Unveiling Species Diversity of Plectosphaerellaceae (Sordariomycetes) Fungi Involved in Rhizome and Root Rots of Ginger in Shandong Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples Collection, Fungal Isolation, and Morphological Observations
2.2. DNA Extraction, PCR Amplification, and Sequencing
2.3. Phylogenetic Analyses
Species | Voucher/Culture | GenBank Accession Number | ||
---|---|---|---|---|
LSU | ITS | TEF1-α | ||
Acremonium acutatum | CBS 140.62 | OQ055348 | OQ429437 | OQ470734 |
CBS 682.71T | NG_056976 | NR_163811 | OQ470735 | |
CBS 829.73 | OQ055350 | OQ429439 | OQ470736 | |
A. aerium | CBS 189.70T | OQ055352 | NR_189420 | OQ470738 |
CBS 379.70C | OQ055351 | OQ429440 | OQ470737 | |
A. alternatum | CBS 407.66T | NG_056977 | NR_144913 | OQ470739 |
A. brunneisporum | CBS 413.76T | NG_243194 | NR_190249 | OQ470741 |
A. chlamydosporium | CBS 414.76T | OQ055361 | NR_189421 | OQ470748 |
A. multiramosum | CBS 147436T | NG_242036 | NR_189426 | OQ470770 |
A. sordidulum | CBS 385.73T | NG_056992 | NR_159618 | OQ470782 |
Gibellulopsis aquatica | CBS 117131T | LR025850 | LR026720 | LR026414 |
G. catenata | CBS 113951T | LR025851 | LR026721 | LR026415 |
G. fusca | CBS 308.38 | LR025852 | LR026722 | LR026416 |
CBS 560.65T | LR025854 | LR026724 | LR026418 | |
CBS 120818 | LR025856 | LR026726 | LR026420 | |
G. nigrescens | CBS 470.64 | LR025860 | LR026730 | LR026422 |
CBS 100829 | LR025862 | LR026732 | LR026423 | |
CBS 120949NT | LR025868 | LR026738 | LR026429 | |
G. serrae | CBS 290.30T | LR025872 | LR026742 | LR026433 |
CBS 383.66 | LR025874 | LR026744 | LR026435 | |
CBS 892.70T | LR025885 | LR026755 | LR026445 | |
CBS 100826 | LR025886 | LR026756 | LR026446 | |
SAAS 311704 | PV702888 | PV702874 | PV701791 | |
SAAS 410805 | PV702887 | PV702873 | PV701790 | |
Monilochaetes infuscans | CBS 379.77 | GU180645 | LR026764 | LR026460 |
Musidium shandongensis | SAAS 381414T | PV702883 | PV702869 | PV701786 |
SAAS 403027 | PV702884 | PV702870 | PV701787 | |
M. stromaticum | CBS 132.74 | LR025919 | LR026785 | LR026479 |
CBS 133.74 | LR025920 | LR026786 | LR026480 | |
CBS 135.74A | LR025922 | LR026787 | LR026482 | |
CBS 135.74C | LR025923 | LR026788 | LR026483 | |
CBS 135.74F | LR025925 | LR026790 | LR026484 | |
CBS 863.73T | HQ232143 | DQ825969 | LN810533 | |
M. zingiberis | SAAS 381402T | PV702881 | PV702867 | PV701784 |
SAAS 442806 | PV702882 | PV702868 | PV701785 | |
Plectosphaerella alismatis | CBS 113362T | LR025932 | LR026794 | LR026489 |
P. citrullae | CBS 131740 | LR025933 | LR026795 | LR026490 |
CBS 131741T | LR025934 | LR026796 | LR026491 | |
P. cucumerina | CBS 137.33NT | LR025935 | LR026797 | LR026492 |
CBS 137.37T | LR025936 | LR026798 | LR026493 | |
CBS 101014 | LR025945 | LR026807 | LR026502 | |
CBS 131739NT | LR025947 | LR026809 | LR026504 | |
SAAS 311708 | PV702886 | PV702872 | PV701789 | |
SAAS 481921 | PV702885 | PV702871 | PV701788 | |
P. delsorboi | CBS 116708T | LR025948 | LR026810 | LR026505 |
P. melonis | CBS 489.96T | LR025950 | LR026812 | LR026507 |
CBS 525.93 | LR025951 | LR026813 | LR026508 | |
