Cutibacterium acnes Phylotyping and Antibiotic Resistance to Six Antibiotics: A Bulgarian Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Phylotypes
3.2. Antibiotic Resistance
3.3. Double and Multidrug Resistance (MDR)
4. Discussion
4.1. C. acnes Phylotypes
4.2. C. acnes Resistance to Antibiotics
4.3. Multidrug Resistance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dreno, B.; Dekio, I.; Baldwin, H.; Demessant, A.L.; Dagnelie, M.A.; Khammari, A.; Corvec, S. Acne microbiome: From phyla to phylotypes. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 657–664. [Google Scholar] [CrossRef]
- Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: A brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol. 2018, 32 (Suppl. S2), 5–14. [Google Scholar] [CrossRef]
- Platsidaki, E.; Dessinioti, C. Recent advances in understanding Propionibacterium acnes (Cutibacterium acnes) in acne. F1000Research 2018, 7, 1953. [Google Scholar] [CrossRef]
- Boyanova, L. Cutibacterium acnes (formerly Propionibacterium acnes): Friend or foe? Future Microbiol. 2023, 18, 235–244. [Google Scholar] [CrossRef]
- Nakase, K.; Sakuma, Y.; Nakaminami, H.; Noguchi, N. Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase IV. Anaerobe 2016, 42, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Beirne, C.; McCann, E.; McDowell, A.; Miliotis, G. Genetic determinants of antimicrobial resistance in three multi-drug resistant strains of Cutibacterium acnes isolated from patients with acne: A predictive in silico study. Access Microbiol. 2022, 4, acmi000404. [Google Scholar] [CrossRef] [PubMed]
- Nagy, E.; Boyanova, L.; Justesen, U.S.; ESCMID Study Group of Anaerobic Infections. How to isolate, identify and determine antimicrobial susceptibility of anaerobic bacteria in routine laboratories. Clin. Microbiol. Infect. 2018, 24, 1139–1148. [Google Scholar] [CrossRef]
- Barnard, E.; Nagy, I.; Hunyadkürti, J.; Patrick, S.; McDowell, A. Multiplex touchdown PCR for rapid typing of the opportunistic pathogen Propionibacterium acnes. J. Clin. Microbiol. 2015, 53, 1149–1155. [Google Scholar] [CrossRef]
- Boyanova, L.; Kolarov, R.; Gergova, G.; Deliverska, E.; Madjarov, J.; Marinov, M.; Mitov, I. Anaerobic bacteria in 118 patients with deep-space head and neck infections from the University Hospital of Maxillofacial Surgery, Sofia, Bulgaria. J. Med. Microbiol. 2006, 55, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Boyanova, L.; Yordanov, D.; Ouzounova-Raykova, V.; Markovska, R.; Marteva-Proevska, Y.; Mitov, I. Activity of delafloxacin versus that of levofloxacin against anaerobic and microaerophilic isolates. Anaerobe 2020, 62, 102150. [Google Scholar] [CrossRef]
- EUCAST-The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2025. Available online: https://www.eucast.org (accessed on 27 July 2025).
- Matuschek, E.; Copsey-Mawer, S.; Petersson, S.; Åhman, J.; Morris, T.E.; Kahlmeter, G. The European committee on antimicrobial susceptibility testing disc diffusion susceptibility testing method for frequently isolated anaerobic bacteria. Clin. Microbiol. Infect. 2023, 29, 795.e1–795.e7. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, R.; Xin, K.Z.; Lu, Z.; Ma, Y. Antimicrobial susceptibility, biotypes and phylotypes of clinical Cutibacterium (formerly Propionibacterium) acnes strains isolated from acne patients: An observational study. Dermatol. Ther. 2019, 9, 735–746. [Google Scholar] [CrossRef]
- Both, A.; Huang, J.; Hentschke, M.; Tobys, D.; Christner, M.; Klatte, T.O.; Seifert, H.; Aepfelbacher, M.; Rohde, H. Genomics of invasive Cutibacterium acnes isolates from deep-seated infections. Microbiol. Spectr. 2023, 11, e0474022. [Google Scholar] [CrossRef] [PubMed]
