The Role of Gut Microbiota and Its Metabolites in Mitigating Radiation Damage
Abstract
1. Introduction
2. The Role of the Gut Microbiota in Human Health
3. Radiation-Induced Intestinal Damage
3.1. Cellular Damage and Inflammation
3.2. Vascular Injury with Hypoxia and Fibrosis
3.3. Chronic Radiation-Induced Intestinal Damage
4. Interaction Between Gut Microbiota, Its Metabolites and Radiological Bowel Injury
4.1. Changes in Gut Microbiota and Its Metabolites After Radiotherapy
4.2. The Role of Gut Microbiota and Its Metabolites in Radiation-Induced Intestinal Damage
4.2.1. Short-Chain Fatty Acids (SCFAs)
4.2.2. Indoles and Their Derivatives
4.2.3. Other Intestinal Microbiota Metabolites
5. Therapeutics Based on Gut Microbiota and Its Metabolites
5.1. Advantages of Gut Microbes and Their Metabolites in Mitigating Radiation Damage
5.2. Probiotics and Bacterial Supplementation
5.3. Antibiotics
5.4. Fecal Microbiota Transplantation
5.5. Other Protection Strategies
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dartnell, L.R. Ionizing radiation and life. Astrobiology 2011, 6, 551–582. [Google Scholar] [CrossRef] [PubMed]
- Masjedi, H.; Zare, M.H.; Keshavarz Siahpoush, N.; Razavi-Ratki, S.K.; Alavi, F.; Shabani, M. European trends in radiology: Investigating factors affecting the number of examinations and the effective dose. La Radiol. Med. 2020, 125, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Christensen, D.M.; Livingston, G.K.; Sugarman, S.L.; Parillo, S.J.; Glassman, E.S. Management of ionizing radiation injuries and illnesses, part 3: Radiobiology and health effects of ionizing radiation. J. Osteopath. Med. 2014, 114, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Saleh, H.M.; Hassan, A.I. Editorial: Ionizing radiation and reproductive health. Front. Public Health 2023, 11, 1147934. [Google Scholar] [CrossRef]
- Szatkowska, M.; Krupa, R. Regulation of dna damage response and homologous recombination repair by microRNA in human cells exposed to ionizing radiation. Cancers 2020, 12, 1838. [Google Scholar] [CrossRef]
- Talapko, J.; Talapko, D.; Katalinić, D.; Kotris, I.; Erić, I.; Belić, D.; Mihaljević, M.V.; Vasilj, A.; Erić, S.; Flam, J.; et al. Health effects of ionizing radiation on the human body. Medicina 2024, 60, 653. [Google Scholar] [CrossRef]
- Kumagai, T.; Rahman, F.; Smith, A.M. The microbiome and radiation induced-bowel injury: Evidence for potential mechanistic role in disease pathogenesis. Nutrients 2018, 10, 1405. [Google Scholar] [CrossRef]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Xin, J.-Y.; Wang, J.; Ding, Q.-Q.; Chen, W.; Xu, X.-K.; Wei, X.-T.; Lv, Y.-H.; Wei, Y.-P.; Feng, Y.; Zu, X.-P. Potential role of gut microbiota and its metabolites in radiation-induced intestinal damage. Ecotoxicol. Environ. Saf. 2022, 248, 114341. [Google Scholar] [CrossRef]
- Sokol, H.; Adolph, T.E. The microbiota: An underestimated actor in radiation-induced lesions? Gut 2018, 67, 1–2. [Google Scholar] [CrossRef]
- Jameus, A.; Dougherty, J.; Narendrula, R.; Levert, D.; Valiquette, M.; Pirkkanen, J.; Lalonde, C.; Bonin, P.; Gagnon, J.D.; Appanna, V.D.; et al. Acute impacts of ionizing radiation exposure on the gastrointestinal tract and gut microbiome in mice. Int. J. Mol. Sci. 2024, 25, 3339. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.; Park, S. High-throughput 16s rRNA gene sequencing reveals alterations of mouse intestinal microbiota after radiotherapy. Anaerobe 2015, 33, 1–7. [Google Scholar] [CrossRef]
- Yu, Y.; Lin, X.; Feng, F.; Wei, Y.; Wei, S.; Gong, Y.; Guo, C.; Wang, Q.; Shuai, P.; Wang, T.; et al. Gut microbiota and ionizing radiation-induced damage: Is there a link? Environ. Res. 2023, 229, 115947. [Google Scholar] [CrossRef]
- Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Prevention and treatment. World J. Gastroenterol. 2013, 2, 199–208. [Google Scholar] [CrossRef]
- Wang, K.; Tepper, J.E. Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J. Clin. 2021, 71, 437–454. [Google Scholar] [CrossRef]
- Amit, U.; Facciabene, A.; Ben-Josef, E. Radiation therapy and the microbiome; More than a gut feeling. Cancer J. 2023, 29, 84–88. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, Y.; Lu, P.; Wang, X.; Li, W.; Dong, H.; Fan, S.; Li, D. Gut metabolite urolithin a mitigates ionizing radiation-induced intestinal damage. J. Cell Mol. Med. 2021, 25, 10306–10312. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Han, Y.; Zhang, H.; Tu, W.; Zhang, S. Radiotherapy-induced digestive injury: Diagnosis, treatment and mechanisms. Front. Oncol. 2021, 11, 757973. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Ley, R.E.; Sonnenburg, J.L.; Peterson, D.A.; Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920. [Google Scholar] [CrossRef] [PubMed]
- Proctor, L.M.; Creasy, H.H.; Fettweis, J.M.; Lloyd-Price, J.; Mahurkar, A.; Zhou, W. The integrative human microbiome project. Nature 2019, 569, 641–648. [Google Scholar]