P. populi | CBS 139623T | KR476783 | KR476750 | LR026527 |
CBS 139624 | MH878144 | KR476751 | LR026528 | |
P. ramiseptata | CBS 131743 | LR025969 | LR026831 | LR026529 |
CBS 131861T | LR025970 | LR026832 | LR026530 | |
Verticillium alboatrum | CBS 130340ET | LR025984 | LR026847 | LR026543 |
V. alfalfae | CBS 130603T | LR025988 | LR026851 | LR026547 |
V. dahliae | CBS 127.79B | LR025989 | LR026852 | LR026548 |
CBS 179.66 | LR025992 | LR026854 | LR026549 | |
CBS 384.49 | LR026000 | LR026861 | LR026554 | |
V. nonalfalfae | CBS 113707 | LR026071 | LR026932 | LR026587 |
CBS 130339T | LR026074 | LR026935 | LR026590 | |
V. nubilum | CBS 457.51T | LR026076 | LR026937 | LR026591 |
V. tricorpus | CBS 126.79 | LR026078 | LR026939 | LR026592 |
CBS 255.57 | LR026081 | LR026942 | LR026595 | |
V. zaregamsianum | CBS 130342T | LR026098 | LR026959 | LR026610 |
2.4. Pathogenicity Test
3. Results
3.1. Phylogenetic Analysis
3.2. Taxonomy
3.2.1. Gibellulopsis serrae (Maffei) Giraldo López & Crous, Stud Mycol 92: 250 (2018) Figure 2
3.2.2. Musidium shandongensis Q. Zhao & W.H. Zhang, sp. nov. Figure 3
3.2.3. Musidium zingiberis Q. Zhao & W.H. Zhang, sp. nov. Figure 4
3.2.4. Plectosphaerella cucumerina (Lindf.) W. Gams, in Domsch & Gams, Fungi in Agricultural Soils: 160 (1972) Figure 5
3.3. Pathogenicity Tests
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, P.; Liu, D.Q.; Ma, J.W.; Sun, C.; Wang, Z.F.; Zhu, Y.X.; Zhang, X.M.; Liu, Y.Q. Genome-wide analysis and expression pattern of the ZoPP2C gene family in Zingiber officinale Roscoe. BMC Genom. 2024, 25, 83. [Google Scholar] [CrossRef]
- Dalsasso, R.R.; Valencia, G.A.; Monteiro, A.R. Impact of drying and extractions processes on the recovery of gingerols and shogaols, the main bioactive compounds of ginger. Food Res. Int. 2022, 154, 111043. [Google Scholar] [CrossRef]
- Liang, L.Q.; Fu, Y.J.; Deng, S.S.; Wu, Y.; Gao, M.Y. Genomic, antimicrobial, and aphicidal traits of Bacillus velezensis ATR2, and its biocontrol potential against ginger rhizome rot disease caused by Bacillus pumilus. Microorganisms 2022, 10, 63. [Google Scholar] [CrossRef]
- An, K.J.; Zhao, D.D.; Wang, Z.F.; Wu, J.J.; Xu, Y.J.; Xiao, G.S. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. Food Chem. 2016, 197, 1292–1300. [Google Scholar] [CrossRef]
- Archana, T.S.; Mesta, R.K.; Basavarajappa, M.P.; Kumar, K.C.K. Unravelling the complexity of ginger rhizome rot disease: A focus on pathogen interactions. J. Phytopathol. 2024, 172, e13392. [Google Scholar] [CrossRef]
- Bussaban, B.; Lumyong, P.; McKenzie, E.H.C.; Hyde, K.D.; Lumyong, S. Index of fungi described from the Zingiberaceae. Mycotaxon 2002, 83, 165–182. [Google Scholar]
- Zhuang, W.Y. Higher Fungi of Tropical China; Mycotaxon Ltd.: Ithaca, NY, USA, 2001. [Google Scholar]
- Archana, T.S.; Mesta, R.K.; Basavarajappa, M.P.; Kumar, K.C.K. Promoting resilience in ginger: Elicitor-driven strategies to combat the rhizome rot disease. J. Phytopathol. 2023, 171, 627–641. [Google Scholar] [CrossRef]