- McDowell, A.; Barnard, E.; Liu, J.; Li, H.; Patrick, S. Emendation of Propionibacterium acnes subsp. acnes (Deiko et al. 2015) and proposal of Propionibacterium acnes type II as Propionibacterium acnes subsp. defendens subsp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5358–5365, Erratum in Int. J. Syst. Evol. Microbiol. 2017, 67, 4880. [Google Scholar] [CrossRef] [PubMed]
- Aubin, G.G.; Lavigne, J.P.; Foucher, Y.; Dellière, S.; Lepelletier, D.; Gouin, F.; Corvec, S. Tropism and virulence of Cutibacterium (formerly Propionibacterium) acnes involved in implant-associated infection. Anaerobe 2017, 47, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Capoor, M.N.; Ruzicka, F.; Schmitz, J.E.; James, G.A.; Machackova, T.; Jancalek, R.; Smrcka, M.; Lipina, R.; Ahmed, F.S.; Alamin, T.F.; et al. Propionibacterium acnes biofilm is present in intervertebral discs of patients undergoing microdiscectomy. PLoS ONE 2017, 12, e0174518. [Google Scholar] [CrossRef]
- Lin, Y.; Jiao, Y.; Yuan, Y.; Zhou, Z.; Zheng, Y.; Xiao, J.; Li, C.; Chen, Z.; Cao, P. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway. Emerg. Microbes Infect. 2018, 7, 1. [Google Scholar] [CrossRef]
- Crane, J.K.; Hohman, D.W.; Nodzo, S.R.; Duquin, T.R. Antimicrobial susceptibility of Propionibacterium acnes isolates from shoulder surgery. Antimicrob. Agents Chemother. 2013, 57, 3424–3426. [Google Scholar] [CrossRef]
- Ishak, N.; Abdul Wahab, Z.; Amin Nordin, S.; Ibrahim, R. Susceptibility patterns of anaerobes isolated from clinical specimens in tertiary Hospital, Malaysia. Malays. J. Pathol. 2020, 42, 245–252. [Google Scholar]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Kasimati, A. Antimicrobial susceptibility patterns of clinically significant Gram-positive anaerobic bacteria in a Greek tertiary-care hospital, 2017–2019. Anaerobe 2020, 64, 102245. [Google Scholar] [CrossRef]
- Grech, I. Susceptibility profiles of Propionibacterium acnes isolated from patients with acne vulgaris. J. Glob. Antimicrob. Resist. 2014, 2, 35–38. [Google Scholar] [CrossRef]
- Aoki, S.; Nakase, K.; Hayashi, N.; Nakaminami, H.; Noguchi, N. Increased prevalence of doxycycline low-susceptible Cutibacterium acnes isolated from acne patients in Japan caused by antimicrobial use and diversification of tetracycline resistance factors. J. Dermatol. 2021, 48, 1365–1371. [Google Scholar] [CrossRef]
- Beig, M.; Shirazi, O.; Ebrahimi, E.; Banadkouki, A.Z.; Golab, N.; Sholeh, M. Prevalence of antibiotic-resistant Cutibacterium acnes (formerly Propionibacterium acnes) isolates, a systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2024, 39, 82–91. [Google Scholar] [CrossRef]
- Walsh, T.R.; Efthimiou, J.; Dréno, B. Systematic review of antibiotic resistance in acne: An increasing topical and oral threat. Lancet Infect. Dis. 2016, 16, e23–e33. [Google Scholar] [CrossRef]
- Castellanos Lorduy, H.J.; Pérez Cely, H.C.; Casadiego Rincón, E.J.; Henao Riveros, S.C.; Colorado, C.L. Cutibacterium acnes tetracycline resistance profile in patients with acne vulgaris, in a Colombian dermatologic center. Actas Dermosifiliogr (Engl. Ed.) 2021, 112, 873–880, (In English, Spanish). [Google Scholar] [CrossRef]
- Alamon-Reig, F.; Bois, M.C.; Morgado-Carrasco, D. RF—New Drugs for Managing Acne. Actas Dermosifiliogr. 2022, 113, 86–88, (In English, Spanish). [Google Scholar] [CrossRef]
