Effects of Micro(nano)plastics on Anaerobic Digestion and Their Influencing Mechanisms
Abstract
1. Introduction
2. Pathways of Micro(nano)plastics Entering the Anaerobic System and Their Characteristics
2.1. Sludge
Location | Micro(nano)plastic Concentrations in WWTP Influent | Micro(nano)plastic Concentrations in WWTP Effluent | Sludge | Type of Micro(nano)plastics | Size of Micro(nano)plastics | Shape of Micro(nano)plastics | Micro(nano)plastics Quantity in Sludge | Reference |
---|---|---|---|---|---|---|---|---|
China | - | - | Activated sludge | PVC, PA, PP, PS, acrylates | 20–100 μm (75%) | Fragments (most) | 1710.67–6471.59 particles/g | [36] |
China | 2530–18,240 particles/L | 650–1700 particles/L | Dewatered sludge | PU (28%), PTFE (14%), PE (12%), PET (10%) | <500 μm (98%) | Fibers, fragments, long fragments | 38.6–104.5 particles/g | [31] |
Japan | - | - | Dewatered sludge | - | 100–500 μm (more than 70%) | - | 6.47 ± 1.49 particles/g | [15] |
Japan | - | - | WAS | - | 100–500 μm (more than 70%) | - | 81 ± 48 particles/kg | [15] |
China | 75–630 pieces/L | 1–10 pieces/L | Activated sludge | - | - | - | 7–888 pieces/g | [32] |
China | - | 1.6 ± 0.9 items/L | Dewatered sludge | - | <500 μm (78.3%) | - | 6.4 ± 0.8 items/g | [35] |
China | - | 2.9 ± 0.8 items/L | Dewatered sludge | - | <500 μm (85.4%) | - | 11.3 ± 2.3 items/g | [35] |
Thailand | 31.2 particles/L | 14 particles/L | Dewatered sludge | - | 50–1000 μm (most) | Fibers (20.4%), fragments (78.3%) | 228.1 particles/g | [33] |
China | 0.70–8.72 items/L | 0.07–0.78 items/L | - | PP, PE, PET, polyacrylonitrile (PAN) | 500–5000 μm (most) | Fibers, fragments, films | 234.7 ± 47.7–6908.3 ± 330.2 items/kg | [5] |
Spain | - | 12.8 ± 6.3 particles/L | Mixed sludge | Polyester fibers, acrylic fibers, PE, dyed cotton, PP | - | Fibers (62%) | 183 ± 84 particles/g | [11] |
Spain | - | 12.8 ± 6.3 particles/L | Heat-dried sludge | Polyester fibers, acrylic fibers, PE, dyed cotton, PP | - | Fibers (84%) | 165 ± 37 particles/g | [11] |
Italy | 2.5 ± 0.3 particles/L | 0.4 ± 0.1 particles/L | Activated sludge | Co-polymers of acrylonitrile butadiene (27%), PP (18%), polyesters (15%) | 100–500 μm | Films (51%), fragments (34%), lines (15%) | 113 ± 57 particles/g | [16] |
China | - | - | Dewatered sludge | Polyolefin, acrylic fibers, PE, PA, alkyd resin, PS | - | Fibers (63%), shafts (15%), films (14%), flakes (7.3%), spheres (1.3%) | 1.60–56.4 particles/g | [14] |
2.2. Food Waste
2.3. Livestock Manure
2.4. Other Organic Wastes
3. Effect of Micro(nano)plastics on Anaerobic Digestion Performance
3.1. Polyvinyl Chloride (PVC) Micro(nano)plastics
Micro(nano)plastics | AD Feedstock | Mode (Temperature) | Effects on AD | Reference | ||
---|---|---|---|---|---|---|
Type | Size | Concentration | ||||
PVC | 1.0 mm | 10–60 particles/g TS | WAS | Batch (37 °C) | Microplastics at a concentration of 10 particles/g TS resulted in a 4.9% increase in VFA production and a 5.9% increase in methane production; microplastics at a concentration of 20–60 particles/g TS resulted in a 6.9–16.8% reduction in VFAs production and a 9.4–24.2% reduction in methane production. | [22] |
PVC | 1.0 mm | 20, 80 particles/g TS | WAS | Batch (37 °C) | Microplastics at a concentration of 20 particles/g TS increased methane production by 6.7%, while microplastics at a concentration of 80 particles/g TS decreased methane production by 23.9%. | [57] |
PVC | 350 μm | 30 mg/g TS | WAS | Batch (35 °C) | Microplastics inhibited VFA production by 15.2% and reduced methane production. | [59] |
PVC | 166 μm | 40–200 mg/L | WAS | Batch (37 °C) | Microplastics at a concentration of 40 mg/L increased methane production by 1.64% while microplastics at a concentration of 200 mg/L decreased methane production by 14.49%. | [58] |
PVC | 150 μm | 1–10 mg/L | WAS | Batch (37 °C) | Microplastics increased methane production by 5.62–8.87%. | [56] |
PVC | 150 μm | 1–10 mg/L | WAS | Batch (55 °C) | Microplastics decreased methane production by 13.30–19.99%. | [56] |
3.2. Polystyrene (PS) Micro(nano)plastics
3.3. Polyethylene (PE) Micro(nano)plastics
3.4. Other Micro(nano)plastics
4. Mechanisms of Micro(nano)plastics Affecting Anaerobic Digestion
4.1. Effects of Micro(nano)plastics on Microbial Cells
4.2. Effects of Micro(nano)plastics on Key Enzymes
4.3. Effects of Micro(nano)plastics on Microbial Community
4.4. Effect of Micro(nano)plastics on Antibiotic Resistance Genes
5. Coupling Effects of Micro(nano)plastics with Other Pollutants on Anaerobic Digestion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, S.-F.; Ding, J.-N.; Zhang, Y.; Li, Y.-F.; Zhu, R.; Yuan, X.-Z.; Zou, H. Exposure to polystyrene nanoplastic leads to inhibition of anaerobic digestion system. Sci. Total Environ. 2018, 625, 64–70. [Google Scholar] [CrossRef]