- Wang, J.H.; Lu, Y.X.; Han, W.X.; Fu, L.J.; Han, X.Q.; Zhu, J.H.; Zhang, S.Q. First report of rhizome rot caused by Pectobacterium brasiliense on ginger in China. Plant Dis. 2022, 106, 1978. [Google Scholar] [CrossRef]
- Jacob, S.; Vilasini, T.N.; Suja, G.; Alexander, D. Preliminary studies on the management of rhizome rot of ginger. Insect Environ. 2017, 8, 170–172. [Google Scholar]
- Wang, W.B.; Portal-Gonzalez, N.; Wang, X.; Li, J.L.; Li, H.; Portieles, R.; Borras-Hidalgo, O.; He, W.X.; Santos-Bermudez, R. Metabolome-driven microbiome assembly determining the health of ginger crop (Zingiber officinale L. Roscoe) against rhizome rot. Microbiome 2024, 12, 167. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Khatun, F.; Faruk, M.I.; Rahman, M.M.; Hossain, M.A. Incidence of rhizome rot of ginger in some selected areas of Bangladesh and the causal pathogens associated with the disease. Bangladesh J. Agric. Res. 2019, 44, 569–576. [Google Scholar] [CrossRef]
- Chawla, S.; Rafie, R.; Likins, M.; Ren, S.; Ndegwa, E.; Mersha, Z. First report of Fusarium yellows and rhizome rot caused by Fusarium oxysporum f. sp. zingiberi on ginger in the continental United States. Plant Dis. 2021, 105, 3289. [Google Scholar] [CrossRef]
- Stirling, G.R.; Turaganivalu, U.; Stirling, A.M.; Lomavatu, M.F.; Smith, M.K. Rhizome rot of ginger (Zingiber officinale) caused by Pythium myriotylum in Fiji and Australia. Austral. Plant Pathol. 2009, 38, 453–460. [Google Scholar] [CrossRef]
- Index Fungorum. Available online: https://www.indexfungorum.org (accessed on 13 June 2025).
- Zare, R.; Gams, W.; Starink-Willemse, M.; Summerbell, R.C. Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwig. 2007, 85, 463–489. [Google Scholar] [CrossRef]
- Carlucci, A.; Raimondo, M.L.; Santos, J.; Phillips, A.J.L. Plectosphaerella species associated with root and collar rots of horticultural crops in southern Italy. Persoonia 2012, 28, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.C.; da Maia, H.S. Uma nova doença fúngica de peixe ornamental. An. Soc. Biol. Pernamb. 1959, 16, 153–159. [Google Scholar]
- Hennebert, G.L.; Decock, C. Compendium of soil fungi, 2nd edition. Mycotaxon 2009, 107, 490–491. [Google Scholar]
- Pham, M.D.; Hatai, K.; Kurata, O.; Tensha, K.; Yoshitaka, U.; Yaguchi, T.; Udagawa, S.I. Fungal infection of mantis shrimp (Oratosquilla oratoria) caused by two anamorphic fungi found in Japan. Mycopathologia 2009, 167, 229–247. [Google Scholar] [CrossRef]
- Gräfenhan, T.; Schroers, H.J.; Nirenberg, H.I.; Seifert, K.A. An overview of the taxonomy, phylogeny, and typification of nectriaceous fungi in Cosmospora, Acremonium, Fusarium, Stilbella, and Volutella. Stud. Mycol. 2011, 68, 79–113. [Google Scholar] [CrossRef]
- Giraldo, A.; Crous, P.W. Inside Plectosphaerellaceae. Stud. Mycol. 2019, 92, 227–286. [Google Scholar] [CrossRef]
- Rodriguez, L.; Harrison, C.; Bowen, K.L.; Noel, Z.A. Composition and salt tolerance of fungi isolated from non-irrigated soils of The Old Rotation. Phytopathology 2022, 112, 14. [Google Scholar]
- USDA Fungal Databases. Available online: https://fungi.ars.usda.gov/ (accessed on 17 June 2025).