- Adak, A.; Khan, M.R. An insight into gut microbiota and its functionalities. Cell Mol. Life Sci. 2019, 76, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D. Human gut microbiome: Hopes, threats and promises. Gut 2018, 67, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014, 14, 667–685. [Google Scholar] [CrossRef]
- O’Neill, L.A.J.; Golenbock, D.; Bowie, A.G. The history of toll-like receptors—Redefining innate immunity. Nat. Rev. Immunol. 2013, 13, 453–460. [Google Scholar] [CrossRef]
- Wilson, I.D.; Nicholson, J.K. Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl. Res. 2017, 179, 204–222. [Google Scholar] [CrossRef]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef]
- Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science 2012, 336, 1262–1267. [Google Scholar] [CrossRef]
- Chen, L.; Wang, D.; Garmaeva, S.; Kurilshikov, A.; Vich Vila, A.; Gacesa, R.; Sinha, T.; Segal, E.; Weersma, R.; Wijmenga, C.; et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 2021, 184, 2302–2315. [Google Scholar] [CrossRef]
- Song, W.; Yue, Y.; Zhang, Q. Imbalance of gut microbiota is involved in the development of chronic obstructive pulmonary disease: A review. Biomed. Pharmacother. 2023, 165, 115150. [Google Scholar] [CrossRef]
- Teramoto, Y.; Akagawa, S.; Hori, S.; Tsuji, S.; Higasa, K.; Kaneko, K. Dysbiosis of the gut microbiota as a susceptibility factor for kawasaki disease. Front. Immunol. 2023, 14, 1268453. [Google Scholar] [CrossRef]
- Bai, X.; Wei, H.; Liu, W.; Coker, O.O.; Gou, H.; Liu, C.; Zhao, L.; Li, C.; Zhou, Y.; Wang, G.; et al. Cigarette smoke promotes colorectal cancer through modulation of gut microbiota and related metabolites. Gut 2022, 71, 2439–2450. [Google Scholar] [CrossRef] [PubMed]
- Schugar, R.C.; Shih, D.M.; Warrier, M.; Helsley, R.N.; Burrows, A.; Ferguson, D.; Brown, A.; Gromovsky, A.; Heine, M.; Chatterjee, A.; et al. The tmao-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep. 2017, 20, 279. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Cao, A.; Jin, C.; Mi, K.; Xiong, X.; Zeng, Z.; Pan, X.; Qie, J.; Qiu, S.; Niu, Y.; et al. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut 2022, 71, 1588–1599. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Coker, O.O.; Chu, E.S.; Fu, K.; Lau, H.C.H.; Wang, Y.; Chan, A.; Wei, H.; Yang, X.; Sung, J.; et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut 2021, 70, 761–774. [Google Scholar] [CrossRef]
- Eltahawy, N.A.; Elsonbaty, S.M.; Abunour, S.; Zahran, W.E. Erratum to: Synergistic effect of aluminum and ionizing radiation upon ultrastructure, oxidative stress and apoptotic alterations in paneth cells of rat intestine. Environ. Sci. Pollut. Res. Int. 2017, 24, 15860. [Google Scholar] [CrossRef]
- Kim, B.H.; Jung, H.; Seo, S.H.; Shin, H.; Kwon, J.; Suh, J.M. Synergistic actions of fgf2 and bone marrow transplantation mitigate radiation-induced intestinal injury. Cell Death Dis. 2018, 9, 383. [Google Scholar] [CrossRef]
- Segers, C.; Verslegers, M.; Baatout, S.; Leys, N.; Lebeer, S.; Mastroleo, F. Food supplements to mitigate detrimental effects of pelvic radiotherapy. Microorganisms 2019, 7, 97. [Google Scholar] [CrossRef]
- Suman, S.; Kumar, S.; Moon, B.; Fornace, A.J.; Kallakury, B.V.S.; Datta, K. Increased transgenerational intestinal tumorigenesis in offspring of ionizing radiation exposed parent apc1638n/+ mice. J. Cancer 2017, 8, 1769–1773. [Google Scholar] [CrossRef]
- Classen, J.; Belka, C.; Paulsen, F.; Budach, W.; Hoffmann, W.; Bamberg, M. Radiation-induced gastrointestinal toxicity. Pathophysiology, approaches to treatment and prophylaxis. Strahlenther. Onkol. 1998, 174 (Suppl. S3), 82–84. [Google Scholar]
- Lu, L.; Li, W.; Chen, L.; Su, Q.; Wang, Y.; Guo, Z.; Lu, Y.; Liu, B.; Qin, S. Radiation-induced intestinal damage: Latest molecular and clinical developments. Future Oncol. 2019, 15, 4105–4118. [Google Scholar] [CrossRef]
- Mutsumi, M.; Masahiro, N.; Kazuko, S.; Kumio, O.; Toshiyuki, N.; Ichiro, S. Basic fibroblast growth factor suppresses radiation-induced apoptosis and tp53 pathway in rat small intestine. Radiat. Res. 2010, 174, 52–61. [Google Scholar] [CrossRef]
- Takemura, N.; Kurashima, Y.; Mori, Y.; Okada, K.; Ogino, T.; Osawa, H.; Matsuno, H.; Aayam, L.; Kaneto, S.; Park, E.; et al. Eosinophil depletion suppresses radiation-induced small intestinal fibrosis. Sci. Transl. Med. 2018, 10, eaan333. [Google Scholar] [CrossRef]
- Allaire, J.M.; Crowley, S.M.; Law, H.T.; Chang, S.; Ko, H.; Vallance, B.A. The intestinal epithelium: Central coordinator of mucosal immunity. Trends Immunol. 2018, 39, 677–696. [Google Scholar] [CrossRef]
- POTTENCS Extreme sensitivity of some intestinal crypt cells to x and γ irradiation. Nature 1977, 269, 518–521. [CrossRef]
- Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J. Gastroenterol. 2013, 2, 185–198. [Google Scholar] [CrossRef]
- Chen, G.; Yu, Z.; Zhang, Y.; Liu, S.; Chen, C.; Zhang, S. Radiation-induced gastric injury during radiotherapy: Molecular mechanisms and clinical treatment. J. Radiat. Res. 2023, 64, 870–879. [Google Scholar] [CrossRef]
- Gulati, K.; Guhathakurta, S.; Joshi, J.C.; Rai, N.; Ray, A. Cytokines and their role in health and disease: A brief overview. MOJ Immunol. 2016, 4, 00121. [Google Scholar] [CrossRef]