- Jahnke, A.; Beck, A.J.; Becker, R.L.; Bedulina, D.; Braun, U.; Gerdts, G.; Hildebrandt, L.; Joerss, H.; Klein, O.; Korduan, J.; et al. Perspective article: Multisectoral considerations to enable a circular economy for plastics. J. Hazard. Mater. 2025, 496, 139326. [Google Scholar] [CrossRef]
- Zhang, F.; Deng, Z.; Ma, L.; Gui, X.; Yang, Y.; Wang, L.; Zhao, C.; Li, H. Pollution characteristics and prospective risk of microplastics in the Zhengzhou section of Yellow River, China. Sci. Total Environ. 2024, 931, 172717. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Xie, Y.; Zhong, S.; Gao, P. Occurrence and removal of microplastics from wastewater treatment plants in a typical tourist city in China. J. Clean. Prod. 2021, 291, 125968. [Google Scholar] [CrossRef]
- Azizi, M.M.S.; Hai, F.I.; Lu, W.; Abdullah, A.M.; Dhar, R.B. A review of mechanisms underlying the impacts of (nano)microplastics on anaerobic digestion. Bioresour. Technol. 2021, 329, 124894. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Sherrell, P.C.; Chen, J.; Wang, H.; Zhang, W.; Yang, J. How to Build a Microplastics-Free Environment: Strategies for Microplastics Degradation and Plastics Recycling. Adv. Sci. 2022, 9, e2103764. [Google Scholar] [CrossRef] [PubMed]
- Nagato, E.G.; Noothalapati, H.; Kogumasaka, C.; Kakii, S.; Hossain, S.; Iwasaki, K.; Takai, Y.; Shimasaki, Y.; Honda, M.; Hayakawa, K.; et al. Differences in microplastic degradation in the atmosphere and coastal water environment from two island nations: Japan and New Zealand. Environ. Pollut. 2023, 333, 122011. [Google Scholar] [CrossRef] [PubMed]
- Wainkwa, C.R.; Lee, J.Y.; Cha, J.; Çelen, E.İ.p. A comparative study of soil microplastic pollution sources: A review. Environ. Pollut. Bioavailab. 2023, 35, 2280526. [Google Scholar] [CrossRef]
- Luo, S.; Wu, H.; Xu, J.; Wang, X.; He, X.; Li, T. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China. J. Hazard. Mater. 2024, 465, 133115. [Google Scholar]
- Edo, C.; González-Pleiter, M.; Leganés, F.; Fernández-Piñas, F.; Rosal, R. Fate of microplastics in wastewater treatment plants and their environmental dispersion with effluent and sludge. Environ. Pollut. 2020, 259, 113837. [Google Scholar] [CrossRef]
- Porterfield, K.K.; Hobson, S.A.; Neher, D.A.; Niles, M.T.; Roy, E.D. Microplastics in composts, digestates and food wastes: A review. J. Environ. Qual. 2023, 52, 225–240. [Google Scholar] [CrossRef]
- Tan, M.; Sun, Y.; Gui, J.; Wang, J.; Chen, X.; Song, W.; Wu, D. Distribution characteristics of microplastics in typical organic solid wastes and their biologically treated products. Sci. Total Environ. 2022, 852, 158440. [Google Scholar] [CrossRef]
- Li, X.; Chen, L.; Mei, Q.; Dong, B.; Dai, X.; Ding, G.; Zeng, E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 2018, 142, 75–85. [Google Scholar] [CrossRef]
- Liu, S.; Oshita, K.; Guo, W.; Takaoka, M. Behavior and flow of microplastics during sludge treatment in Japan. Sci. Total Environ. 2024, 957, 177553. [Google Scholar] [CrossRef]
- Magni, S.; Binelli, A.; Pittura, L.; Avio, C.G.; Torre, C.D.; Parenti, C.C.; Gorbi, S.; Regoli, F. The fate of microplastics in an Italian Wastewater Treatment Plant. Sci. Total Environ. 2019, 652, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, R.; Zhou, Q.; Li, L.; Li, Y.; Tu, C.; Zhao, X.; Xiong, K.; Christie, P.; Luo, Y. Abundance and morphology of microplastics in an agricultural soil following long-term repeated application of pig manure. Environ. Pollut. 2020, 272, 116028. [Google Scholar] [CrossRef] [PubMed]
- Stride, B.; Abolfathi, S.; Bending, G.D.; Pearson, J. Quantifying microplastic dispersion due to density effects. J. Hazard. Mater. 2024, 466, 133440. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoh, E.; Hentschel, B.T.; Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: Implications for plastic marine debris. Environ. Sci. Technol. 2013, 47, 1646–1654. [Google Scholar] [CrossRef]
- Zhang, Y.; Jing, J.; Kong, X.; Yuan, J.; Liu, J.; Zhang, C. A comprehensive review of the impact of trace elements on anaerobic digestion for organic solid wastes. Process Saf. Environ. Prot. 2024, 192, 1172–1189. [Google Scholar] [CrossRef]
- Alimohammadi, M.; Demirer, G.N. Microplastics in anaerobic digestion: Occurrence, impact, and mitigation strategies. J. Environ. Health Sci. Eng. 2024, 22, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Huang, Q.-S.; Sun, J.; Wang, J.-Y.; Wu, S.-L.; Ni, B.-J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef]
