Identification and Genomic Insights into the Biological Control and Growth-Promoting Mechanism of Bacillus velezensis L11-7, a Potential Biocontrol Agent of Passion Fruit Stem Basal Rot
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Plant Materials
2.2. Screening of Antagonistic Strains Against F. solani In Vitro
2.3. Pot Experiments Assessing the Biocontrol Potential of Antagonistic Bacillus Strains
2.4. Assessment of the Antagonistic Spectrum of L11-7
2.5. Assay of the Biological Control and Plant Growth-Promoting Traits of L11-7 In Vitro
2.6. Morphological Observation of L11-7
2.7. DNA Extraction, Polymerase Chain Reaction (PCR), and Molecular Identification of Strain L11-7
2.8. Genome Sequencing, Assembly, and Annotation
2.9. Statistical Analysis
3. Results
3.1. Antagonistic Bacillus Screening and Biocontrol Assessment for Passion Fruit Stem Base Rot
3.2. L11-7 Exhibited Broad-Spectrum Antifungal Activity
3.3. Biocontrol and PGP Traits of L11-7 In Vitro
3.4. Identification of L11-7
3.4.1. Morphological Characteristics of L11-7
3.4.2. Molecular Identification of Strain L11-7
3.5. Genomic Properties of L11-7
3.6. Comparative Genomics Analysis of L11-7
3.7. Secondary Metabolite Gene Clusters in B. velezensis L11-7
3.8. Genes Associated with Biological Control and Plant Growth Promotion in the L11-7 Genome
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef]
- He, X.; Luan, F.; Yang, Y.; Wang, Z.; Zhao, Z.; Fang, J.; Wang, M.; Zuo, M.; Li, Y. Passiflora edulis: An insight into current researches on phytochemistry and pharmacology. Front. Pharmacol. 2020, 11, 617. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.A.; Geraldi, M.V.; Junior, M.R.M.; Silvestre, A.J.D.; Rocha, S.M. Purple passion fruit (Passiflora edulis f. edulis): A comprehensive review on the nutritional value, phytochemical profile and associated health effects. Food Res. Int. 2022, 160, 111665. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tao, S.; Hou, G.; Zhao, F.; Meng, Q.; Tan, S. Phytochemistry, nutritional composition, health benefits and future prospects of Passiflora: A review. Food Chem. 2023, 428, 136825. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Teng, Y.; Zhang, J.; Zhang, Z.; Wang, C.; Wu, X.; Long, X. Passion fruit plants alter the soil microbial community with continuous cropping and improve plant disease resistance by recruiting beneficial microorganisms. PLoS ONE 2023, 18, e0281854. [Google Scholar] [CrossRef]
- Dos Santos, F.A.R.; Xavier, J.A.; da Silva, F.C.; Merlin, J.P.J.; Goulart, M.O.F.; Rupasinghe, H.P.V. Antidiabetic, antiglycation, and antioxidant activities of ethanolic seed extract of Passiflora edulis and Piceatannol In Vitro. Molecules 2022, 27, 4064. [Google Scholar] [CrossRef]
- Hao, C.H.; Chai, X.; Wu, F.C.; Xu, Z.F. First report of collar rot in purple passion fruit (Passiflora edulis) caused by Neocosmospora solani in Yunnan province, China. Plant Dis. 2021, 105, 3750. [Google Scholar] [CrossRef]
- Rizwan, H.M.; Zhimin, L.; Harsonowati, W.; Waheed, A.; Qiang, Y.; Yousef, A.F.; Munir, N.; Wei, X.; Scholz, S.S.; Reichelt, M.; et al. Identification of fungal pathogens to control postharvest Passion Fruit (Passiflora edulis) decays and multi-omics comparative pathway analysis reveals purple is more resistant to pathogens than a yellow cultivar. J. Fungi 2021, 7, 879. [Google Scholar] [CrossRef]
- Mangeiro, M.Z.; Nunes, R.A.; Vieira, J.O.L., Jr.; Mussi-Dias, V.; Viana, A.P.; Souza, R.M. Characterizing the interaction between root-knot nematodes and soil-borne fungi which are pathogenic to passion fruit (Passiflora edulis). J. Nematol. 2022, 54, 20220023. [Google Scholar] [CrossRef]
- Vidal, A.H.; Lacorte, C.; Sanches, M.M.; Alves-Freitas, D.M.T.; Abreu, E.F.M.; Pinheiro-Lima, B.; Rosa, R.C.C.; Jesus, O.N.; Campos, M.A.; Felix, G.P.; et al. Characterization of cucurbit aphid-borne yellows virus (CABYV) from passion fruit in brazil: Evidence of a complex of species within CABYV isolates. Viruses 2023, 15, 410. [Google Scholar] [CrossRef]