- Han, C.; Godfrey, V.; Liu, Z.; Han, Y.; Liu, L.; Peng, H.; Weichselbaum, R.; Zaki, H.; Fu, Y. The aim2 and nlrp3 inflammasomes trigger il-1–mediated antitumor effects during radiation. Sci. Immunol. 2021, 6, eabc6998. [Google Scholar] [CrossRef]
- Linard, C.; Marquette, C.; Mathieu, J.; Pennequin, A.; Clarençon, D.; Mathé, D. Acute induction of inflammatory cytokine expression after γ-irradiation in the rat: Effect of an NF-κb inhibitor. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 427–434. [Google Scholar] [CrossRef]
- Damm, R.; Pech, M.; Haag, F.; Cavalli, P.; Gylstorff, S.; Omari, J.; Seidensticker, R.; Ricke, J.; Seidensticker, M.; Relja, B. TNF-α indicates radiation-induced liver injury after interstitial high dose-rate brachytherapy. In Vivo 2022, 36, 2265. [Google Scholar] [CrossRef]
- Kwong, J.; Chan, F.L.; Wong, K.; Birrer, M.J.; Archibald, K.M.; Balkwill, F.R.; Berkowitz, R.; Mok, S. Inflammatory cytokine tumor necrosis factor α confers precancerous phenotype in an organoid model of normal human ovarian surface epithelial cells. Neoplasia 2009, 11, 529–541. [Google Scholar] [CrossRef]
- Kim, M.H.; Kang, S.G.; Park, J.H.; Yanagisawa, M.; Kim, C.H. Short-chain fatty acids activate gpr41 and gpr43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013, 145, 396–406. [Google Scholar] [CrossRef]
- Baker, D.G.; Krochak, R.J. The response of the microvascular system to radiation: A review. Cancer Investig. 1989, 7, 287–294. [Google Scholar] [CrossRef]
- Wijerathne, H.; Langston, J.C.; Yang, Q.; Sun, S.; Miyamoto, C.; Kilpatrick, L.E.; Kiani, M. Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother. Oncol. 2021, 158, 21–32. [Google Scholar] [CrossRef]
- Hekim, N.; Cetin, Z.; Nikitaki, Z.; Cort, A.; Saygili, E.I. Radiation triggering immune response and inflammation. Cancer Lett. 2015, 368, 156–163. [Google Scholar] [CrossRef]
- Medzhitov, R. Origin and physiological roles of inflammation. Nature 2008, 454, 428–435. [Google Scholar] [CrossRef]
- Carr, N.D.; Pullen, B.R.; Hasleton, P.S.; Schofield, P.F. Microvascular studies in human radiation bowel disease. Gut 1984, 25, 448. [Google Scholar] [CrossRef]
- Zhao, W.; Robbins, M.E.C. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: Therapeutic implications. Curr. Med. Chem. 2009, 2, 130–143. [Google Scholar] [CrossRef]
- Olopade, F.A.; Norman, A.; Blake, P.; Dearnaley, D.P.; Harrington, K.J.; Khoo, V.; Tait, D.; Hackett, C.; Andreyev, H. A modified inflammatory bowel disease questionnaire and the vaizey incontinence questionnaire are simple ways to identify patients with significant gastrointestinal symptoms after pelvic radiotherapy. Br. J. Cancer 2005, 92, 1663–1670. [Google Scholar] [CrossRef]
- Dalsania, R.M.; Shah, K.P.; Stotsky-Himelfarb, E.; Hoffe, S.; Willingham, F.F. Management of long-term toxicity from pelvic radiation therapy. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 1–11. [Google Scholar] [CrossRef]
- Yeh, M.; Chang, Y.; Tsai, Y.; Chen, S.; Huang, T.; Chiu, J.; Chang, H. Bone marrow derived macrophages fuse with intestine stromal cells and contribute to chronic fibrosis after radiation. Radiother. Oncol. 2016, 119, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Berntsson, H.; Thien, A.; Hind, D.; Stewart, L.; Mahzabin, M.; Tung, W.S.; Bradburn, M.; Kurien, M. Interventions for managing late gastrointestinal symptoms following pelvic radiotherapy: A systematic review and meta-analysis. Clin. Oncol. (R. Coll. Radiol.) 2024, 36, 318–334. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Lin, B.; Fan, M.; Niu, T.; Gao, F.; Tan, B.; Du, X. Research progress on the mechanism of radiation enteritis. Front. Oncol. 2022, 12, 888962. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Zhang, J.; Li, H.; Wang, X.; Zhang, G.; Cui, H.; Nian, J. Research progress on the hallmarks of radiation-induced intestinal injury: Mechanisms, biomarkers and therapeutic targets. Arch. Biochem. Biophys. 2025, 772, 110562. [Google Scholar] [CrossRef]
- François, A.; Milliat, F.; Guipaud, O.; Benderitter, M. Inflammation and immunity in radiation damage to the gut mucosa. Biomed. Res. Int. 2013, 2013, 123241. [Google Scholar] [CrossRef]
- Shukla, P.K.; Gangwar, R.; Manda, B.; Meena, A.S.; Yadav, N.; Szabo, E.; Balogh, A.; Lee, S.; Tigyi, G.; Rao, R. Rapid disruption of intestinal epithelial tight junction and barrier dysfunction by ionizing radiation in mouse colon in vivo: Protection by n-acetyl-l-cysteine. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G705–G715. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Z.; He, Y. Radiation-induced fibrosis: Mechanisms and therapeutic strategies from an immune microenvironment perspective. Immunology 2024, 172, 533–546. [Google Scholar] [CrossRef]
- Chen, S.; Guo, B.; Feng, A.; Wang, X.; Zhang, S.; Miao, C. Pathways regulating intestinal stem cells and potential therapeutic targets for radiation enteropathy. Mol. Biomed. 2024, 5, 46. [Google Scholar] [CrossRef]