- Wei, W.; Huang, Q.-S.; Sun, J.; Dai, X.; Ni, B.-J. Revealing the Mechanisms of Polyethylene Microplastics Affecting Anaerobic Digestion of Waste Activated Sludge. Environ. Sci. Technol. 2019, 53, 9604–9613. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Tang, M.; Yang, X.; Tsang, Y.F.; Wu, Y.; Wang, D.; Zhou, Y. Polyamide 6 microplastics facilitate methane production during anaerobic digestion of waste activated sludge. Chem. Eng. J. 2020, 408, 127251. [Google Scholar] [CrossRef]
- Shi, J.; Dang, Q.; Zhang, C.; Zhao, X. Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. Environ. Pollut. 2022, 310, 119859. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yuan, D. Metagenomic Analysis Reveals the Effects of Microplastics on Antibiotic Resistance Genes in Sludge Anaerobic Digestion. Toxics 2024, 12, 920. [Google Scholar] [CrossRef]
- Xiao, Y.; Qin, Y.; Jiang, X.; Gao, P. Effects of polypropylene microplastics on digestion performance, microbial community, and antibiotic resistance during microbial anaerobic digestion. Bioresour. Technol. 2024, 411, 131358. [Google Scholar] [CrossRef]
- Rasmussen, L.A.; Iordachescu, L.; Tumlin, S.; Vollertsen, J. A complete mass balance for plastics in a wastewater treatment plant—Macroplastics contributes more than microplastics. Water Res. 2021, 201, 117307. [Google Scholar] [CrossRef]
- Yu, R.; Li, P.; Shen, R. Collaborative removal of microplastics, bacteria, antibiotic resistance genes, and heavy metals in a full-scale wastewater treatment plant. Water Sci. Technol. 2025, 91, 438–452. [Google Scholar] [CrossRef]
- Salmi, P.; Ryymin, K.; Karjalainen, A.K.; Mikola, A.; Uurasjärvi, E.; Talvitie, J. Particle balance and return loops for microplastics in a tertiary-level wastewater treatment plant. Water Sci. Technol. 2021, 84, 89–100. [Google Scholar] [CrossRef]
- Li, K.; Gao, Y.; Zhang, Y.; Zheng, Y.; Li, G.; Zhang, L.; Wu, J.; Shi, Y.; Huo, M.; Wang, X. Establishment and application of standard analysis methods for microplastic samples: Urban sewage and sewage sludge as a source of microplastics in the environment. Environ. Res. 2025, 273, 121237. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, S.; Li, Z.; Zhang, Y.; Ouyang, W.; Mai, L. Fate of microplastics in urban wastewater treatment plants and their contribution to the receiving river via effluent discharge. J. Oceanol. Limnol. 2025, 43, 372–382. [Google Scholar] [CrossRef]
- Maw, M.M.; Boontanon, N.; Aung, H.K.Z.Z.; Jindal, R.; Fujii, S.; Visvanathan, C.; Boontanon, S.K. Microplastics in wastewater and sludge from centralized and decentralized wastewater treatment plants: Effects of treatment systems and microplastic characteristics. Chemosphere 2024, 361, 142536. [Google Scholar] [CrossRef]
- Arab, M.; Yu, J.; Nayebi, B. Microplastics in Sludges and Soils: A Comprehensive Review on Distribution, Characteristics, and Effects. ChemEngineering 2024, 8, 86. [Google Scholar] [CrossRef]
- Ma, Y.; Bao, Z.; Cai, S.; Wang, Q.; Dou, B.; Niu, X.; Meng, Q.; Li, P.; Guo, X. The Pollution Characteristics and Fate of Microplastics in Typical Wastewater Treatment Systems in Northern China. Separations 2024, 11, 177. [Google Scholar] [CrossRef]
- Li, H.; Pan, W.; Yao, L.; An, L.; Zhu, L.; Gao, J.; Wang, M.; Kang, Y. Removal of microplastics in sludge during intensive treatment processes in a wastewater treatment plant in China. J. Clean. Prod. 2025, 496, 145113. [Google Scholar] [CrossRef]
- Chaudhary, M.; Suthar, S.; Mutiyar, P.K.; Khan, A.A. Seasonal variation in abundance and characteristics of microplastic in sewage sludge from major cities across the upper stretch of River Ganga, India. Environ. Sci. Pollut. Res. 2024, 31, 53510–53520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tsui, T.-H.; Loh, K.-C.; Dai, Y.; Tong, Y.W. Effects of plastics on reactor performance and microbial communities during acidogenic fermentation of food waste for production of volatile fatty acids. Bioresour. Technol. 2021, 337, 125481. [Google Scholar] [CrossRef]
- Palas, S.; Sukhendu, D.; Debajyoti, K.; Deblina, D.; Rohit, J.; Rahul, M.; Ratan, G.A.; Sunil, K. An insight on sampling, identification, quantification and characteristics of microplastics in solid wastes. Trends Environ. Anal. Chem. 2022, 36, e00181. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Wang, P.; Su, Y.; Xie, B. Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste: Focusing on oxidative stress, microbial community, key metabolic functions. J. Hazard. Mater. 2022, 438, 129493. [Google Scholar] [CrossRef]