- Lo, P.H.; Huang, J.H.; Chang, C.C.; Namisy, A.; Chen, C.Y.; Chung, W.H. Diversity and characteristics of Fusarium solani species complex (FSSC) isolates causing collar rot and fruit rot of passion fruit in Taiwan. Plant Dis. 2025, 109, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Rasheed, U.; Shan, B.; Lu, Q.; Chen, S.; Meng, K.; Qin, A.; Mo, G. A rapid PCR-LAMP assay for the early detection of Lasiodiplodia theobromae from basal stem rot-infected passion fruit plants. Mol. Biotechnol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Y.; Tang, J.; Xu, X. Stem collar rot of passion fruit caused by Fusarium solani in Zhanjiang, China. J. Plant Pathol. 2021, 103, 739. [Google Scholar] [CrossRef]
- Chen, Y.H.; Lee, P.C.; Huang, T.P. Biological control of collar rot on passion fruits via induction of apoptosis in the collar rot pathogen by Bacillus subtilis. Phytopathology 2021, 111, 627–638. [Google Scholar] [CrossRef]
- Wang, C.; Ye, X.; Ng, T.B.; Zhang, W. Study on the biocontrol potential of antifungal peptides produced by Bacillus velezensis against Fusarium solani that infects the passion fruit Passiflora edulis. J. Agric. Food Chem. 2021, 69, 2051–2061. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Huang, W.; Liu, J.; Zhou, J.; Tian, Q.; Xia, X.; Mou, H.; Yang, X. Construction of a high-density genetic linkage map and QTL mapping for stem rot resistance in passion fruit (Passiflora edulis Sims). Genes 2025, 16, 96. [Google Scholar] [CrossRef]
- El-Baky, N.A.; Amara, A. Recent approaches towards control of fungal diseases in plants: An updated review. J. Fungi 2021, 7, 900. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H. Microbial biofungicides as a substitute for chemical fungicides in the control of phytopathogens: Current perspectives and research directions. Scientifica 2024, 2024, 5322696. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological control of plant pathogens: A global perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef]
- Tran, C.; Cock, I.E.; Chen, X.; Feng, Y. Antimicrobial Bacillus: Metabolites and their mode of action. Antibiotics 2022, 11, 88. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd Allah, E.F. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Mustafa, A.; Hyder, S.; Valipour, M.; Rizvi, Z.F.; Gondal, A.S.; Yousuf, Z.; Iqbal, R.; Daraz, U. Bacillus spp. as bioagents: Uses and application for sustainable agriculture. Biology 2022, 11, 1763. [Google Scholar] [CrossRef]
- Wang, J.; Qin, S.; Fan, R.; Peng, Q.; Hu, X.; Yang, L.; Liu, Z.; Baccelli, I.; Migheli, Q.; Berg, G.; et al. Plant growth promotion and biocontrol of leaf blight caused by Nigrospora sphaerica on passion fruit by endophytic Bacillus subtilis strain GUCC4. J. Fungi 2023, 9, 132. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.S.; Suarez, Z.; Rosales, C.; Parra, D. Collar rot and wilt of yellow passion fruit in Venezuela. Plant Dis. 2000, 84, 103. [Google Scholar] [CrossRef]
- Pegg, K.G.; Willingham, S.L.; O’Brien, R.G.; Cooke, A.W.; Coates, L.M. Base rot of golden passionfruit caused by a homothallic strain of Fusarium solani. Australas. Plant Pathol. 2002, 31, 305–306. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, T.; Liu, Z.; Zeng, C.; Liu, Z. Screening of antagonistic bacteria against the blue mold of citrus fruit from soil by a new parallel screening method without prior isolation of single strains. Biol. Control 2022, 176, 105066. [Google Scholar] [CrossRef]
- Yang, F.; Jiang, H.; Ma, K.; Wang, X.; Liang, S.; Cai, Y.; Jing, Y.; Tian, B.; Shi, X. Genome sequencing and analysis of Bacillus velezensis VJH504 reveal biocontrol mechanism against cucumber Fusarium wilt. Front. Microbiol. 2023, 14, 1279695. [Google Scholar] [CrossRef]
