Zoonotic Risks of Proteus mirabilis: Detection, Pathogenicity, and Antibiotic Resistance in Animals and Animal-Derived Foods
Abstract
1. Introduction
2. The Detection of P. mirabilis in Animals
Category | Host | Region (Year) | Isolation Rate | Virulence Gene | Reference |
---|---|---|---|---|---|
Wildlife | Egyptian vulture | Spain (2022) | 17 isolates # | NA | [17] |
Migratory Birds | China (2024) | 2.70% (1/37) | NA | [18] | |
Fruit bat | Indonesia (2021) | 50% (1/2) | NA | [19] | |
Wild boar | Tunisia (2021) | 2% (2/110) | NA | [20] | |
Western lowland gorilla | Gabon (2021) | 3 isolates # | NA | [21] | |
Mandrill | Gabon (2021) | 2 isolates # | NA | [21] | |
African buffalo | Gabon (2021) | 2 isolates # | NA | [21] | |
Eurasian goshawk | Spain (2019) | 1 isolate # | NA | [22] | |
Barn owl | Spain (2019) | 1 isolate # | NA | [22] | |
South American sea lion | Uruguay (2022) | 20% (1/5) | NA | [23] | |
Tick from wildlife | Kenya (2022) | 48.5% (17/35) | NA | [24] | |
Panda | China (2023) | 30% (30/100) | NA | [25] | |
Red panda | China (2022) | 9.38% (3/32) | NA | [26] | |
Fox | China (2022) | 12 isolates # | ureC, zapA, pmfA, atfA, mrpA, atfC, hmpA, rsmA, rsbA, ucaA | [27] | |
Raccoon | China (2022) | 15 isolates # | ureC, zapA, pmfA, atfA, mrpA, atfC, hmpA, rsmA, rsbA, ucaA | [27] | |
Ferrets | China (2015) | 30% (4/12) | NA | [28] | |
Mink | China (2020, 2022) | 24.53% (13/53), 12 isolates # | ureC, zapA, pmfA, atfA, mrpA, atfC, hmpA, rsmA, rsbA, ucaA, FliL | [27,30] | |
Rhesus Monkeys | China (2015) | 9.5% (7/74) | NA | [28] | |
Tree shrews | China (2020) | 34 isolates # | NA | [29] | |
Farm animals | Pig | China (2021, 2022), Rome (2021), India (2021) | 5.55% (30/541)–21.43% (21/98) | ureC, hpmA, zapA, pmfA, rsbA, ucaA, mrpA, atfA, ireA, ptA | [31,32,33,34] |
Broiler | China (2020, 2022), India (2021), South Africa (2024) | 5.4% (26/480)–22.5% (18/80) | ureC, rsmA, hmpA, FliL, ireA, ptA, zapA, ucaA, pmfA, atfA, mrpA, hlyA, hpmA | [30,31,35,36] | |
Duck | Egypt (2021) | 14.6% (35/240) | atpD, ureC, rsbA, zapA | [37] | |
Cattle | China (2020), India (2021) | 23.26% (20/86)–33.33% (20/60) | ureC, zapA, rsmA, hmpA, mrpA, atfA, pmfA, FliL, ucaA | [30,31] | |
Sheep | India (2021) | 31.91% (15/47) | NA | [31] | |
Companion animals | Dog | China (2020, 2022, 2023), Egypt (2022), UK (2021), Thailand (2019), Europe (2016), Portugal (2018, 2021) | 11.0% (48/437)–44.4% (8/18) | ureC, FliL, ireA, zapA, ptA, hpmA, hpmB, pmfA, rsbA, mrpA, ucaA, rsmA, atfA | [30,38,39,40,41,42,43,44,45,46] |
Cat | UK (2021), Thailand (2020), Europe (2017), Portugal (2019, 2022) | 0–2.2% (4/171) | hmpA/hmpB, mrpA, pmfA, ucaA | [38,40,41,42,45] | |
Pet turtle | South Korea (2018) | 28.8% (15/52) | ureC, rsbA, zapA, mrpA | [47] | |
Animal-derived foods | Pork | China (2022, 2023), Brazil (2021), India (2021) | 14.38% (23/160)–65.61% (149/227) | mrpA, pmfA, ucaA, atfA, hpmA, zapA, ptA, ireA | [31,48,49,50] |
Beef | Brazil (2021), India (2021) | 27.8% (100/360)–30.90% (17/55) | mrpA, pmfA, ucaA, atfA, hpmA, zapA, ptA, ireA | [31,48] | |
Mutton | India (2021) | 25.51% (25/98) | NA | [31] | |
Chicken | China (2022, 2023), Belgium (2020), Brazil (2021), India (2021), Egypt (2023) | 1.51% (1/66)–100% (200/200) | mrpA, pmfA, ucaA, atfA, hpmA, zapA, ptA, ireA | [31,48,49,50,51,52] | |