- Porterfield, K.K.; Scarborough, M.J.; Roy, E.D. Organics Recycling Tradeoffs: Biogas Potential and Microplastic Content of Mechanically Depackaged Food Waste. ACS Sustain. Chem. Eng. 2023, 11, 10422–10429. [Google Scholar] [CrossRef]
- Lopes, A.d.C.P.; Robra, S.; Müller, W.; Meirer, M.; Thumser, F.; Alessi, A.; Bockreis, A. Comparison of two mechanical pre-treatment systems for impurities reduction of source-separated biowaste. Waste Manag. 2019, 100, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Kawecki, D.; Goldberg, L.; Nowack, B. Material flow analysis of plastic in organic waste in Switzerland. Soil Use Manag. 2020, 37, 277–288. [Google Scholar] [CrossRef]
- Su, H.; Liao, W.; Wang, J.; Hantoko, D.; Zhou, Z.; Feng, H.; Jiang, J.; Yan, M. Assessment of supercritical water gasification of food waste under the background of waste sorting: Influences of plastic waste contents. Int. J. Hydrog. Energy 2020, 45, 21138–21147. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, K.; Chen, Y.; Chen, P.; Ge, C.; Wang, X.; Huang, C. Distribution of microplastics and phthalic acid esters during dry anaerobic digestion of food waste and potential microbial degradation analysis. Bioresour. Technol. 2024, 408, 131221. [Google Scholar] [CrossRef] [PubMed]
- Sholokhova, A.; Ceponkus, J.; Sablinskas, V.; Denafas, G. Abundance and characteristics of microplastics in treated organic wastes of Kaunas and Alytus regional waste management centres, Lithuania. Environ. Sci. Pollut. Res. Int. 2021, 29, 20665–20674. [Google Scholar]
- Wu, R.-T.; Cai, Y.-F.; Chen, Y.-X.; Yang, Y.-W.; Xing, S.-C.; Liao, X.-D. Occurrence of microplastic in livestock and poultry manure in South China. Environ. Pollut. 2021, 277, 116790. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Vega, J.M.; Quej, V.K.; Chi, J.d.L.A.; Cid, L.S.D.; Chi, C.; Segura, G.E.; Gertsen, H.; Salánki, T.; Ploeg, M.; et al. Field evidence for transfer of plastic debris along a terrestrial food chain. Sci. Rep. 2017, 7, 14071. [Google Scholar] [CrossRef]
- Beriot, N.; Peek, J.; Zornoza, R.; Geissen, V.; Lwanga, E.H. Low density-microplastics detected in sheep faeces and soil: A case study from the intensive vegetable farming in Southeast Spain. Sci. Total Environ. 2020, 755, 142653. [Google Scholar]
- Edo, C.; FernándezPiñas, F.; Rosal, R. Microplastics identification and quantification in the composted Organic Fraction of Municipal Solid Waste. Sci. Total Environ. 2021, 813, 151902. [Google Scholar] [CrossRef]
- Naeem, A.; Farooq, M.A.; Shafiq, M.; Arshad, M.; Din, A.A.; Alazba, A.A. Quantification and Polymeric Characterization of Microplastics in Composts and their accumulation in Lettuce. Chemosphere 2024, 361, 142520. [Google Scholar] [CrossRef]
- Gui, J.; Sun, Y.; Wang, J.; Chen, X.; Zhang, S.; Wu, D. Microplastics in composting of rural domestic waste: Abundance, characteristics, and release from the surface of macroplastics. Environ. Pollut. 2021, 274, 116553. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, W.; Sun, W.; Yang, Z.; Cao, Y.; Chen, W.; Ge, X.; Qian, G.; Feng, X.; Duan, X.; et al. Poisoning effect of polyvinyl chloride on the catalytic pyrolysis of mixed plastics over zeolites. Sci. China Chem. 2024, 67, 2265–2273. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, S.; Zhang, J.; Zhu, W.; Tian, T. Remarkably improved toughness and thermal stability of poly (vinyl chloride) (PVC)/poly (α-methylstyrene-acrylonitrile) (α-MSAN) blend with the assistance of two impact modifiers. Polym. Test. 2016, 51, 1–5. [Google Scholar] [CrossRef]
- Tian, W.; Li, Z.; Zhang, K.; Ge, Z. Facile synthesis of exfoliated vermiculite nanosheets as a thermal stabilizer in polyvinyl chloride resin. RSC Adv. 2019, 9, 19675–19679. [Google Scholar] [CrossRef]
- Zhen, Z.; Luo, J.; Su, Y.; Xia, Z.; An, T.; Sun, Z.; Gou, M.; Tang, Y. Different responses of mesophilic and thermophilic anaerobic digestion of waste activated sludge to PVC microplastics. Environ. Sci. Pollut. Res. Int. 2023, 30, 121584–121598. [Google Scholar] [CrossRef]
- Zang, B.; Zhou, H.; Zhao, Y.; Sano, D.; Chen, R. Investigating potential auxiliary anaerobic digestion activity of phage under polyvinyl chloride microplastic stress. J. Hazard. Mater. 2024, 480, 135950. [Google Scholar] [CrossRef]
- Cheng, Y.; Hu, X.; Gao, Y.; Wang, L.; Wang, G. Revealing How Polyvinyl Chloride Microplastic Physicochemically Affect the Anaerobic Digestion of Waste Activated Sludge. Bull. Environ. Contam. Toxicol. 2023, 112, 5. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, B.; Fan, C.; Zeng, G.; Xiong, W.; Zhou, C.; Yang, Y.; Ren, X.; Li, X.; Luo, K. The presence of cationic polyacrylamide attenuated the toxicity of polyvinyl chloride microplastics to anaerobic digestion of waste activated sludge. Chem. Eng. J. 2022, 427, 131442. [Google Scholar] [CrossRef]