- Al-Qadami, G.; Van Sebille, Y.; Le, H.; Bowen, J. Gut microbiota: Implications for radiotherapy response and radiotherapy-induced mucositis. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 485–496. [Google Scholar] [CrossRef]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, A.; Soares, R.; Barata, P. The effects of ionizing radiation on gut microbiota, a systematic review. Nutrients 2021, 13, 3025. [Google Scholar] [CrossRef]
- Wang, A.; Ling, Z.; Yang, Z.; Kiela, P.R.; Wang, T.; Wang, C.; Cao, L.; Geng, F.; Shen, M.; Ran, X.; et al. Gut microbial dysbiosis may predict diarrhea and fatigue in patients undergoing pelvic cancer radiotherapy: A pilot study. PLoS ONE 2015, 10, e126312. [Google Scholar] [CrossRef]
- Jeong, S.; Marks, B.P.; Ryser, E.T.; Moosekian, S.R. Inactivation of Escherichia coli O157:H7 on lettuce, using low-energy x-ray irradiation. J. Food Prot. 2010, 73, 547–551. [Google Scholar] [CrossRef]
- Clavero, M.R.; Monk, J.D.; Beuchat, L.R.; Doyle, M.P.; Brackett, R.E. Inactivation of Escherichia coli O157:H7, Salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl. Environ. Microbiol. 1994, 60, 2069–2075. [Google Scholar] [CrossRef]
- Schopf, S.; Gotzmann, G.; Dietze, M.; Gerschke, S.; Kenner, L.; König, U. Investigations into the suitability of bacterial suspensions as biological indicators for low-energy electron irradiation. Front. Immunol. 2022, 13, 814767. [Google Scholar] [CrossRef]
- Pribil, W.; Gehringer, P.; Eschweiler, H.; Cabaj, A.; Haider, T.; Sommer, R. Assessment of Bacillus subtilis spores as a possible bioindicator for evaluation of the microbicidal efficacy of radiation processing of water. Water Environ. Res. 2007, 79, 720–724. [Google Scholar] [CrossRef]
- Gosiewski, T.; Mróz, T.; Ochońska, D.; Pabian, W.; Bulanda, M.; Brzychczy-Wloch, M. A study of the effects of therapeutic doses of ionizing radiation in vitro on Lactobacillus isolates originating from the vagina—A pilot study. BMC Microbiol. 2016, 16, 99. [Google Scholar] [CrossRef]
- Porfiri, L.; Burtscher, J.; Kangethe, R.T.; Verhovsek, D.; Cattoli, G.; Domig, K.J.; Wijewardana, V. Irradiated non-replicative lactic acid bacteria preserve metabolic activity while exhibiting diverse immune modulation. Front. Vet. Sci. 2022, 9, 859124. [Google Scholar] [CrossRef]
- Hazards, E.P.O.B. Scientific opinion on the efficacy and microbiological safety of irradiation of food. EFSA J. 2011, 9, 2103. [Google Scholar] [CrossRef]
- Bharti, R.; Grimm, D.G. Current challenges and best-practice protocols for microbiome analysis. Brief. Bioinform. 2021, 22, 178–193. [Google Scholar] [CrossRef]
- Goudarzi, M.; Mak, T.D.; Jacobs, J.P.; Moon, B.; Strawn, S.J.; Braun, J.; Brenner, D.; Fornace, A.; Li, H. An integrated multi-omic approach to assess radiation injury on the host-microbiome axis. Radiat. Res. 2016, 186, 219–234. [Google Scholar] [CrossRef]
- Guo, H.; Chou, W.; Lai, Y.; Liang, K.; Tam, J.W.; Brickey, W.J.; Chen, L.; Montgomery, N.; Li, X.; Bohannon, M.; et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science 2020, 370, eaay9097. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.; Zhang, Y.; Li, Q.; Yu, L.; Li, Q.; Liu, C.; Xie, Y.; Chen, K.; Ye, F.; et al. Alterations of the gut microbiome composition and lipid metabolic profile in radiation enteritis. Front. Cell. Infect. Microbiol. 2020, 10, 541178. [Google Scholar] [CrossRef]
- Zhu, S.; Liang, J.; Zhu, F.; Zhang, X.; Xu, M.; Zhao, K.; Zeng, L.; Xu, K. The effects of myeloablative or non-myeloablative total body irradiations on intestinal tract in mice. Biosci. Rep. 2021, 41, BSR20202993. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, A.; Guedes, C.; Fernandes, R.; Soares, R.; Barata, P. Ionizing radiation from radiopharmaceuticals and the human gut microbiota: An ex vivo approach. Int. J. Mol. Sci. 2022, 23, 10809. [Google Scholar] [CrossRef]
- Acharya, M.; Venkidesh, B.S.; Mumbrekar, K.D. Bacterial supplementation in mitigation of radiation-induced gastrointestinal damage. Life Sci. 2024, 353, 122921. [Google Scholar] [CrossRef]
- van Vliet, M.J.; Harmsen, H.J.M.; de Bont, E.S.J.M.; Tissing, W.J.E. The role of intestinal microbiota in the development and severity of chemotherapy-induced mucositis. PLoS Pathog. 2010, 6, e1000879. [Google Scholar] [CrossRef]
- Wardill, H.R.; Gibson, R.J.; Van Sebille, Y.Z.A.; Secombe, K.R.; Coller, J.K.; White, I.A.; Manavis, J.; Hutchinson, M.; Staikopoulos, V.; Logan, R.; et al. Irinotecan-induced gastrointestinal dysfunction and pain are mediated by common tlr4-dependent mechanisms. Mol. Cancer Ther. 2016, 15, 1376–1386. [Google Scholar] [CrossRef]
- Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.; Manicassamy, S.; Munn, D.; et al. Activation of gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef]
- Zhang, L.S.; Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: Opportunities for new therapeutic interventions. Genome Med. 2016, 8, 46. [Google Scholar] [CrossRef]
