indian-shrimp-continue-in-september/ (accessed on 4 October 2018).
- Anderson, A.J.; Kim, Y.C. Biopesticides produced by plant-probiotic Pseudomonas chlororaphis isolates. Crop Prot. 2018, 105, 62–69. [Google Scholar] [CrossRef]
- Cuong, N.V.; Kiet, B.T.; Hien, V.B.; Truong, B.D.; Phu, D.H.; Thwaites, G.; Choisy, M.; Carrique-Mas, J. Antimicrobial use through consumption of medicated feeds in chicken flocks in the mekong delta of vietnam: A three-year study before a ban on antimicrobial growth promoters. PLoS ONE 2021, 16, e0250082. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Okaiyeto, S.A.; Sutar, P.P.; Chen, C.; Ni, J.-B.; Wang, J.; Mujumdar, A.S.; Zhang, J.-S.; Xu, M.-Q.; Fang, X.-M.; Zhang, C.; et al. Antibiotic resistant bacteria in food systems: Current status, resistance mechanisms, and mitigation strategies. Agric. Commun. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Sánchez, B.; Adeniyi, B.A.; de Los Reyes-Gavilán, C.G.; Margolles, A.; Ruas-Madiedo, P. Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from nigerian traditional fermented foods and cow’s intestine. Int. J. Food Microbiol. 2011, 147, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Kassa, G.; Alemayehu, D.; Andualem, B. Isolation, identification, and molecular characterization of probiotic bacteria from locally selected ethiopian free range chickens gastrointestinal tract. Poult. Sci. 2024, 103, 103311. [Google Scholar] [CrossRef]
- Fontana, L.; Bermudez-Brito, M.; Plaza-Diaz, J.; Muñoz-Quezada, S.; Gil, A. Sources, isolation, characterisation and evaluation of probiotics. Br. J. Nutr. 2013, 109, S35–S50. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kaur, R.; Rani, N.; Sharma, S.; Joshi, M. Sources and selection criteria of probiotics. In Advances in Probiotics for Sustainable Food and Medicine; Goel, G., Kumar, A., Eds.; Springer: Singapore, 2021; pp. 27–43. ISBN 978-981-15-6795-7. [Google Scholar]
- Obafemi, Y.D.; Oranusi, S.U.; Ajanaku, K.O.; Akinduti, P.A.; Leech, J.; Cotter, P.D. African fermented foods: Overview, emerging benefits, and novel approaches to microbiome profiling. npj Sci. Food 2022, 6, 15. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets west. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.; Kaltenpoth, M. The nagoya protocol and its implications for microbiology. Nat. Microbiol. 2023, 8, 2234–2237. [Google Scholar] [CrossRef]
- Tharmaraj, N.; Shah, N.P. Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus, and Propionibacteria. J. Dairy Sci. 2003, 86, 2288–2296. [Google Scholar] [CrossRef] [PubMed]
- Ołdak, A.; Zielińska, D.; Rzepkowska, A.; Kołożyn-Krajewska, D. Comparison of antibacterial activity of Lactobacillus Plantarum strains isolated from two different kinds of regional cheeses from Poland: Oscypek and korycinski cheese. BioMed Res. Int. 2017, 2017, 6820369. [Google Scholar] [CrossRef]
- Sadeghi, M.; Panahi, B.; Mazlumi, A.; Hejazi, M.A.; Komi, D.E.A.; Nami, Y. Screening of potential probiotic lactic acid bacteria with antimicrobial properties and selection of superior bacteria for application as biocontrol using machine learning models. LWT 2022, 162, 113471. [Google Scholar] [CrossRef]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Blondiaux, N.; Gaillot, O.; Courcol, R.-J. Identification bactérienne par spectrométrie de masse de type MALDI-TOF: Évaluation au CHU de Lille. Pathol. Biol. 2010, 58, 55–57. [Google Scholar] [CrossRef]
- Nacef, M.; Chevalier, M.; Chollet, S.; Drider, D.; Flahaut, C. MALDI-TOF mass spectrometry for the identification of lactic acid bacteria isolated from a french cheese: The maroilles. Int. J. Food Microbiol. 2017, 247, 2–8. [Google Scholar] [CrossRef]