- Gams, W. Cephalosporium-like Hyphomycetes: Some tropical species. Trans. Br. Mycol. Soc. 1975, 64, 389–404. [Google Scholar] [CrossRef]
- Hayashi, K.; Hirooka, Y.; Oki, T.; Shimomoto, Y.; Yano, K. First report of brown rhizome rot of ginger (Zingiber officinale) caused by Musidium stromaticum. J. Gen. Plant Pathol. 2024, 90, 223–228. [Google Scholar] [CrossRef]
- Klebahn, H. Vergilbende junge Treibgurken, ein darauf gefundenes Cephalosporium und dessen Schlauchfrüchte. Phytopathol. Z. 1929, 1, 31–44. [Google Scholar]
- Gams, W.; Gerlach, M. Beiträge zur Systematik und Biologie von Plectosphaerella cucumeris und der zugerhörigen Konidienform. Persoonia 1968, 5, 177–188. [Google Scholar]
- Uecker, F.A. Development and cytology of Plectosphaerella cucumerina. Mycologia 1993, 85, 470–479. [Google Scholar] [CrossRef]
- Palm, M.E.; Gams, W.; Nirenberg, H.I. Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectosphaerella cucumerina. Mycologia 1995, 87, 397–406. [Google Scholar] [CrossRef]
- Réblová, M.; Miller, A.N.; Rossman, A.Y.; Seifert, K.A.; Crous, P.W.; Hawksworth, D.L.; Abdel-Wahab, M.A.; Cannon, P.F.; Daranagama, D.A.; De Beer, Z.W.; et al. Recommendations for competing sexual-asexually typified generic names in Sordariomycetes (except Diaporthales, Hypocreales, and Magnaporthales). IMA Fungus 2016, 7, 131–153. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Chen, W.H.; Zou, X.; Han, Y.F.; Huang, J.Z.; Liang, Z.Q.; Deshmukh, S.K. Phylogeny and taxonomy of two new Plectosphaerella (Plectosphaerellaceae, Glomerellales) species from China. MycoKeys 2019, 57, 47–60. [Google Scholar] [CrossRef]
- AlfaroGarcia, A.; Armengol, J.; Bruton, B.D.; Gams, W.; GarciaJimenez, J.; MartinezFerrer, G. The taxonomic position of the causal agent of Acremonium collapse of muskmelon. Mycologia 1996, 88, 804–808. [Google Scholar] [CrossRef]
- Toyozo, S.; Tadaoki, I.; Mitsutaka, M.; Ken, W.; Keisuke, T.; Etsuji, H. Plectosporium blight of pumpkin and ranunculus caused by Plectosporium tabacinum. J. Gen. Plant Pathol. 2005, 71, 127–132. [Google Scholar] [CrossRef]
- Raimondo, M.L.; Carlucci, A. Characterization and pathogenicity assessment of Plectosphaerella species associated with stunting disease on tomato and pepper crops in Italy. Plant Pathol. 2018, 67, 626–641. [Google Scholar] [CrossRef]
- Arzanlou, M.; Torbati, M.; Khodaei, S. Phenotypic and molecular characterization of Plectosphaerella cucumerina on bamboo from Iran. Mycosphere 2013, 4, 647–651. [Google Scholar] [CrossRef]
- Su, L.; Deng, H.; Niu, Y.C. Phylogenetic analysis of Plectosphaerella species based on multi-locus DNA sequences and description of P. sinensis sp. nov. Mycol. Prog. 2017, 16, 823–829. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W. Fungi in Agricultural Soils; Longman: London, UK, 1972. [Google Scholar]
- Smither-Kopperl, M.L.; Charudattan, R.; Berger, R.D. Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillata in Florida. Plant Dis. 1999, 83, 24–28. [Google Scholar] [CrossRef]
- Li, P.L.; Chai, A.L.; Shi, Y.X.; Xie, X.W.; Li, B.J. First report of root rot caused by Plectosphaerella cucumerina on cabbage in China. Mycobiology 2017, 45, 110–113. [Google Scholar] [CrossRef]
- Shen, Z.C.; Zhang, Y.W.; Li, F.T.; Zhang, Q. Case report: A rare fungal keratitis caused by Plectosphaerella Cucumerina. Ocul. Immunol. Inflamm. 2022, 31, 631–634. [Google Scholar] [CrossRef]
- Kiriyama, T.; Hariya, T.; Yoshida, M.; Todokoro, D.; Nakazawa, T. A rare case of fungal keratitis caused by Plectosphaerella cucumerina diagnosed with repeated corneal scrapings: A case report. Cureus J. Med. Sci. 2022, 14, e27628. [Google Scholar] [CrossRef]
- Samarakoon, B.C.; Wanasinghe, D.N.; Samarakoon, M.C.; Bundhun, D.; Jayawardena, R.; Hyde, K.D.; Chomnunti, P. Exploring fungi: A taxonomic and phylogenetic study of leaf-inhabiting Ascomycota in Musa species from northern Thailand, with a global checklist. Mycosphere 2024, 15, 1901–2174. [Google Scholar] [CrossRef]
- Rayner, R.W. A Mycological Colour Chart; Commonwealth Mycological Institute: Kew, UK, 1970. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Vilgalys, R.; Sun, B.L. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. Natl. Acad. Sci. USA 1994, 91, 4599–4603. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Evol. Genet. Anal. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Nylander, J.A.A. MrModelTest v. 2. Program Distributed by the Author; Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden, 2004. [Google Scholar]
- Han, L.H.; Wu, G.; Horak, E.; Halling, R.E. Phylogeny and species delimitation of Strobilomyces (Boletaceae), with an emphasis on the Asian species. Persoonia 2020, 44, 113–139. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Minh, B.Q.; Nguyen, M.A.T.; von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 2013, 30, 1188–1195. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, v. 1.4.3.; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2016.