- Bach Knudsen, K.E.; Lærke, H.N.; Hedemann, M.S.; Nielsen, T.S.; Ingerslev, A.K.; Gundelund Nielsen, D.S.; Theil, P.; Purup, S.; Hald, S.; Schioldan, A.; et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients 2018, 10, 1499. [Google Scholar] [CrossRef]
- Dupraz, L.; Magniez, A.; Rolhion, N.; Richard, M.L.; Da Costa, G.; Touch, S.; Mayeur, C.; Planchais, J.; Agus, A.; Danne, C.; et al. Gut microbiota-derived short-chain fatty acids regulate IL-17 production by mouse and human intestinal γδ t cells. Cell Rep. 2021, 36, 109332. [Google Scholar] [CrossRef]
- Qiu, P.; Ishimoto, T.; Fu, L.; Zhang, J.; Zhang, Z.; Liu, Y. The gut microbiota in inflammatory bowel disease. Front. Cell. Infect. Microbiol. 2022, 12, 733992. [Google Scholar] [CrossRef]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory t cells. Nature 2013, 504, 446–450. [Google Scholar] [CrossRef]
- Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Akbari, S.K.; Yousefimashouf, R.; Karampoor, S. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed. Pharmacother. 2021, 139, 111619. [Google Scholar] [CrossRef]
- Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 228–233. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef]
- Wlodarska, M.; Luo, C.; Kolde, R.; DHennezel, E.; Annand, J.W.; Heim, C.E.; Krastel, P.; Schmitt, E.K.; Omar, A.S.; Creasey, E.A.; et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe 2017, 22, 25–37. [Google Scholar] [CrossRef]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef]
- Xiao, H.; Cui, M.; Li, Y.; Dong, J.; Zhang, S.; Zhu, C.; Jiang, M.; Zhu, T.; Wang, B.; Wang, H.; et al. Gut microbiota-derived indole 3-propionic acid protects against radiation toxicity via retaining acyl-coa-binding protein. Microbiome 2020, 8, 69. [Google Scholar] [CrossRef]
- Xie, L.; Cai, S.; Lu, H.; Tang, F.; Zhu, R.; Tian, Y.; Li, M. Microbiota-derived i3a protects the intestine against radiation injury by activating ahr/il-10/wnt signaling and enhancing the abundance of probiotics. Gut Microbes 2024, 16, 2347722. [Google Scholar] [CrossRef]
- Lu, L.; Jiang, M.; Zhu, C.; He, J.; Fan, S. Amelioration of whole abdominal irradiation-induced intestinal injury in mice with 3,3′-diindolylmethane (dim). Free Radic. Biol. Med. 2019, 130, 244–255. [Google Scholar] [CrossRef]
- Scott, S.A.; Fu, J.; Chang, P.V. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 2020, 117, 19376–19387. [Google Scholar] [CrossRef]
- Lamas, B.; Natividad, J.M.; Sokol, H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal. Immunol. 2018, 11, 1024–1038. [Google Scholar] [CrossRef]
- Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer 2014, 14, 801–814. [Google Scholar] [CrossRef]
- Leibowitz, B.J.; Zhao, G.; Wei, L.; Ruan, H.; Epperly, M.; Chen, L.; Lu, X.; Greenberger, J.S.; Zhang, L.; Yu, J. Interferon β drives intestinal regeneration after radiation. Sci. Adv. 2021, 7, eabi5253. [Google Scholar] [CrossRef]
- Swimm, A.; Giver, C.R.; DeFilipp, Z.; Rangaraju, S.; Sharma, A.; Ulezko Antonova, A.; Sonowal, R.; Capaldo, C.; Powell, D.; Qayed, M.; et al. Indoles derived from intestinal microbiota act via type i interferon signaling to limit graft-versus-host disease. Blood 2018, 132, 2506–2519. [Google Scholar] [CrossRef]
- Guan, D.; Yang, Y.; Pang, M.; Liu, X.; Li, Y.; Huang, P.; Shang, H.; Wei, H.; Ye, Z. Indole-3-carboxaldehyde ameliorates ionizing radiation-induced hematopoietic injury by enhancing hematopoietic stem and progenitor cell quiescence. Mol. Cell Biochem. 2024, 479, 313–323. [Google Scholar]
- Chen, Z.; Xiao, H.; Dong, J.; Li, Y.; Wang, B.; Fan, S.; Cui, M. microbiota-derived pgf2α fights against radiation-induced lung toxicity through the mapk/nf-κb pathway. Antioxidants 2021, 11, 65. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B.; Dong, J.; Li, Y.; Zhang, S.; Zeng, X.; Xiao, H.; Fan, S.; Cui, M. Gut microbiota-derived l-histidine/imidazole propionate axis fights against the radiation-induced cardiopulmonary injury. Int. J. Mol. Sci. 2021, 22, 11436. [Google Scholar] [CrossRef]
- Araujo, I.K.; Muñoz-Guglielmetti, D.; Mollà, M. Radiation-induced damage in the lower gastrointestinal tract: Clinical presentation, diagnostic tests and treatment options. Best Pract. Res. Clin. Gastroenterol. 2020, 48–49, 101707. [Google Scholar] [CrossRef]
- Deng, S.; Pei, C.; Cai, K.; Huang, W.; Xiao, X.; Zhang, X.; Liang, R.; Chen, Y.; Xie, Z.; Li, P.; et al. Lactobacillus acidophilus and its metabolite ursodeoxycholic acid ameliorate ulcerative colitis by promoting treg differentiation and inhibiting m1 macrophage polarization. Front. Microbiol. 2024, 15, 1302998. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Oelschlaeger, T.A. Mechanisms of probiotic actions—A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Wang, W.; Cui, B.; Nie, Y.; Sun, L.; Zhang, F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024, 15, 83–97. [Google Scholar] [CrossRef]
- Pepoyan, A.Z.; Manvelyan, A.M.; Balayan, M.H.; McCabe, G.; Tsaturyan, V.V.; Melnikov, V.G.; Chikindas, M.L.; Weeks, R.; Karlyshev, A.V. The effectiveness of potential probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in irradiated rats depends on the nutritional stage of the host. Probiotics Antimicrob. Proteins 2020, 12, 1439–1450. [Google Scholar] [CrossRef]