- Wejinya, A.O.; Giami, S.Y.; Barber, L.I.; Obinna-Echem, P.C. Isolation, identification and characterization of potential probiotics from fermented food products. Asian Food Sci. J. 2022, 14–25. [Google Scholar] [CrossRef]
- Sakoui, S.; Derdak, R.; Pop, O.L.; Vodnar, D.C.; Jouga, F.; Teleky, B.-E.; Addoum, B.; Simon, E.; Suharoschi, R.; Soukri, A.; et al. Exploring technological, safety and probiotic properties of Enterococcus strains: Impact on rheological parameters in fermented milk. Foods 2024, 13, 586. [Google Scholar] [CrossRef]
- Vaillant, V.; Valk, H.D.; Baron, E.; Ancelle, T.; Colin, P.; Delmas, M.-C.; Dufour, B.; Pouillot, R.; Strat, Y.L.; Weinbreck, P.; et al. Foodborne infections in France. Foodborne Pathog. Dis. 2005, 2, 221–232. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, M.; Su, W.; Mei, L.; Li, Y.; Guo, Y.; Li, Y.; Liang, W.; Yang, B.; Huang, Z.; et al. Probiotics in piglet: From gut health to pathogen defense mechanisms. Front. Immunol. 2024, 15. [Google Scholar] [CrossRef] [PubMed]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control 2020, 115, 107286. [Google Scholar] [CrossRef]
- Rosenberg, M.; Gutnick, D.; Rosenberg, E. Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 1980, 9, 29–33. [Google Scholar] [CrossRef]
- Ahimou, F.; Paquot, M.; Jacques, P.; Thonart, P.; Rouxhet, P.G. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. J. Microbiol. Methods 2001, 45, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Rühs, P.A.; Böcker, L.; Inglis, R.F.; Fischer, P. Studying bacterial hydrophobicity and biofilm formation at liquid–liquid interfaces through interfacial rheology and pendant drop tensiometry. Colloids Surf. B Biointerfaces 2014, 117, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Calvigioni, M.; Bertolini, A.; Codini, S.; Mazzantini, D.; Panattoni, A.; Massimino, M.; Celandroni, F.; Zucchi, R.; Saba, A.; Ghelardi, E. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains. Front. Microbiol. 2023, 14. [Google Scholar] [CrossRef]
- Díaz-Corona, L.R.; Parra-Saavedra, K.J.; Mora-Alonzo, R.S.; Macías-Rodríguez, M.E.; Martínez-Preciado, A.H.; Guevara-Martínez, S.J.; Zamudio-Ojeda, A.; Macias-Lamas, A.M. HPLC-DAD development and validation method for short-chain fatty acids quantification from chicken feces by solid-phase extraction. Separations 2023, 10, 308. [Google Scholar] [CrossRef]
- Prasanna, P.H.P.; Bell, A.; Grandison, A.S.; Charalampopoulos, D. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr. Polym. 2012, 90, 533–540. [Google Scholar] [CrossRef]
- Ma, W. Performance Standards for Antimicrobial Susceptibility Testing Sixteenth Informational Supplement. M 100-S 16. 2006. Available online: https://cir.nii.ac.jp/crid/1570572701037441792 (accessed on 31 October 2023).
- Moreno, I.; Marasca, E.T.G.; de Sá, P.B.Z.R.; de Souza Moitinho, J.; Marquezini, M.G.; Alves, M.R.C.; Bromberg, R. Evaluation of probiotic potential of bacteriocinogenic lactic acid bacteria strains isolated from meat products. Probiotics Antimicrob. Proteins 2018, 10, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, M.; Ma, X.; Li, Z.; Jiang, C.; Pan, Y.; Zeng, Q. In vitro investigation on lactic acid bacteria isolated from yak faeces for potential probiotics. Front. Cell. Infect. Microbiol. 2022, 12. [Google Scholar] [CrossRef]
- Yaseen, Y.; Diop, A.; Gancel, F.; Béchet, M.; Jacques, P.; Drider, D. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis. Arch. Microbiol. 2018, 200, 783–791. [Google Scholar] [CrossRef]
- Yasmin, I.; Saeed, M.; Khan, W.A.; Khaliq, A.; Chughtai, M.F.J.; Iqbal, R.; Tehseen, S.; Naz, S.; Liaqat, A.; Mehmood, T.; et al. In vitro probiotic potential and safety evaluation (hemolytic, cytotoxic activity) of bifidobacterium strains isolated from raw camel milk. Microorganisms 2020, 8, 354. [Google Scholar] [CrossRef]