- Kaul, G.; Saxena, D.; Dasgupta, A.; Chopra, S. Sarecycline hydrochloride for the treatment of acne vulgaris. Drugs Today 2019, 55, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.Y.; Charles, J.E.M.; Moore, S. Sarecycline: A narrow spectrum tetracycline for the treatment of moderate-to-severe acne vulgaris. Future Microbiol. 2019, 14, 1235–1242. [Google Scholar] [CrossRef]
- Del Rosso, J.Q. Sarecycline and the narrow-spectrum tetracycline concept: Currently available data and potential clinical relevance in dermatology. J. Clin. Aesthet. Dermatol. 2020, 13, 45–48. [Google Scholar] [PubMed] [PubMed Central]
- Takoudju, E.M.; Guillouzouic, A.; Kambarev, S.; Pecorari, F.; Corvec, S. In vitro emergence of fluoroquinolone resistance in Cutibacterium (formerly Propionibacterium) acnes and molecular characterization of mutations in the gyrA gene. Anaerobe 2017, 47, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Alkhawaja, E.; Hammadi, S.; Abdelmalek, M.; Mahasneh, N.; Alkhawaja, B.; Abdelmalek, S.M. Antibiotic resistant Cutibacterium acnes among acne patients in Jordan: A cross sectional study. BMC Dermatol. 2020, 20, 17. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, E.; Lourtet-Hascoët, J. Combination antibiotic therapy for orthopedic infections. Antibiotics 2025, 14, 761. [Google Scholar] [CrossRef] [PubMed]
- Aslan Kayiran, M.; Karadag, A.S.; Al-Khuzaei, S.; Chen, W.; Parish, L.C. Antibiotic resistance in acne: Mechanisms, complications and management. Am. J. Clin. Dermatol. 2020, 21, 813–819. [Google Scholar] [CrossRef] [PubMed]
Strains | Patients’ Characteristics | Specimens | No. of Patients |
---|---|---|---|
Acneic | Acne vulgaris | Pustule | 55 |
Children (aged 12–17 years) | 10 | ||
Adults (aged 17–50 years) | 45 | ||
Boys/men | 15 | ||
Girls/women | 40 | ||
Non-acneic | Adults (aged 43–81 years) | 18 | |
Men | 6 | ||
Women | 12 | ||
Diseases/conditions | |||
Orthopedic | |||
Wound | Wound | 6 | |
Wound dehiscence | Wound | 1 | |
Post-surgical wound | Wound | 2 | |
Osteomyelitis | Biopsy | 2 | |
Bone metastases | Punctate | 1 | |
Mobilization of endoprosthesis | Punctate | 2 | |
Purulent gonitis | Tissue | 1 | |
Prosthetic joint infection | Tissue | 1 | |
Ankle fracture | Wound | 1 | |
Other | |||
Rosacea | Pustule | 1 |
Phylotypes | In Acneic Strains (No. = 55) | % of Acneic Strains | In Non-Acneic Strains (No. = 18) | % of Non-Acneic Strains | p Value | Total (No. = 73) | Total % |
---|---|---|---|---|---|---|---|
IA1 | 34 | 61.8 | 7 | 38.9 | 0.107 | 41 | 56.2 |
IA2 | 12 | 21.8 | 3 | 16.7 | 0.748 | 15 | 20.5 |
IB | 3 | 5.4 | 3 | 16.7 | 0.155 | 6 | 8.2 |
IA1 + II | 1 | 1.8 | 0 | 0.0 | 1.000 | 1 | 1.4 |
I (total) | 50 | 90.9 | 13 | 72.2 | 0.107 | 63 | 86.3 |
II | 4 | 7.3 | 5 | 27.8 | 0.036 | 9 | 12.3 |
III | 1 | 1.8 | 0 | 0.0 | 1.000 | 1 | 1.4 |
Antibiotic/Resistance Breakpoint (mg/L or mm) | Type of Strains | No. of Strains Tested | Methods (No. of Strains Tested) | No. of Resistant Strains | % of Resistance ** |
---|---|---|---|---|---|
Amoxicillin (>0.25 mg/L *) | Acneic | 55 | Et (34), BST (21) | 3 | 5.4 |
Non-acneic | 18 | Et (13), BST (5) | 2 | 11.1 | |
Total | 73 | Et (47), BST (26) | 5 | 6.8 | |
Clindamycin (>2 mg/L) | Acneic | 55 | Et (24) or BST (31) | 25 | 45.4 |
Non-acneic | 18 | Et (4) or BST (14) | 7 | 38.8 | |
Total | 73 | Et (28) or BST (45) | 32 | 43.8 | |
Clindamycin (<26 mm *) | Acneic | 43 | DDM (2 µg/disk) | 18 | 41.9 |
Non-acneic | 18 | DDM (2 µg/disk) | 7 | 38.9 | |
Total | 61 | DDM (2 µg/disk) | 25 | 41.0 | |
Tetracycline (>1 mg/L) | Acneic | 55 | Et (27) or BST (28) | 20 | 36.4 |
Non-acneic | 18 | Et (10) or BST (8) | 4 | 22.2 | |