- Meng, J.; Zan, F.; Liu, Z.; Zhang, Y.; Qin, C.; Hao, L.; Wang, Z.; Wang, L.; Liu, D.; Liang, S.; et al. Genomics analysis reveals the potential biocontrol mechanism of Pseudomonas aeruginosa QY43 against Fusarium pseudograminearum. J. Fungi 2024, 10, 298. [Google Scholar] [CrossRef]
- Bolivar-Anillo, H.J.; Gonzalez-Rodriguez, V.E.; Cantoral, J.M.; Garcia-Sanchez, D.; Collado, I.G.; Garrido, C. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biology 2021, 10, 492. [Google Scholar] [CrossRef]
- Pour, M.M.; Riseh, R.S.; Ranjbar-Karimi, R.; Hassanisaadi, M.; Rahdar, A.; Baino, F. Microencapsulation of Bacillus velezensis using alginate-gum polymers enriched with TiO2 and SiO2 nanoparticles. Micromachines 2022, 13, 1423. [Google Scholar] [CrossRef]
- Araújo, W.L.; Angellis, D.A.D.; Azevedo, J. Direct RAPD evaluation of bacteria without conventional DNA extraction. Braz. Arch. Biol. Technol. 2004, 47, 375–380. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Kawashima, S.; Okuno, Y.; Hattori, M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Richter, M.; Rossello-Mora, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Goker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef]
- Keshmirshekan, A.; de Souza Mesquita, L.M.; Ventura, S.P.M. Biocontrol manufacturing and agricultural applications of Bacillus velezensis. Trends Biotechnol. 2024, 42, 986–1001. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Kim, T.Y.; Won, S.J.; Moon, J.H.; Ajuna, H.B.; Kim, K.Y.; Ahn, Y.S. Control of fungal diseases and fruit yield improvement of strawberry using Bacillus velezensis CE 100. Microorganisms 2022, 10, 365. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. J. Microbiol. 2012, 50, 103–111. [Google Scholar] [CrossRef]
- Vlajkov, V.; Pajčin, I.; Loc, M.; Budakov, D.; Dodić, J.; Grahovac, M.; Grahovac, J. The effect of cultivation conditions on antifungal and maize seed germination activity of Bacillus-based biocontrol agent. Bioengineering 2022, 9, 797. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, Y.; Yu, Z.; Zhuang, W.; Zeng, Z. Bacillus velezensis BV01 has broad-spectrum biocontrol potential and the ability to promote plant growth. Microorganisms 2023, 11, 2627. [Google Scholar] [CrossRef]
- Théatre, A.; Hoste, A.C.R.; Rigolet, A.; Benneceur, I.; Bechet, M.; Ongena, M.; Deleu, M.; Jacques, P. Bacillus sp.: A remarkable source of bioactive lipopeptides. Adv. Biochem. Eng. Biotechnol. 2022, 181, 123–179. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Ali, M.S.; Choi, J.; Hwang, B.S.; Jeong, S.C.; Baek, K.H. Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules 2019, 24, 1046. [Google Scholar] [CrossRef]
- Fazle Rabbee, M.; Baek, K.H. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules 2020, 25, 4973. [Google Scholar] [CrossRef]
- Kenfaoui, J.; Dutilloy, E.; Benchlih, S.; Lahlali, R.; Ait-Barka, E.; Esmaeel, Q. Bacillus velezensis: A versatile ally in the battle against phytopathogens-insights and prospects. Appl. Microbiol. Biotechnol. 2024, 108, 439. [Google Scholar] [CrossRef] [PubMed]
- Aleti, G.; Lehner, S.; Bacher, M.; Compant, S.; Nikolic, B.; Plesko, M.; Schuhmacher, R.; Sessitsch, A.; Brader, G. Surfactin variants mediate species-specific biofilm formation and root colonization in Bacillus. Environ. Microbiol. 2016, 18, 2634–2645. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Peng, Q.; Man, Y.; Li, Z.; Zhou, X.; Bai, L.; Peng, D. Analysis of the antifungal properties of Bacillus velezensis B-4 through a bioassay and complete-genome sequencing. Front. Genet. 2020, 11, 703. [Google Scholar] [CrossRef] [PubMed]
- Um, S.; Fraimout, A.; Sapountzis, P.; Oh, D.C.; Poulsen, M. The fungus-growing termite macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci. Rep. 2013, 3, 3250. [Google Scholar] [CrossRef]