- Morelli, L.; Capurso, L. FAO/WHO Guidelines on Probiotics: 10 Years Later. J. Clin. Gastroenterol. 2012, 46, S1. [Google Scholar] [CrossRef]
- Riegel, P.; Briel, D.d.; Dauwalder, O. Automatisation de l’identification bactérienne. Rev. Francoph. Des. Lab. 2016, 2016, 39–47. [Google Scholar] [CrossRef]
- Alshammari, E.; Patel, M.; Sachidanandan, M.; Kumar, P.; Adnan, M. Potential evaluation and health fostering intrinsic traits of novel probiotic strain Enterococcus durans F3 isolated from the gut of fresh water fish Catla catla. Food Sci. Anim. Resour. 2019, 39, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Shi, L.; Wang, J.; Yuan, J.; Liu, J.; Liu, L.; Da, R.; Cheng, Y.; Han, B. Probiotic potential analysis and safety evaluation of Enterococcus durans A8-1 isolated from a healthy chinese infant. Front. Microbiol. 2021, 12, 799173. [Google Scholar] [CrossRef]
- García-Vela, S.; Ben Said, L.; Soltani, S.; Guerbaa, R.; Fernández-Fernández, R.; Ben Yahia, H.; Ben Slama, K.; Torres, C.; Fliss, I. Targeting Enterococci with antimicrobial activity against clostridium perfringens from poultry. Antibiotics 2023, 12, 231. [Google Scholar] [CrossRef]
- Pristavu, M.-C.; Diguță, F.C.; Aldea, A.C.; Badea, F.; Dragoi Cudalbeanu, M.; Ortan, A.; Matei, F. Functional profiling of Enterococcus and Pediococcus strains: An in vitro study on probiotic and postbiotic properties. Microorganisms 2025, 13, 1348. [Google Scholar] [CrossRef]
- Gu, M.; Nguyen, H.T.; Cho, J.-H.; Suh, J.-W.; Cheng, J. Characterization of Leuconostoc mesenteroides MJM60376 as an oral probiotic and its antibiofilm activity. Mol. Oral. Microbiol. 2023, 38, 145–157. [Google Scholar] [CrossRef]
- Franz, C.M.; Specht, I.; Haberer, P.; Holzapfel, W.H. Bile Salt hydrolase activity of Enterococci isolated from food: Screening and quantitative determination. J. Food Prot. 2001, 64, 725–729. [Google Scholar] [CrossRef]
- Rimal, B.; Collins, S.L.; Tanes, C.E.; Rocha, E.R.; Granda, M.A.; Solanki, S.; Hoque, N.J.; Gentry, E.C.; Koo, I.; Reilly, E.R.; et al. Bile Salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 2024, 626, 859–863. [Google Scholar] [CrossRef] [PubMed]
- Rashid, H.; Anwar, H.; Baig, F.M.; Mukhtar, I.; Muhammad, T.; Zaidi, A. Potentially Probiotic NPL 1334 Strain of Enterococcus durans benefits rats with diet-induced hypercholesterolemia. BMC Biotechnol. 2025, 25. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-G.; Kang, M.J.; Cha, S.; Kim, T.-R.; Park, Y.-S. Acid tolerance responses and their mechanisms in Lactiplantibacillus plantarum LM1001. Food Sci. Biotechnol. 2024, 33, 2213–2222. [Google Scholar] [CrossRef]
- Pieniz, S.; Andreazza, R.; Anghinoni, T.; Camargo, F.; Brandelli, A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus Durans Strain LAB18s. Food Control 2014, 37, 251–256. [Google Scholar] [CrossRef]
- Koo, O.K.; Kim, S.M.; Kang, S.-H. Antimicrobial potential of Leuconostoc Species against E. coli O157:H7 in ground meat. J. Korean Soc. Appl. Biol. Chem. 2015, 58, 831–838. [Google Scholar] [CrossRef]
- Wang, Y.; Li, A.; Jiang, X.; Zhang, H.; Mehmood, K.; Zhang, L.; Jiang, J.; Waqas, M.; Iqbal, M.; Li, J. Probiotic potential of Leuconostoc pseudomesenteroides and Lactobacillus strains isolated from yaks. Front. Microbiol. 2018, 9, 2987. [Google Scholar] [CrossRef]
- Neal-McKinney, J.M.; Lu, X.; Duong, T.; Larson, C.L.; Call, D.R.; Shah, D.H.; Konkel, M.E. Production of organic acids by probiotic Lactobacilli can be used to reduce pathogen Load in Poultry. PLoS ONE 2012, 7, e43928. [Google Scholar] [CrossRef]