- Xu, J.; Xu, X.D.; Cao, Y.Y.; Zhang, W.M. First report of greenhouse tomato wilt caused by Plectosphaerella cucumerina in China. Plant Dis. 2014, 98, 158–159. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Li, M.; Liang, Y.; Zhou, H.Y.; Zhao, J. First report of sunflower wilt caused by Plectosphaerella cucumerina in China. Plant Dis. 2015, 99, 1646. [Google Scholar] [CrossRef]
- Yan, L.Y.; Ying, Q.S.; Wang, Y.E.; Zhang, H.F.; Wang, Y.H. First report of root and collar rot caused by Plectosphaerella cucumerina on bottle gourd in China. Plant Dis. 2016, 100, 1505. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.Y.; Zhao, X.J.; Wang, K.; Zhao, J. First report of potato wilt caused by Plectosphaerella cucumerina in Inner Mongolia, China. Plant Dis. 2016, 100, 2523–2524. [Google Scholar] [CrossRef]
- Miao, Z.J.; He, S.Q.; Zhang, X.M.; Wen, Z.H.; Bai, B.; Kong, X.P. Pathogens of root internal discoloration (black heart disease) in radish in Xining City of Qinghai Province, China. Mycosystema 2018, 37, 444–455. [Google Scholar]
- Yang, L.; Lu, X.H.; Li, S.D.; Wu, B.M. First report of common bean (Phaseolus vulgaris) root rot caused by Plectosphaerella cucumerina in China. Plant Dis. 2018, 102, 1849. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Shi, K.; Yu, X.Y.; Zhang, L.J. First report of alfalfa root rot caused by Plectosphaerella cucumerina in Inner Mongolia Autonomous Region of China. Plant Dis. 2021, 105, 2722. [Google Scholar] [CrossRef]
- Lindfors, K.M.T. En ny gurksjukdom förorsakad av Venturia cucumerina n. sp. Meddelande Centralanst. Försksv. Jordbruksomr. Bot. Avd. 1919, 17, 1–10. [Google Scholar]
- Phookamsak, R.; Hyde, K.D.; Jeewon, R.; Bhat, D.J.; Jones, E.B.G.; Maharachchikumbura, S.S.N.; Raspé, O.; Karunarathna, S.C.; Wanasinghe, D.N.; Hongsanan, S.; et al. Fungal diversity notes 929–1035: Taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers. 2019, 95, 1–273. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T.H. Compendium of Soil Fungi, 2nd ed.; IHW Verlag: Eching, Germany, 2007. [Google Scholar]
- Pašakinskienė, I.; Stakelienė, V.; Matijošiūtė, S.; Martūnas, J.; Rimkevičius, M.; Būdienė, J.; Aučina, A.; Skridaila, A. Growth-promoting effects of grass root-derived fungi Cadophora fastigiata, Paraphoma fimeti and Plectosphaerella cucumerina on spring barley (Hordeum vulgare) and Italian ryegrass (Lolium multiflorum). Microorganisms 2025, 13, 25. [Google Scholar] [CrossRef]
- Crous, P.W.; Wingfield, M.J.; Guarro, J.; Hernández-Restrepo, M.; Sutton, D.A.; Acharya, K.; Barber, P.A.; Boekhout, T.; Dimitrov, R.A.; Dueñas, M.; et al. Fungal planet description sheets: 320–370. Persoonia 2015, 34, 167–266. [Google Scholar] [CrossRef]