- Du, F.; Cai, H.; Zhang, Q.; Chen, Q.; Shi, H. Microplastics in take-out food containers. J. Hazard. Mater. 2020, 399, 122969. [Google Scholar] [CrossRef]
- Wang, C.; Wei, W.; Zhang, Y.; Dai, X.; Ni, B. Different sizes of polystyrene microplastics induced distinct microbial responses of anaerobic granular sludge. Water Res. 2022, 220, 118607. [Google Scholar] [CrossRef]
- Qiao, X.; Kong, X.; Che, Q.; Zhou, H.; Yuan, J.; Zhang, Y. Response of methanogenic metabolism to polystyrene microplastics at varying concentrations: The trade-off between inhibitory and protective effects in anaerobic digestion. J. Clean. Prod. 2024, 467, 142942. [Google Scholar] [CrossRef]
- Wang, J.; Ma, D.; Feng, K.; Lou, Y.; Zhou, H.; Liu, B.; Xie, G.; Ren, N.; Xing, D. Polystyrene nanoplastics shape microbiome and functional metabolism in anaerobic digestion. Water Res. 2022, 219, 118606. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Li, C.; Miao, H.; Huang, Z.; Dai, X.; Ruan, W. Evaluation the impact of polystyrene micro and nanoplastics on the methane generation by anaerobic digestion. Ecotoxicol. Environ. Saf. 2020, 205, 111095. [Google Scholar] [CrossRef]
- Wei, W.; Hao, Q.; Chen, Z.; Bao, T.; Ni, B.-J. Polystyrene nanoplastics reshape the anaerobic granular sludge for recovering methane from wastewater. Water Res. 2020, 182, 116041. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, H.; Gao, Z.; Li, D.; Lin, Y.; Wu, C.; Wei, L. Uncovering the toxic effects and adaptive mechanisms of aminated polystyrene nanoplastics on microbes in sludge anaerobic digestion system: Insight from extracellular to intracellular. J. Hazard. Mater. 2024, 480, 136163. [Google Scholar] [CrossRef]
- Rodrigues, M.O.; Abrantes, N.; Gonçalves, F.J.M.; Nogueira, H.; Marques, J.C.; Gonçalves, A.M.M. Impacts of plastic products used in daily life on the environment and human health: What is known? Environ. Toxicol. Pharmacol. 2019, 72, 103239. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, C.; Yuan, T.; Wang, Q.; Zhang, Q.; Yan, S.; Guo, X.; Cao, Y.; Cheng, H. Effects of Different Microplastics on Methane Production and Microbial Community Structure in Anaerobic Digestion of Cattle Manure. Agronomy 2025, 15, 107. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Zou, Z.; Yang, X.; Tsang, Y.F. Thermal hydrolysis alleviates polyethylene microplastic-induced stress in anaerobic digestion of waste activated sludge. J. Hazard. Mater. 2024, 470, 134124. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, D.; Pang, X.; Zhu, W.; Zhao, J.; Xu, J. Effects of polyethylene microplastics on the fate of antibiotic resistance genes and microbial communities in anaerobic digestion of dairy wastes. J. Clean. Prod. 2021, 292, 125909. [Google Scholar] [CrossRef]
- Akbay, H.E.G.; Akarsu, C.; Isik, Z.; Belibagli, P.; Dizge, N. Investigation of degradation potential of polyethylene microplastics in anaerobic digestion process using cosmetics industry wastewater. Biochem. Eng. J. 2022, 187, 108619. [Google Scholar] [CrossRef]
- Wang, P.; Guo, Y.; Yu, M.; Zheng, Y.; Ren, L. The effect and mechanism of polyethylene terephthalate microplastics on anaerobic co-digestion of sewage sludge and food waste. Biochem. Eng. J. 2023, 198, 109012. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.-T.; Huang, Q.-S.; Ni, B.-J. Polyethylene terephthalate microplastics affect hydrogen production from alkaline anaerobic fermentation of waste activated sludge through altering viability and activity of anaerobic microorganisms. Water Res. 2019, 163, 114881. [Google Scholar] [CrossRef]
- Wei, W.; Chen, X.; Ni, B. Different Pathways of Microplastics Entering the Sludge Treatment System Distinctively Affect Anaerobic Sludge Fermentation Processes. Environ. Sci. Technol. 2021, 55, 11274–11283. [Google Scholar] [CrossRef]
- Xu, M.; Gao, P.; Gao, Y.; Xiong, S.J.; Chen, H.Q.; Shen, X.X. Impacts of microplastic type on the fate of antibiotic resistance genes and horizontal gene transfer mechanism during anaerobic digestion. J. Environ. Manag. 2024, 360, 121090. [Google Scholar] [CrossRef]
- Liang, J.; Ji, F.; Wang, H.; Zhu, T.; Rubinstein, J.; Worthington, R.; Abdullah, A.L.B.; Tay, Y.J.; Zhu, C.; George, A.; et al. Unraveling the threat: Microplastics and nano-plastics’ impact on reproductive viability across ecosystems. Sci. Total Environ. 2024, 913, 169525. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Y. Effects of microplastics on wastewater and sewage sludge treatment and their removal: A review. Chem. Eng. J. 2020, 382, 122955. [Google Scholar] [CrossRef]