- Han, X.; Shen, D.; Xiong, Q.; Bao, B.; Zhang, W.; Dai, T.; Zhao, Y.; Borriss, R.; Fan, B. The plant-beneficial rhizobacterium Bacillus velezensis FZB42 controls the soybean pathogen Phytophthora sojae due to bacilysin production. Appl. Environ. Microbiol. 2021, 87, e0160121. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Liang, J.; Wang, L.; Gao, W.; Jiang, J.; Chang, R. Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl. Microbiol. Biotechnol. 2020, 104, 7467–7481. [Google Scholar] [CrossRef]
- Lam, V.B.; Meyer, T.; Arias, A.A.; Ongena, M.; Oni, F.E.; Höfte, M. Bacillus cyclic lipopeptides iturin and fengycin control rice blast caused by Pyricularia oryzae in potting and acid sulfate soils by direct antagonism and induced systemic resistance. Microorganisms 2021, 9, 1441. [Google Scholar] [CrossRef]
- Daayf, F.; Adam, L.; Fernando, W.G.D. Comparative screening of bacteria for biological control of potato late blight (strain US-8), using invitro, detached-leaves, and whole-plant testing systems. Can. J. Plant Pathol. 2003, 3, 276–284. [Google Scholar] [CrossRef]
- Ayaz, M.; Li, C.H.; Ali, Q.; Zhao, W.; Chi, Y.K.; Shafiq, M.; Ali, F.; Yu, X.Y.; Yu, Q.; Zhao, J.T.; et al. Bacterial and fungal biocontrol agents for plant disease protection: Journey from lab to field, current status, challenges, and global perspectives. Molecules 2023, 28, 6735. [Google Scholar] [CrossRef] [PubMed]
- Borisova, S.A.; Circello, B.T.; Zhang, J.K.; van der Donk, W.A.; Metcalf, W.W. Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem. Biol. 2010, 17, 28–37. [Google Scholar] [CrossRef]
- Douka, D.; Spantidos, T.N.; Tsalgatidou, P.C.; Katinakis, P.; Venieraki, A. Whole-genome profiling of endophytic Strain B.L.Ns.14 from Nigella sativa reveals potential for agricultural bioenhancement. Microorganisms 2024, 12, 2604. [Google Scholar] [CrossRef]
- Fan, Y.; He, X.; Dai, J.; Yang, N.; Jiang, Q.; Xu, Z.; Tang, X.; Yu, Y.; Xiao, M. Induced resistance mechanism of Bacillus velezensis S3-1 against pepper wilt. Curr. Microbiol. 2023, 80, 367. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Choi, S.K.; Zhang, H.; Zhang, S.; Ryu, C.M.; Kloepper, J.W. History of a model plant growth-promoting rhizobacterium, Bacillus velezensis GB03: From isolation to commercialization. Front. Plant Sci. 2023, 14, 1279896. [Google Scholar] [CrossRef]
ID | Gene Cluster Type | Compound | Similarity (%) | Size (Kb) |
---|---|---|---|---|
Cluster 1 | NRPS, transAT-PKS | rhizocticin A | 22 | 69.9 |
Cluster 2 | NRPS | surfactin | 78 | 64.8 |
Cluster 3 | PKS-like | butirosin A/butirosin B | 7 | 41.2 |
Cluster 4 | Terpene | – | – | – |
Cluster 5 | Lanthipeptide-class-II | – | – | – |
Cluster 6 | TransAT-PKS | macrolactin H | 100 | 86.4 |
Cluster 7 | TransAT-PKS, T3PKS, NRPS | bacillaene | 100 | 100.2 |
Cluster 8 | NRPS, transAT-PKS, betalactone | fengycin | 100 | 133.5 |
Cluster 9 | Terpene | – | – | – |
Cluster 10 | T3PKS | – | – | – |
Cluster 11 | TransAT-PKS | difficidin | 100 | 93.8 |
Cluster 12 | NRPS, RiPP-like | bacillibactin | 100 | 51.8 |
Cluster 13 | Other | bacilysin | 100 | 41.4 |
Hydrolase | Gene | Gene Annotation | Locus Tag |
---|---|---|---|
Amylase | malS | Alpha-amylase | 322,259–324,238 |
Cellulase | bcsB | Cellulose synthase operon protein B | 463,627–465,741 |
– | Glycosyl hydrolase family 5 | 1,892,248–1,893,747 | |
lpmO | Lytic polysaccharide mono-oxygenase, cellulose-degrading | 1,849,287–1,849,907 | |
Glucanase | bcsZ | Endoglucanase | 458,744–459,829 |
– | Arabinogalactan endo-1,4-beta-galactosidase | 1,181,138–1,182,250 | |
– | Beta-glucanase, Glycosyl hydrolases family 16 | 3,793,329–3,794,060 | |
Xylanase | xynC | Glucuronoarabinoxylan endo-1,4-beta-xylanase | 1,896,831–1,898,102 |
xynA | Endo-1,4-beta-xylanase | 3,579,625–3,580,266 | |
Chitinase | – | Spore cortex-lytic enzyme | 2,316,236–2,317,105 |