- Berebon, D.; Ofokansi, K.; Attama, A.; Eze, C.; Onwusoba, R.; Ugwoke, I. Preliminary studies on isolation, bile tolerance and antibiogram of potential probiotics (probionts) from locally fermented food products at beach market, nsukka metropolis, enugu state, nigeria. Biotechnol. J. Int. 2019, 1–10. [Google Scholar] [CrossRef]
- Otero, M.C.; Nader-Macías, M.E. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim. Reprod. Sci. 2006, 96, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Toh, H.; Hase, K.; Oshima, K.; Nakanishi, Y.; Yoshimura, K.; Tobe, T.; Clarke, J.M.; Topping, D.L.; Suzuki, T.; et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011, 469, 543–547. [Google Scholar] [CrossRef]
- Sharma, A.; Lee, H.-J. Antimicrobial activity of probiotic bacteria isolated from plants: A review. Foods 2025, 14, 495. [Google Scholar] [CrossRef]
- Chahrazed, B.; Souhila, A.; Amine, B.; Mohamed, Z.L. Etude du potentiel probiotique des bacteries. Alger. J. Arid. Environ. 2021, 11, 10. [Google Scholar]
- Gaggìa, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141, S15–S28. [Google Scholar] [CrossRef]
- Lauková, A.; Kandričáková, A.; Buňková, L.; Pleva, P.; Ščerbová, J. Sensitivity to enterocins of biogenic amine-producing faecal enterococci from ostriches and pheasants. Probiotics Antimicro. Prot. 2017, 9, 483–491. [Google Scholar] [CrossRef]
- Hossain, T.J.; Mozumder, H.A.; Ali, F.; Akther, K. Inhibition of pathogenic microbes by the lactic acid bacteria Limosilactobacillus fermentum strain lab-1 and Levilactobacillus brevis strain lab-5 isolated from the dairy beverage borhani. Curr. Res. Nutr. Food Sci. 2022, 10, 928–939. [Google Scholar] [CrossRef]
- Chang, H.M.; Foo, H.L.; Loh, T.C.; Lim, E.T.C.; Abdul Mutalib, N.E. Comparative studies of inhibitory and antioxidant activities, and organic acids compositions of postbiotics produced by probiotic Lactiplantibacillus plantarum strains isolated from malaysian foods. Front. Vet. Sci. 2021, 7. [Google Scholar] [CrossRef]
- Tejero-Sariñena, S.; Barlow, J.; Costabile, A.; Gibson, G.R.; Rowland, I. In vitro evaluation of the antimicrobial activity of a range of probiotics against pathogens: Evidence for the effects of organic acids. Anaerobe 2012, 18, 530–538. [Google Scholar] [CrossRef]
- Barlin, G.B.; Perrin, D.D. Prediction of the strengths of organic acids. Q. Rev. Chem. Soc. 1966, 20, 75–101. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022, 46, 101615. [Google Scholar] [CrossRef]
- Rocha-Ramírez, L.M.; Hernández-Chiñas, U.; Moreno-Guerrero, S.S.; Ramírez-Pacheco, A.; Eslava, C.A. In vitro Effect of the cell-free supernatant of the Lactobacillus casei Strain IMAU60214 against the different pathogenic properties of diarrheagenic Escherichia coli. Microorganisms 2023, 11, 1324. [Google Scholar] [CrossRef]
- Guimarães, A.; Santiago, A.; Teixeira, J.A.; Venâncio, A.; Abrunhosa, L. Anti-Aflatoxigenic effect of organic acids produced by Lactobacillus plantarum. Int. J. Food Microbiol. 2018, 264, 31–38. [Google Scholar] [CrossRef]
- Song, J. Functional Properties of Probiotics in Food Sources. Foods 2024, 13, 2548. [Google Scholar] [CrossRef]
- Jaimee, G.; Halami, P. Emerging resistance to aminoglycosides in lactic acid bacteria of food origin-an impending menace. Appl. Microbiol. Biotechnol. 2016, 100. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, I.; Kwiecień, E.; Jóźwiak-Piasecka, K.; Garbowska, M.; Binek, M.; Rzewuska, M. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives-the basic safety and usefulness criterion. Front. Vet. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Anisimova, E.A.; Yarullina, D.R. Antibiotic resistance of Lactobacillus strains. Curr. Microbiol. 2019, 76, 1407–1416. [Google Scholar] [CrossRef]