Total | 73 | Et (37) or BST (36) | 24 | 32.9 | |
Levofloxacin (>1 mg/L) | Acneic | 44 | Et (33) | 7 | 15.9 |
Non-acneic | 18 | Et (18) | 1 | 5.6 | |
Total | 62 | Et (51) | 8 | 12.9 | |
Piperacillin/ tazobactam (<27 mm *) | Acneic | 33 | DDM (30/6 µg/disk) | 0 | 0 |
Non-acneic | 18 | DDM (30/6 µg/disk) | 0 | 0 | |
Total | 51 | DDM (30/6 µg/disk) | 0 | 0 | |
Vancomycin (<22 mm *) | Acneic | 33 | DDM (5 µg/disk) | 0 | 0 |
Non-acneic | 18 | DDM (5 µg/disk) | 0 | 0 | |
Total | 51 | DDM (5 µg/disk) | 0 | 0 |
Antibiotic | Phylotype | No. of Strains Tested ** | No. of Resistant | % of Resistance |
---|---|---|---|---|
Amoxicillin | IA1 | 41 | 1 | 2.4 |
IA2 | 15 | 0 | 0.0 | |
IA1 + IA2 | 56 | 1 | 1.8 * | |
others | 17 | 4 | 23.5 * | |
Total | 73 | 5 | 6.8 | |
Clindamycin >2 mg/L | IA1 | 41 | 17 | 41.5 |
IA2 | 15 | 6 | 40.0 | |
IA1 + IA2 | 56 | 23 | 41.1 | |
Others | 17 | 9 | 52.9 | |
Total | 73 | 32 | 43.8 | |
Clindamycin DDM | IA1 | 36 | 15 | 41.7 |
IA2 | 11 | 4 | 36.4 | |
IA1 + IA2 | 47 | 19 | 40.4 | |
Others | 14 | 6 | 42.8 | |
Total | 61 | 25 | 41.0 | |
Tetracycline | IA1 | 41 | 15 | 36.6 |
IA2 | 15 | 5 | 33.3 | |
IA1 + IA2 | 56 | 20 | 35.7 | |
Others | 17 | 4 | 23.5 | |
Total | 73 | 24 | 32.9 | |
Levofloxacin | IA1 | 36 | 6 | 16.7 |
IA2 | 10 | 1 | 10.0 | |
IA1 + IA2 | 46 | 7 | 15.2 | |
Others | 16 | 1 | 6.2 | |
Total | 62 | 8 | 12.9 |
Strains * | Acneic | Non-Acneic | Total |
---|---|---|---|
No. of strains tested | 43 | 18 | 61 |
Double resistance (No.) | 14 | 4 | 18 |
Double resistance (%) | 32.6 | 22.2 | 29.5 |
Double resistance to | TET + LFX (8 strains), | TET + LFX (8 strains), | |
CLI + TET (3 strains), | CLI + TET (2 strains), | CLI + TET (5 strains), | |
CLI + LFX (2 strains), | CLI + LFX (2 strains), | ||
AMX + CLI (1 strain) | AMX + CLI (2 strains) | AMX + CLI (3 strains) | |
Double-resistant phylotypes | IA1 (8 strains), | IA1 (3 strains), IB (1 strain) | IA1 (11 strains), |
IA2 (3 strains), | IA2 (3 strains), | ||
IB (1 strain), | IB (2 strain), | ||
II (1 strain), | II (1 strain), | ||
IA1 + II (1 strain) | IA1 + II (1 strain) | ||
MDR resistance (No.) | 4 | 0 | 4 |
MDR resistance (%) | 9.3 | 0.0 | 6.6 |
MDR resistance to | AMX + CLI + TET (3 strains) | 0.0 | AMX + CLI + TET (3 strains) |
CLI + TET + LFX (1 strain) | CLI + TET + LFX (1 strain) | ||
MDR phylotypes | IA1 (1 strain), | None | IA1 (1 strain), |
IA2 (2 strains), | IA2 (2 strains), | ||
II (1 strain) | II (1 strain) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyanova, L.; Dimitrov, G.; Raykova, V.; Patrikov, K.; Gergova, R.; Markovska, R. Cutibacterium acnes Phylotyping and Antibiotic Resistance to Six Antibiotics: A Bulgarian Study. Microorganisms 2025, 13, 2185. https://doi.org/10.3390/microorganisms13092185
Boyanova L, Dimitrov G, Raykova V, Patrikov K, Gergova R, Markovska R. Cutibacterium acnes Phylotyping and Antibiotic Resistance to Six Antibiotics: A Bulgarian Study. Microorganisms. 2025; 13(9):2185. https://doi.org/10.3390/microorganisms13092185
Chicago/Turabian StyleBoyanova, Lyudmila, Georgi Dimitrov, Vessela Raykova, Kircho Patrikov, Raina Gergova, and Rumyana Markovska. 2025. "Cutibacterium acnes Phylotyping and Antibiotic Resistance to Six Antibiotics: A Bulgarian Study" Microorganisms 13, no. 9: 2185. https://doi.org/10.3390/microorganisms13092185
APA StyleBoyanova, L., Dimitrov, G., Raykova, V., Patrikov, K., Gergova, R., & Markovska, R. (2025). Cutibacterium acnes Phylotyping and Antibiotic Resistance to Six Antibiotics: A Bulgarian Study. Microorganisms, 13(9), 2185. https://doi.org/10.3390/microorganisms13092185