- Ma, X.; Shin, Y.; Jang, H.; Joo, M.; Yoo, J.; Kim, D. Lactobacillus rhamnosus and Bifidobacterium longum alleviate colitis and cognitive impairment in mice by regulating IFN-γ to IL-10 and TNF-α to IL-10 expression ratios. Sci. Rep. 2021, 11, 20659. [Google Scholar] [CrossRef]
- Riehl, T.E.; Alvarado, D.; Ee, X.; Zuckerman, A.; Foster, L.; Kapoor, V.; Thotala, K.; Ciorba, M.A.; Stenson, W.F. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 2019, 68, 1003. [Google Scholar] [CrossRef]
- Jian, Y.; Zhang, D.; Liu, M.; Wang, Y.; Xu, Z. The impact of gut microbiota on radiation-induced enteritis. Front. Cell. Infect. Microbiol. 2021, 11, 586392. [Google Scholar] [CrossRef]
- Cani, P.D.; de Vos, W.M. Next-generation beneficial microbes: The case of Akkermansia muciniphila. Front. Microbiol. 2017, 8, 1765. [Google Scholar] [CrossRef]
- Derrien, M.; van Hylckama Vlieg, J.E.T. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015, 23, 354–366. [Google Scholar] [CrossRef]
- Reunanen, J.; Kainulainen, V.; Huuskonen, L.; Ottman, N.; Belzer, C.; Huhtinen, H.; Vos, W.M.; Satokari, R. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol. 2015, 81, 3655–3662. [Google Scholar] [CrossRef]
- Mao, X.; Ma, J.; Jiao, C.; Tang, N.; Zhao, X.; Wang, D.; Zhang, Y.; Ye, Z.; Xu, C.; Jiang, J.; et al. Faecalibacterium prausnitzii attenuates dss-induced colitis by inhibiting the colonization and pathogenicity of Candida albicans. Mol. Nutr. Food Res. 2021, 65, 2100433. [Google Scholar] [CrossRef]
- Zheng, M.; Han, R.; Yuan, Y.; Xing, Y.; Zhang, W.; Sun, Z.; Liu, Y.; Li, J.; Mao, T. The role of Akkermansia muciniphila in inflammatory bowel disease: Current knowledge and perspectives. Front. Immunol. 2023, 13, 1089600. [Google Scholar] [CrossRef]
- Xie, P.; Luo, M.; Deng, X.; Fan, J.; Xiong, L. Outcome-specific efficacy of different probiotic strains and mixtures in irritable bowel syndrome: A systematic review and network meta-analysis. Nutrients 2023, 15, 3856. [Google Scholar] [CrossRef]
- Atchade, A.M.; Williams, J.L.; Mermelstein, L.; Nemesure, B. Unraveling the complexities of early-onset colorectal cancer: A perspective on dietary and microbial influences. Front. Public Health 2024, 12, 1370108. [Google Scholar] [CrossRef]
- Palleja, A.; Mikkelsen, K.H.; Forslund, S.K.; Kashani, A.; Allin, K.H.; Nielsen, T.; Hansen, T.H.; Liang, S.; Feng, Q.; Zhang, C.; et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 2018, 3, 1255–1265. [Google Scholar] [CrossRef]
- Suez, J.; Elinav, E. The path towards microbiome-based metabolite treatment. Nat. Microbiol. 2017, 2, 17075. [Google Scholar] [CrossRef]
- Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: Past, present and future. Curr. Opin. Microbiol. 2019, 51, 72–80. [Google Scholar] [CrossRef]
- Strati, F.; Pujolassos, M.; Burrello, C.; Giuffrè, M.R.; Lattanzi, G.; Caprioli, F.; Troisi, J.; Facciotti, F. Antibiotic-associated dysbiosis affects the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in experimental colitis models. Microbiome 2021, 9, 39. [Google Scholar] [CrossRef]
- Zhao, Z.; Cheng, W.; Qu, W.; Shao, G.; Liu, S. Antibiotic alleviates radiation-induced intestinal injury by remodeling microbiota, reducing inflammation, and inhibiting fibrosis. ACS Omega 2020, 5, 2967–2977. [Google Scholar] [CrossRef]
- Horseman, T.S.; Frank, A.M.; Cannon, G.; Zhai, M.; Olson, M.G.; Lin, B.; Hull, L.; Xiao, M.; Kiang, J.; Burmeister, D.M. Effects of combined ciprofloxacin and neulasta therapy on intestinal pathology and gut microbiota after high-dose irradiation in mice. Front. Public Health 2024, 12, 1365161. [Google Scholar] [CrossRef]
- Kiang, J.G.; Fukumoto, R. Ciprofloxacin increases survival after ionizing irradiation combined injury: γ-h2ax formation, cytokine/chemokine, and red blood cells. Health Phys. 2014, 106, 720–726. [Google Scholar] [CrossRef]
- Lavelle, A.; Hoffmann, T.W.; Pham, H.; Langella, P.; Guédon, E.; Sokol, H. Baseline microbiota composition modulates antibiotic-mediated effects on the gut microbiota and host. Microbiome 2019, 7, 111. [Google Scholar] [CrossRef]
- Rashidi, A.; Ebadi, M.; Rehman, T.U.; Elhusseini, H.; Nalluri, H.; Kaiser, T.; Holtan, S.G.; Khoruts, A.; Weisdorf, D.J.; Staley, C. Gut microbiota response to antibiotics is personalized and depends on baseline microbiota. Microbiome 2021, 9, 211. [Google Scholar] [CrossRef]
- Uribe-Herranz, M.; Bittinger, K.; Rafail, S.; Guedan, S.; Pierini, S.; Tanes, C.; Ganetsky, A.; Morgan, M.; Gill, A.; Tanyi, J.; et al. Gut microbiota modulates adoptive cell therapy via cd8α dendritic cells and IL-12. JCI Insight 2018, 3, e94952. [Google Scholar] [CrossRef]
- Lynn, M.A.; Eden, G.; Ryan, F.J.; Bensalem, J.; Wang, X.; Blake, S.J.; Choo, J.M.; Chern, Y.T.; Sribnaia, A.; James, J.; et al. The composition of the gut microbiota following early-life antibiotic exposure affects host health and longevity in later life. Cell Rep. 2021, 36, 109564. [Google Scholar] [CrossRef]