- Giraldo, A.; Hernández-Restrepo, M.; Crous, P.W. New plectosphaerellaceous species from Dutch garden soil. Mycol. Prog. 2019, 8, 1135–1154. [Google Scholar] [CrossRef]
Strain | Molecular Marker | Closest Species | Identity (%) | GenBank Accession Number | Identities |
---|---|---|---|---|---|
SAAS 311704 | LSU | Gibellulopsis nigrescens CBS 179.40 | 100.00% | MH867573.1 | 851/851 (no gaps) |
ITS | Gibellulopsis nigrescens 74_ITS4 | 100.00% | OP498056.1 | 556/556 (no gaps) | |
TEF1-α | Gibellulopsis serrae MFLUCC:23-0308 | 99.75% | PP866301.1 | 802/804 (no gaps) | |
SAAS 381402 | LSU | Musidium stromaticum S20-1 | 100.00% | LC743850.1 | 818/818 (no gaps) |
ITS | Musidium stromaticum CBS 863.73 | 98.77% | MH860814.1 | 561/568 (2 gaps) | |
TEF1-α | Acremonium stromaticum CBS 863.73 | 98.90% | LN810533.1 | 899/909 (no gaps) | |
SAAS 381414 | LSU | Musidium stromaticum S20-1 | 99.50% | LC743850.1 | 795/799 (no gaps) |
ITS | Musidium stromaticum CBS 863.73 | 98.03% | MH860814.1 | 546/557 (no gaps) | |
TEF1-α | Acremonium stromaticum CBS 863.73 | 97.84% | LN810533.1 | 904/924 (no gaps) | |
SAAS 481921 | LSU | Plectosphaerella cucumerina CAES PC01 | 100.00% | MK143394.1 | 862/862 (no gaps) |
ITS | Plectosphaerella cucumerina FL08-0027 | 100.00% | AB469880.1 | 555/555 (no gaps) | |
TEF1-α | Plectosphaerella cucumerina SKH23026 | 100.00% | PV593119.1 | 923/923 (no gaps) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Jia, A.; Yang, H.; Hu, J.; Gao, X.; Zhao, W.; Zhou, L.; Zhang, M.; Li, Z.; Zhang, W. Unveiling Species Diversity of Plectosphaerellaceae (Sordariomycetes) Fungi Involved in Rhizome and Root Rots of Ginger in Shandong Province, China. Microorganisms 2025, 13, 2180. https://doi.org/10.3390/microorganisms13092180
Zhao Q, Jia A, Yang H, Hu J, Gao X, Zhao W, Zhou L, Zhang M, Li Z, Zhang W. Unveiling Species Diversity of Plectosphaerellaceae (Sordariomycetes) Fungi Involved in Rhizome and Root Rots of Ginger in Shandong Province, China. Microorganisms. 2025; 13(9):2180. https://doi.org/10.3390/microorganisms13092180
Chicago/Turabian StyleZhao, Qian, Ao Jia, Hongjuan Yang, Jinming Hu, Xuli Gao, Weiqin Zhao, Lifeng Zhou, Miao Zhang, Zhaoxia Li, and Weihua Zhang. 2025. "Unveiling Species Diversity of Plectosphaerellaceae (Sordariomycetes) Fungi Involved in Rhizome and Root Rots of Ginger in Shandong Province, China" Microorganisms 13, no. 9: 2180. https://doi.org/10.3390/microorganisms13092180
APA StyleZhao, Q., Jia, A., Yang, H., Hu, J., Gao, X., Zhao, W., Zhou, L., Zhang, M., Li, Z., & Zhang, W. (2025). Unveiling Species Diversity of Plectosphaerellaceae (Sordariomycetes) Fungi Involved in Rhizome and Root Rots of Ginger in Shandong Province, China. Microorganisms, 13(9), 2180. https://doi.org/10.3390/microorganisms13092180