- Wong, A.; Ngu, D.Y.S.; Dan, L.A.; Ooi, A.; Lim, R.L.H. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr. J. 2015, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Binda, S.; Hill, C.; Johansen, E.; Obis, D.; Pot, B.; Sanders, M.E.; Tremblay, A.; Ouwehand, A.C. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements. Front. Microbiol. 2020, 11, 1662. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Importance. EFS2 2012, 10. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; et al. Guidance on the Identity, Characterisation and Conditions of Use of Feed Additives. EFSA J. 2017, 15, e05023. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Yang, K.; Liu, M.; Zhang, J.; Wei, X.; Fan, M. Screening for potential probiotic from spontaneously fermented non-dairy foods based on in vitro probiotic and safety properties. Ann. Microbiol. 2018, 68, 803–813. [Google Scholar] [CrossRef]
- Rychen, G.; Aquilina, G.; Azimonti, G.; Bampidis, V.; Bastos, M.d.L.; Bories, G.; Chesson, A.; Cocconcelli, P.S.; Flachowsky, G.; Gropp, J.; et al. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA J. 2018, 16, e05206. [Google Scholar] [CrossRef] [PubMed]
Matrice | ID | 16S rRNA | Identity (%) | MALDI-TOF/MS | Score |
---|---|---|---|---|---|
Whey sourdough | E17 | Lactiplantibacillus plantarum | 97.38 | Lactiplantibacillus plantarum | 2.02 |
Goat cheese | E18 | Leuconostoc pseudomesenteroides | 98.48 | Leuconostoc pseudomesenteroides | 2.12 |
E19 | Leuconostoc mesenteroides | 98.62 | Leuconostoc mesenteroides | 2.12 | |
Fermented milk | E21 | Enterococcus durans | 96.62 | Enterococcus durans | 2.11 |
E22 | Lacticaseibacillus casei | 100 | Lacticaseibacillus casei | 2.37 |
Species | Codes | E. coli | B. cereus | S. epidermidis |
---|---|---|---|---|
L. plantarum | E17 | 15.78 ± 0.69 (a1) | 19.14 ± 1.30 (c2) | 19.11 ± 0.45 (d3) |
L. pseudomesenteroides | E18 | 0.00 ± 0.00 (c1) | 0.00 ± 0.00 (d2) | 8.43 ± 0.51 (a3) |
L. mesenteroides | E19 | 21.17 ± 0.36 (b1) | 15.03 ± 0.15 (b2) | 16.71 ± 0.51 (c3) |
E. durans | E21 | 15.30 ± 0.83 (a1) | 10.34 ± 0.77 (a2) | 9.60 ± 0.79 (a3) |
L. casei | E22 | 15.94 ± 0.25 (a1) | 9.50 ± 1.11 (a2) | 10.47 ± 0.72 (b3) |
Species | ERY [15 µg] | STR [10 µg] | CHL [30 µg] | TET [30 µg] | PEN [10 µg] | KAN [30 µg] |
---|---|---|---|---|---|---|
L. plantarum | 22.0 ± 1.0 (d1) | 0.0 ± 0.0 (a2) | 21.3 ± 1.2 (d3) | 21.0 ± 1.7 (c4) | 28.3 ± 0.6 (b5) | 0.0 ± 0.0 (c6) |
L. pseudomesenteroides | 39.3 ± 1.2 (e1) | 25.7 ± 0.6 (c2) | 36.0 ± 0.0 (e3) | 40.7 ± 0.6 (b4) | 41.0 ± 1.0 (d5) | 25.3 ± 0.6 (d6) |
L. mesenteroides | 34.0 ± 0.0 (c1) | 14.3 ± 0.6 (b2) | 33.7 ± 0.6 (c3) | 39.0 ± 1.7 (b4) | 33.3 ± 1.2 (c5) | 14.3 ± 0.6 (a6) |
E. durans | 31.3 ± 0.6 (a1) | 0.0 ± 0.0 (a2) | 24.7 ± 0.6 (a3) | 32.3 ± 0.6 (a4) | 19.7 ± 0.6 (a5) | 14.0 ± 0.0 (a6) |
L. casei | 28.3 ± 0.6 (b1) | 0.0 ± 0.0 (a2) | 30.3 ± 0.6 (b3) | 32.0 ± 1.7 (a4) | 28.0 ± 2.0 (b5) | 8.7 ± 1.1 (b6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, A.O.P.; Mounir, M.; Razafindralambo, H.; Jacques, P. Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products. Microorganisms 2025, 13, 2201. https://doi.org/10.3390/microorganisms13092201
Yao AOP, Mounir M, Razafindralambo H, Jacques P. Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products. Microorganisms. 2025; 13(9):2201. https://doi.org/10.3390/microorganisms13092201
Chicago/Turabian StyleYao, Ange Olivier Parfait, Majid Mounir, Hary Razafindralambo, and Philippe Jacques. 2025. "Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products" Microorganisms 13, no. 9: 2201. https://doi.org/10.3390/microorganisms13092201
APA StyleYao, A. O. P., Mounir, M., Razafindralambo, H., & Jacques, P. (2025). Probiotic Potential of Lactic Acid Bacteria Isolated from Moroccan Traditional Food Products. Microorganisms, 13(9), 2201. https://doi.org/10.3390/microorganisms13092201