- Blaser, M.J. Antibiotic use and its consequences for the normal microbiome. Science 2016, 352, 544–545. [Google Scholar] [CrossRef]
- Jernberg, C.; Löfmark, S.; Edlund, C.; Jansson, J.K. Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 2010, 156, 3216–3223. [Google Scholar] [CrossRef]
- Leclercq, S.; Mian, F.M.; Stanisz, A.M.; Bindels, L.B.; Cambier, E.; Ben-Amram, H.; Koren, O.; Forsythe, P.; Bienenstock, J. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat. Commun. 2017, 8, 15062. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, H.; Wang, Y.; Cheng, R.; Pu, F.; Yang, Y.; Li, J.; Wu, S.; Shen, X.; He, F. Heat-inactivated Lacticaseibacillus paracasei n1115 alleviates the damage due to brain function caused by long-term antibiotic cocktail exposure in mice. BMC Neurosci. 2022, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Koh, J.; Shin, S.; Shin, J.; Hong, M.; Chung, H.C.; Rha, S.Y.; Kim, H.S.; Lee, C.; Lee, J.H.; et al. Prior antibiotic administration disrupts anti-pd-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response. Cell Rep. Med. 2023, 4, 101251. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Han, M.; Heinrich, B.; Fu, Q.; Zhang, Q.; Sandhu, M.; Agdashian, D.; Terabe, M.; Berzofsky, J.A.; Fako, V.; et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via nkt cells. Science 2018, 360, eaan5931. [Google Scholar] [CrossRef]
- Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilić-Stojanović, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017, 66, 569. [Google Scholar] [CrossRef]
- Khanna, S.; Kraft, C.S. Fecal microbiota transplantation: Tales of caution. Clin. Infect. Dis. 2021, 72, e881–e882. [Google Scholar] [CrossRef]
- Boicean, A.; Ichim, C.; Todor, S.B.; Anderco, P.; Popa, M.L. The importance of microbiota and fecal microbiota transplantation in pancreatic disorders. Diagnostics 2024, 14, 861. [Google Scholar] [CrossRef]
- Quraishi, M.N.; Widlak, M.; Bhala, N.; Moore, D.; Price, M.; Sharma, N.; Iqbal, T.H. Systematic review with meta-analysis: The efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 2017, 46, 479–493. [Google Scholar] [CrossRef]
- Vendrik, K.E.W.; Ooijevaar, R.E.; de Jong, P.R.C.; Laman, J.D.; van Oosten, B.W.; van Hilten, J.J.; Ducarmon, Q.R.; Keller, J.J.; Kuijper, E.J.; Contarino, M.F. Fecal microbiota transplantation in neurological disorders. Front. Cell. Infect. Microbiol. 2020, 10, 98. [Google Scholar] [CrossRef]
- Cui, M.; Xiao, H.; Li, Y.; Zhou, L.; Zhao, S.; Luo, D.; Zheng, Q.; Dong, J.; Zhao, Y.; Zhang, X.; et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol. Med. 2017, 9, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Sipe, B.W.; Rogers, N.A.; Cook, G.K.; Robb, B.W.; Vuppalanchi, R.; Rex, D.K. Faecal microbiota transplantation plus selected use of vancomycin for severe-complicated Clostridium difficile infection: Description of a protocol with high success rate. Aliment. Pharmacol. Ther. 2015, 42, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Li, F.; Gao, Y.; Kang, S.; Li, J.; Guo, J. Microbiome in radiotherapy: An emerging approach to enhance treatment efficacy and reduce tissue injury. Mol. Med. 2024, 30, 105. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, Y.; Feng, J.; Dou, Y. Effect of modified xijiao dihuang decoction (加味犀角地黄汤) on intestinal flora and th17/treg in rats with radiation enteritis. Chin. J. Integr. Med. 2021, 27, 198–205. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Wang, L.; He, C.; Shi, Z.; Fu, Q.; Xu, W.; Zhang, S.; Hu, S. Review of the efficacy and mechanisms of traditional Chinese medicines as a therapeutic option for ionizing radiation induced damage. Front. Pharmacol. 2021, 12, 617559. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Y.; Lin, W.; Wang, L.; Yang, Y.; Li, P.; Xiao, L.; Chen, Y.; Chu, Q.; Yuan, X. Sitagliptin alleviates radiation-induced intestinal injury by activating nrf2-antioxidant axis, mitigating nlrp3 inf–lammasome activation, and reversing gut microbiota disorder. Oxid. Med. Cell Longev. 2022, 2022, 2586305. [Google Scholar] [CrossRef]
- Hu, J.; Jiao, W.; Tang, Z.; Wang, C.; Li, Q.; Wei, M.; Song, S.; Du, L.; Jin, Y. Quercetin inclusion complex gels ameliorate radiation-induced brain injury by regulating gut microbiota. Biomed. Pharmacother. 2023, 158, 114142. [Google Scholar] [CrossRef]
- Gu, J.; Zhao, L.; Chen, Y.; Guo, Y.; Sun, Y.; Guo, Q.; Duan, G.X.; Li, C.; Tang, Z.B.; Zhang, Z.X.; et al. Preventive effect of sanguinarine on intestinal injury in mice exposed to whole abdominal irradiation. Biomed. Pharmacother. 2022, 146, 112496. [Google Scholar] [CrossRef]
Bacterial Species | Radiation Type & Energy | Sensitivity Index (D10 kGy) | References |
---|---|---|---|
E. coli | Low-energy X-ray, 70 kV | 0.040–0.078 | [74] |
γ | 0.24–0.35 | [75] | |
Bacillus spp. | e-beam/γ | 0.31–0.37 | [76] |
Low-energy X-ray | 3.3 | [77] | |
Lactobacillus spp. | IR at clinical RT doses | relatively resistant | [78] |
^60Co γ | 0.526 | [79] | |
Clostridium perfringens | γ (Direct X-ray D10 data limited) | 0.40–0.80 | [80] |