– | Peptidoglycan/xylan/chitin deacetylase | 3,579,625–3,580,266 | |
– | Glycosyl hydrolases family 18 | 24,670–25,950 | |
Pectinase | – | Pectin lyase | 3,803,238–3,804,302 |
Pgp Activities | Gene | Gene Annotation | locus Tag |
---|---|---|---|
IAA production | trpA | Tryptophan synthase alpha chain | 2,289,716–2,290,513 |
trpB | Tryptophan synthase beta chain | 2,290,506–2,291,708 | |
trpC | Indole-3-glycerol phosphate synthase | 2,292,347–2,293,099 | |
trpD | Anthranilate phosphoribosyltransferase | 3,823,136–3,824,437 | |
trpF | Phosphoribosyl anthranilate isomerase | 2,291,689–2,292,342 | |
Nitrogen fixation | nifL | Nitrogen fixation negative regulator | 1,894,579–1,895,979 |
nifM | Nitrogen fixation protein | 989,099–989,950 | |
nifU | Nitrogen fixation protein and related proteins | 3,182,807–3,183,250 | |
nifH | 4Fe-4S iron sulfur cluster binding proteins | 1,657,745–1,658,638 | |
sufU | Iron-sulfur cluster assembly scaffold protein | 3,182,807–3,183,250 | |
Phosphate metabolism | phnC | Phosphonate ABC transporter ATP-binding protein | 386,204–386,947 |
phnF | Phosphonate metabolism transcriptional regulator | 386,204–386,947 | |
PhnE | Phosphonate ABC transporter, permease protein | 3,308,485–3,309,138 | |
phnR | Phosphonate utilization transcriptional regulator | 778,830–779,546 | |
pstA | Phosphate transport system permease protein | 2,559,909–2,560,793 | |
pstB | Phosphate transport system ATP-binding protein | 2,558,290–2,559,072 | |
pstC | Phosphate transport system permease protein | 2,560,793–2,561,722 | |
pstS | Phosphate transport system substrate-binding protein | 2,561,771–2,562,673 | |
phoH | Phosphate starvation-inducible protein and related proteins | 2,594,378–2,595,337 | |
Potassium | kbp | Cytoplasmic potassium-binding protein | 1,254,360–1,255,019 |
trkA | Voltage-gated potassium channel | 3,047,898–3,048,884 | |
ktrC | System potassium transporter | 1,415,854–1,416,519 | |
ktrD | System potassium uptake protein | 1,323,727–1,325,079 | |
Siderophore | fbpA | Fur-regulated basic protein A | 489,207–489,386 |
fbpB | Fur-regulated basic protein B | 489,074–489,220 | |
feoB | Ferrous iron transport protein B | 1,623,634–1,624,482 | |
– | Iron-hydroxamate ABC transporter substrate-binding protein | 3,830,918–3,831,880 | |
– | ABC-type Iron 3+-hydroxamate transport system | 3,243,827–3,244,765 | |
fetB | Iron transport system permease protein | 1,201,897–1,202,658 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Tang, Y.; Yang, R.; Zeng, Q.; Duan, M.; Li, J.; Meng, J. Identification and Genomic Insights into the Biological Control and Growth-Promoting Mechanism of Bacillus velezensis L11-7, a Potential Biocontrol Agent of Passion Fruit Stem Basal Rot. Microorganisms 2025, 13, 2084. https://doi.org/10.3390/microorganisms13092084
Jin M, Tang Y, Yang R, Zeng Q, Duan M, Li J, Meng J. Identification and Genomic Insights into the Biological Control and Growth-Promoting Mechanism of Bacillus velezensis L11-7, a Potential Biocontrol Agent of Passion Fruit Stem Basal Rot. Microorganisms. 2025; 13(9):2084. https://doi.org/10.3390/microorganisms13092084
Chicago/Turabian StyleJin, Ming, Yuanfeng Tang, Rui Yang, Quan Zeng, Mingxiao Duan, Jieqiu Li, and Jiaorong Meng. 2025. "Identification and Genomic Insights into the Biological Control and Growth-Promoting Mechanism of Bacillus velezensis L11-7, a Potential Biocontrol Agent of Passion Fruit Stem Basal Rot" Microorganisms 13, no. 9: 2084. https://doi.org/10.3390/microorganisms13092084
APA StyleJin, M., Tang, Y., Yang, R., Zeng, Q., Duan, M., Li, J., & Meng, J. (2025). Identification and Genomic Insights into the Biological Control and Growth-Promoting Mechanism of Bacillus velezensis L11-7, a Potential Biocontrol Agent of Passion Fruit Stem Basal Rot. Microorganisms, 13(9), 2084. https://doi.org/10.3390/microorganisms13092084