- Dai, S.; Ye, R.; Huang, J.; Wang, B.; Xie, Z.; Ou, X.; Yu, N.; Huang, C.; Hua, Y.; Zhou, R.; et al. Distinct lipid membrane interaction and uptake of differentially charged nanoplastics in bacteria. J. Nanobiotechnol. 2022, 20, 191. [Google Scholar] [CrossRef]
- Jiang, C.; Ni, B.; Zheng, X.; Lu, B.; Chen, Z.; Gao, Y.; Zhang, Y.; Zhang, S.; Luo, G. The changes of microplastics’ behavior in adsorption and anaerobic digestion of waste activated sludge induced by hydrothermal pretreatment. Water Res. 2022, 221, 118744. [Google Scholar] [CrossRef]
- Wang, L.; Pei, W.; Li, J.; Feng, Y.; Gao, X.; Jiang, P.; Wu, Q.; Li, L. Microplastics induced apoptosis in macrophages by promoting ROS generation and altering metabolic profiles. Ecotoxicol. Environ. Saf. 2024, 271, 115970. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, T.; Ma, H.; He, S.; Zhao, Q.; Jiang, J.; Wei, L. Deciphering the role of polystyrene microplastics in waste activated sludge anaerobic digestion: Changes of organics transformation, microbial community and metabolic pathway. Sci. Total Environ. 2023, 901, 166551. [Google Scholar] [CrossRef]
- Chen, H.; Zou, Z.; Tang, M.; Yang, X.; Tsang, Y.F. Polycarbonate microplastics induce oxidative stress in anaerobic digestion of waste activated sludge by leaching bisphenol A. J. Hazard. Mater. 2023, 443, 130158. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, B.; Zhao, Z.; Yang, C.; Zhang, B.; Cui, F.; Lens, P.N.L.; Shi, W. Metagenomic analysis reveals the responses of microbial communities and nitrogen metabolic pathways to polystyrene micro(nano)plastics in activated sludge systems. Water Res. 2023, 241, 120161. [Google Scholar] [CrossRef]
- Haffiez, N.; Kalantar, E.; Zakaria, B.S.; Azizi, S.M.M.; Farner, J.M.; Dhar, B.R. Impact of aging of primary and secondary polystyrene nanoplastics on the transmission of antibiotic resistance genes in anaerobic digestion. Sci. Total Environ. 2024, 947, 174213. [Google Scholar] [CrossRef]
- Luo, T.; Dai, X.; Wei, W.; Xu, Q.; Ni, B. Microplastics Enhance the Prevalence of Antibiotic Resistance Genes in Anaerobic Sludge Digestion by Enriching Antibiotic-Resistant Bacteria in Surface Biofilm and Facilitating the Vertical and Horizontal Gene Transfer. Environ. Sci. Technol. 2023, 57, 14611–14621. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, D.; Jin, B.; Su, Y.; Zhang, Y. Deciphering the role of polyethylene microplastics on antibiotic resistance genes and mobile genetic elements fate in sludge thermophilic anaerobic digestion process. Chem. Eng. J. 2023, 452, 139520. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, J.; Zhang, Z.; Peng, Z.; Dai, X.; Ni, B.-J. Polyethylene terephthalate microplastic fibers increase the release of extracellular antibiotic resistance genes during sewage sludge anaerobic digestion. Water Res. 2022, 217, 118426. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, M.; Zeng, G.; Fan, C. The effects of dimethyl phthalate on sludge anaerobic digestion unveiling the potential contribution of plastic chemical additive to spread of antibiotic resistance genes. Chem. Eng. J. 2022, 435, 134734. [Google Scholar] [CrossRef]
- Błaszczyk, W.; Siatecka, A.; Tlustoš, P.; Oleszczuk, P. Occurrence and dissipation mechanisms of organic contaminants during sewage sludge anaerobic digestion: A critical review. Sci. Total Environ. 2024, 945, 173517. [Google Scholar] [CrossRef]
- Mortezaei, Y.; Gaballah, M.S.; Demirer, G.N.; Lammers, R.W.; Williams, M.R. From wastewater to sludge: The role of microplastics in shaping anaerobic digestion performance and antibiotic resistance gene dynamics. J. Hazard. Mater. 2025, 489, 137413. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Zhang, H. Adsorption of antibiotics on microplastics. Environ. Pollut. 2018, 237, 460–467. [Google Scholar] [CrossRef]
- Kinigopoulou, V.; Pashalidis, I.; Kalderis, K.; Anastopoulos, I. Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. J. Mol. Liq. 2022, 350, 118580. [Google Scholar] [CrossRef]
- Qiu, X.; Qi, Z.; Ouyang, Z.; Liu, P.; Guo, X. Interactions between microplastics and microorganisms in the environment: Modes of action and influencing factors. Gondwana Res. 2022, 108, 102–119. [Google Scholar] [CrossRef]