Radiation Type | Radiation Level | Radiation Time | Objects | Biospecimen | Analytical Techniques | Changes in the Gut Microbiota and Its Metabolites | References |
---|---|---|---|---|---|---|---|
total body radiation | 8.2–9.2 Gy | 290 days | C57BL/6 mice | Feces | 16 S rRNA gene sequencing | Lachnospiraceae ↑, Enterococcaceae ↑; short-chain fatty acids (acetate, butyrate, and propionate) ↑, I3A and KYNA ↑ | [82] |
X-ray | 5, 12 Gy | 30 days | C57BL/6J mice | Feces | 16 S rRNA gene sequencing | Lactobacillaceae ↑, Staphylococcaceae ↑ Lachnospiraceae ↓, Ruminococcaceae ↓, Clostridiaceae ↓; glyceric acid ↓, homogentisic acid ↓, glutaconic acid ↓ and pipecolic acid ↓ hippuric acid ↑, taurine ↑, urobilinogen ↑ | [83] |
pelvic radiotherapy | 1.8–2.0 Gy/day | five times a week during a 5 week period | 11 cancer patients | Blood | 16 S rRNA gene sequencing | Firmicutes ↑, Bacteroidetes ↓ | [72] |
60Co γ-ray | 8 Gy | single | C57BL/6 mice | The small and large intestinal contents | 16 S rRNA gene sequencing | Alistipes ↑, Lactobacillus ↑, Akkermansia ↑ Barnesiella ↓, Prevotella ↓, Bacteroides ↓, Oscillibacter ↓, Pseudoflavonifractor ↓, Mucispirillum ↓ | [12] |
X-ray | 18 Gy | Single | C57BL/6 J mice | Intestinal biopsy feces | 16 S rDNA sequencing UHPLC-MS |
Bacteroidetes
↓, Firmicutes
↓; Significant changes in CerG1, CerG3GNac1, cPA, DG, dMePE, FA, ganglioside GM3, LdMePE, LPC, LPE, LPG, LPI, PC, PE, PG, PI, SM, So and the acute phase is the opposite of the chronic phase | [83] |
60Co γ-ray | 4 Gy (non-myeloablative)/8 Gy (myeloablative) | Single | BALB/c mice | Cecal contents | 16 S rRNA gene sequencing |
Bacteroidaceae
↑
Ruminococcaceae ↓, Lachnospiraceae ↓, Lactobacillaceae ↓, Defluviitaleaceae ↓, Peptococcaceae ↓, Christensenellaceae ↓ acetic acid ↓, valeric acid ↓ | [84] |
223Ra, 99mTc | 2 healthy volunteers | Feces | 16 S rRNA gene sequencing |
Firmicutes
↑, Proteobacteria
↑
Bacteroidetes ↓, Actinobacteria ↓ | [85] |
Intervention Type | Category | Mechanism of Action | Efficacy and Outcomes |
---|---|---|---|
Probiotics and Bacterial Supplementation Therapy | Traditional Probiotics | Regulate immune signal transduction Stabilize crypt stem cells to protect intestinal microvascular endothelial cells Modulates leukocyte counts and blood glucose levels Activates macrophages, and promotes mesenchymal stem cell migration | Significantly reduces radiation-associated diarrhea incidence, promotes intestinal mucosal repair and regeneration |
Next-Generation Probiotics | Maintains intestinal barrier integrity and exerts anti-inflammatory activity | Reduce intestinal permeability and alleviate inflammatory responses | |
Probiotic-Prebiotic Complex Formulations | Repair tissue damage and selectively promote the proliferation and metabolic activity of beneficial gut microbiota | Effectively repairs IR-induced injury, protects patients with radiation-induced diarrhea, and demonstrates clear improvement in acute RIID | |
Antibiotic Therapy | Broad-spectrum and Targeted Antibiotics | Reduces LPS levels Modulates macrophage polarization and cytokine networks Improves intestinal dysbiosis | Effectively control intestinal bacterial infections, alleviate dysbiosis and intestinal tissue damage |
FMT | Fecal Microbiota Transplantation Technology | Restore gut microbiota balance Increase IPA production and promote angiogenesis Regulate host small intestine mRNA and long non-coding RNA expression profiles | Reduces chronic inflammatory responses and hematopoietic organ damage risk, improves gastrointestinal function and epithelial integrity Alleviates clinical symptoms of chronic radiation enteritis |
Other Protective Strategies | Natural Herbal Active Components | Rebalances radiation-induced dysbiosis Reduces inflammatory cytokine levels Inhibits inflammatory cascade reactions | Exhibits definite radioprotective activity and mitigates IR-induced tissue damage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Yan, X.; Shi, H.; Chen, Y.; Huang, C.; Zhou, Y.; Yan, S.; Zhang, N.; Wang, J.; Zhang, J.; et al. The Role of Gut Microbiota and Its Metabolites in Mitigating Radiation Damage. Microorganisms 2025, 13, 2151. https://doi.org/10.3390/microorganisms13092151
Zhu H, Yan X, Shi H, Chen Y, Huang C, Zhou Y, Yan S, Zhang N, Wang J, Zhang J, et al. The Role of Gut Microbiota and Its Metabolites in Mitigating Radiation Damage. Microorganisms. 2025; 13(9):2151. https://doi.org/10.3390/microorganisms13092151
Chicago/Turabian StyleZhu, Hansheng, Xin Yan, Hao Shi, Yiping Chen, Changyi Huang, Yue Zhou, Shiying Yan, Nan Zhang, Jia Wang, Jian Zhang, and et al. 2025. "The Role of Gut Microbiota and Its Metabolites in Mitigating Radiation Damage" Microorganisms 13, no. 9: 2151. https://doi.org/10.3390/microorganisms13092151
APA StyleZhu, H., Yan, X., Shi, H., Chen, Y., Huang, C., Zhou, Y., Yan, S., Zhang, N., Wang, J., Zhang, J., Han, C., Chen, Q., Zhao, J., & Cao, M. (2025). The Role of Gut Microbiota and Its Metabolites in Mitigating Radiation Damage. Microorganisms, 13(9), 2151. https://doi.org/10.3390/microorganisms13092151