- Kong, L.; Shi, X. Dissecting the effects of co-exposure to microplastics and sulfamethoxazole on anaerobic digestion. J. Environ. Manag. 2025, 373, 123562. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiong, W.; Yang, Z.; Xu, R.; Zhang, Y.; Jia, M.; Peng, H.; He, L.; Zhou, C. Microplastics provide new hotspots for frequent transmission of antibiotic resistance genes during anaerobic digestion of sludge containing antibiotics. Chem. Eng. J. 2024, 486, 149979. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiong, W.; Yang, Z.; Xu, R.; Zhang, Y.; Wu, M.; Ye, Y.; Peng, H.; Tong, J.; Wang, D. Coexistence of microplastics alters the inhibitory effect of antibiotics on sludge anaerobic digestion. Chem. Eng. J. 2023, 455, 140754. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Ding, R.; Wang, J.; Yao, L. Mechanism of low concentrations of polystyrene microplastics influence the cytotoxicity of Ag ions to Escherichia coli. Chemosphere 2020, 253, 126705. [Google Scholar] [CrossRef]
- Qi, K.; Lu, N.; Zhang, S.; Wang, W.; Wang, Z.; Guan, J. Uptake of Pb(II) onto microplastic-associated biofilms in freshwater: Adsorption and combined toxicity in comparison to natural solid substrates. J. Hazard. Mater. 2021, 411, 125115. [Google Scholar] [CrossRef]
- Liu, X.; Deng, Q.; Du, M.; Lu, Q.; Zhou, W.; Wang, D. Microplastics decrease the toxicity of cadmium to methane production from anaerobic digestion of sewage sludge. Sci. Total Environ. 2023, 869, 161780. [Google Scholar] [CrossRef]
FW | Type of Micro(nano)plastics | Size of Micro(nano)plastics | Shape of Micro(nano)plastics | Micro(nano)plastics Quantity in FW | Reference |
---|---|---|---|---|---|
Grocery waste | - | - | - | 3 × 105 particles/kg | [12] |
Household FW | PE, PP, PET, PS | >1000 μm (50%) | Fibers, films | 5.78–6.33 × 103 N/kg | [13] |
Restaurant FW | PE, PP, PET | >5000 μm (40.28%) | Fibers (86%) | 11.78 ± 0.88 × 103 N/kg | [13] |
FW | PVC, PET, PAN, PP | <200 μm (71.8%) | Granule (49.5%), fibers (34.2%) | 1.27 ± 0.43 × 103 N/kg | [45] |
FW (autumn) | Low-density polyethylene (LDPE), high-density polyethylene (HDPE), PS, PET, PP | <500 μm (73%) | Fragments, fibers, films, spheres | 3783 ± 351 particles/kg | [46] |
FW (winter) | LDPE, HDPE, PS, PET, PP | <500 μm (73%) | Fragments, fibers, films, spheres | 4066 ± 658 particles/kg | [46] |
Depackaged food scraps | - | - | - | 3300 ± 1100 particles/kg TS | [41] |
Livestock Manure | Type of Micro(nano)plastics | Size of Micro(nano)plastics | Shape of Micro(nano)plastics | Micro(nano)plastics Quantity in Livestock Manure | Reference |
---|---|---|---|---|---|
Pig manure | PP (89%) | - | Fragments, fibers | 9.02 × 102 ± 1.29 × 103 items/kg | [47] |
Cow manure | PP (100%) | - | Fragments, fibers | 7.40 × 101 ± 1.29 × 102 items/kg | [47] |
Pig manure | Polyester (PES), PP, PE, rayon | 1000–5000 μm (63.2%) | Fibers (79.2%) | 1250 ± 640 particles/kg | [17] |
Sheep manure | - | - | - | 997 ± 971 particles/kg | [49] |
Chicken manure | - | 100–1000 μm | - | 129.8 ± 82.3 particles/g | [48] |
Pig manure | PE, PP, PET | <500 μm (Most) | Fibers | 2.22 ± 0.16 × 103 N/kg | [13] |
Cow manure | PE, PP, PET, PS | <500 μm | Fibers | 1.89 ± 0.31 × 103 N/kg | [13] |
Organic Waste | Type of Micro(nano)plastics | Size of Micro(nano)plastics | Shape of Micro(nano)plastics | Micro(nano)plastics Quantity in Organic Waste | Reference |
---|---|---|---|---|---|
Green waste (autumn) | PP (50%) | <500 μm (86%) | Films (55.2%) | 5733 ± 850 particles/kg | [46] |
Green waste (winter) | PP (50%) | <500 μm (86%) | Films (56.2%) | 6433 ± 751 particles/kg | [46] |
Stabilized organic waste (autumn) | PP (29%), LDPE (17%), HDPE (21%) | <500 μm (81.5%) | Fragments (about 50%) | 17,407 ± 1739 particles/kg | [46] |
Stabilized organic waste (winter) | PP (29%), LDPE (17%), HDPE (21%) | <500 μm (81.5%) | Fragments (about 50%) | 15,400 ± 1217 particles/kg | [46] |
Rural domestic waste | Polyester PP, PE | <1000 μm (most) | Fibers, films | 2400 ± 358 items/kg | [52] |
Municipal solid waste | PE, PS, polyester, PP, PVC, acrylic polymers | - | - | 1 × 104–3 × 104 items/kg | [50] |
Municipal solid waste | PE, PP, PET | <100 μm (most) | Fibers, fragments | 16,082 ± 632 particles/kg | [51] |
Micro(nano)plastics | AD Feedstock | Mode (Temperature) | Effects on AD | Reference | ||
---|---|---|---|---|---|---|
Type | Size | Concentration | ||||
PS | 0.5, 1, 10, 50, 75, 150 μm | 75 mg/L | Wastewater | Batch (35 °C) | Methane production decreased by 6.7–16.2%. | [61] |
PS | 100 μm | 25–200 mg/L | FW | Batch (35 °C) | Microplastics with a concentration of 25 mg/L increased methane production by 4.72%. Microplastics with a concentration of 50–200 mg/L decreased methane production by 10.13–17.18%. | [62] |
PS | 50 nm, 1.0 μm, 10 μm | - | WAS | Batch (35 °C) | Both 1 μm and 10 μm PS microplastics did not significantly affect methane production. Whereas 50 nm PS nanoplastics decreased methane production by 15.5%. | [63] |
PS | 80 nm, 5 μm | 0.05–0.25 g/L | Synthetic wastewater | Batch (35 °C) | PS micro(nano)plastics with a low concentration (≤0.2 g/L) had no effect on methane production, while PS micro(nano)plastics with a concentration of 0.25 g/L resulted in an obvious decrease in methane production (17.9–19.3%). | [64] |
PS | 54.8 nm | 0.05–0.25 g/L | Sewage sludge | Batch (37 °C) | Methane production decreased by 4.7–14.4%. | [1] |
PS | 50 nm | 10–50 mg/L | Wastewater | Continuous (35 °C) | The long-term exposure (86 days) of PS nanoplastics with concentrations of 20 and 50 mg/L led to a great reduction in methane production (19.0–28.6%). | [65] |
PS | 1 μm, 100 μm, 1 mm | 20 and 200 particles/g TS | FW | Batch (37 °C) | Both 20 particles/g TS and 200 particles/g TS of microplastics resulted in a decrease in methane production by 1.46–18.11% and 9.14–33.08%, respectively. | [40] |
Aminated PS | 80 nm | 60 mg/g TS | WAS | Batch (37 °C) | Aminated PS nanoplastics reduced the hydrolysis rate and methane production. | [66] |
Micro(nano)plastics | AD Feedstock | Mode (Temperature) | Effects on AD | Reference | ||
---|---|---|---|---|---|---|
Type | Size | Concentration | ||||
PE | 40 μm | 10–200 particles/g TS | WAS | Batch (37 °C) | PE microplastics at concentrations of 100–200 particles/g TS decreased methane production by 12.4–27.5%. | [23] |
PE | 40 μm | 100 and 200 particles/g TS | WAS | Continuous (37 °C) | Average daily methane production was 28.8% lower than that of the control. | [23] |
PE | 180 μm, 1 mm | about 200 particles/g TS | WAS | Batch (37 °C) | Both 180 μm and 1 mm PE microplastics decreased methane production by 6.1% and 13.8%, respectively. | [25] |
PE | < 400 μm | 1 g/L | Dairy waste | Batch (55 or 65 °C) | PE microplastics increased methane production by 8.4% and 41.2% during thermophilic (55 and 65 °C, respectively) AD. | [70] |
PE | 50 μm, 150 μm | 1–4 g/L | Cosmetic industry waste | Batch (36 °C) | PE microplastics with a concentration of 4 g/L reduced biogas production by about 7%. PE microplastics with a concentration of 1 g/L increased biogas production by about 12%. | [71] |
PE | 150 μm | 10 and 100 particles/g TS | WAS | Batch (37 °C) | PE microplastics at a concentration of 100 particles/g TS led to a reduction in methane production of 12.1%. Thermal hydrolysis pretreatment greatly alleviated PE microplastics inhibition to methane production. | [69] |
Micro(nano)plastics | AD Feedstock | Mode (Temperature) | Effects on AD | Reference | ||
---|---|---|---|---|---|---|
Type | Size | Concentration | ||||
PET | 30 μm, 250 μm | 0.45–2.70 mg/g TS | Sewage sludge and FW | Batch (37 °C) | Both 30 μm and 250 μm PET microplastics at a concentration of 2.70 mg/g TS decreased methane production by 21.63% and 15.87%, respectively. | [72] |
PET | 25 μm | 10–60 particles/g TS | WAS | Batch (37 °C) | PET microplastics at the concentration of 60 particles/g TS decreased hydrogen production by 29.3%. | [73] |
PE, PET, PS, PP | - | 24, 25, 7 and 5 particles/g TS | WAS | Batch (21 °C) | Microplastics significantly inhibited hydrolysis and acidification of organics. | [74] |
PA, PP | 1 mm | 200 particles/g TS | WAS | Batch (35 °C) | Microplastics increased methane production by 11.7–35.5%. | [75] |
PP | 150 μm | 60–300 particles/g TS | Granular sludge | Batch (37 °C) | Microplastics increased methane production by 2.9–10.8%. | [27] |
PA6 | 0.5–1.0 mm | 5–50 particles/g TS | WAS | Batch (37 °C) | Microplastics enhanced methane production by 12.9–39.5%. | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, X.; Wang, H.; Li, Y.; Liu, J.; Sun, J.; Zhang, W.; Xing, W.; Li, R. Effects of Micro(nano)plastics on Anaerobic Digestion and Their Influencing Mechanisms. Microorganisms 2025, 13, 2118. https://doi.org/10.3390/microorganisms13092118
Qi X, Wang H, Li Y, Liu J, Sun J, Zhang W, Xing W, Li R. Effects of Micro(nano)plastics on Anaerobic Digestion and Their Influencing Mechanisms. Microorganisms. 2025; 13(9):2118. https://doi.org/10.3390/microorganisms13092118
Chicago/Turabian StyleQi, Xinghua, Hezhen Wang, Yixuan Li, Jing Liu, Jiameng Sun, Wanli Zhang, Wanli Xing, and Rundong Li. 2025. "Effects of Micro(nano)plastics on Anaerobic Digestion and Their Influencing Mechanisms" Microorganisms 13, no. 9: 2118. https://doi.org/10.3390/microorganisms13092118
APA StyleQi, X., Wang, H., Li, Y., Liu, J., Sun, J., Zhang, W., Xing, W., & Li, R. (2025). Effects of Micro(nano)plastics on Anaerobic Digestion and Their Influencing Mechanisms. Microorganisms, 13(9), 2118. https://doi.org/10.3390/microorganisms13092118