Duck meat | China (2023) | 67.9% (84/124) | NA | [50] | |
Milk/Dairy Products | India (2021), Egypt (2023) | 3.45% (2/58)–22.11% (21/95) | NA | [31,51] | |
Other source | Aquatic products | China (2022) | 7.61% (7/92) | NA | [49] |
Vegetables | China (2023) | 62.5% (5/8) | hpmA, mrpA, ptA, ireA, zapA, pmfA, atfA | [53] |
3. Detection of P. mirabilis in Animal-Derived Foods
4. Genomic Similarity of P. mirabilis Between Animal and Human
5. Pathogenicity of P. mirabilis in Humans and Animals
6. Antibiotic Resistance of P. mirabilis from Animals and Animal-Derived Products
7. Antibiotic Resistance Genes Identified in P. mirabilis
8. Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
P. mirabilis | Proteus mirabilis |
NDR | multi-drug resistant |
XDR | extensively drug-resistant |
PDR | pan-drug-resistant |
References
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xia, N.; Suksawat, F.; Tengjaroenkul, B.; Hu, Y.; Zhou, X.; Li, X.; Huang, C.; Bao, Y.; Wu, Q.; et al. Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. Front. Microbiol. 2024, 15, 1483633. [Google Scholar] [CrossRef] [PubMed]
- Mohr O’hara, C.; Brenner, F.W.; Miller, J.M. Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 2000, 13, 534–546. [Google Scholar] [CrossRef]
- Liu, Y.; Chai, J. Research Progress on Proteus mirabilis. Chin. J. Vet. Sci. 2017, 37, 196–200. [Google Scholar]
- Wang, J.; Zahng, Z.; Wang, S.; Liu, Y. Mixed Infection and Drug Sensitivity Analysis of Escherichia coli, Proteus mirabilis and Coccidia from Rabbits. Acta Vet. Zootech. Sin. 2024, 55, 4204–4212. [Google Scholar]
- Ali, S.; Karaynir, A.; Salih, H.; Öncü, S.; Bozdoğan, B. Characterization, genome analysis and antibiofilm efficacy of lytic Proteus phages RP6 and RP7 isolated from University hospital sewage. Virus Res. 2023, 326, 199049. [Google Scholar] [CrossRef]
- Dienes, L. Reproductive Processes in Proteus Cultures. Proc. Soc. Exp. Biol. Med. 1946, 63, 265–270. [Google Scholar] [CrossRef]
- Cao, Y. Isolation and Identification of Proteus mirabilis Producing ESBLs from Fur Animals and Analysis of Drug Resistance and Virulence Genes. Master’s Thesis, Shandong Agricultural University, Tai’an, China, 2021. [Google Scholar]
- Cobbley, H.K.; Evans, S.I.; Brown, H.M.F.; Eberhard, B.; Eberhard, N.; Kim, M.; Moe, H.M.; Schaeffer, D.; Sharma, R.; Thompson, D.W.; et al. Complete Genome Sequences of Six Chi-Like Bacteriophages That Infect Proteus and Klebsiella. Microbiol. Resour. Announce. 2022, 11, e01215-21. [Google Scholar] [CrossRef]
- González, M.J.; Navarro, N.; Cruz, E.; Sánchez, S.; Morales, J.O.; Zunino, P.; Robino, L.; Lima, A.; Scavone, P. First report on the physicochemical and proteomic characterization of Proteus mirabilis outer membrane vesicles under urine-mimicking growth conditions: Comparative analysis with Escherichia coli. Front. Microbiol. 2024, 15, 1493859. [Google Scholar] [CrossRef]
- Drzewiecka, D. Significance and Roles of Proteus Spp. Bacteria in Natural Environments. Microb. Ecol. 2016, 72, 741–758. [Google Scholar] [CrossRef]
- da Silva, J.D.; Bens, L.; Santos, A.J.D.C.; Lavigne, R.; Soares, J.; Melo, L.D.; Vallino, M.; Dias, R.S.; Drulis-Kawa, Z.; de Paula, S.O.; et al. Isolation and Characterization of the Acadevirus Members BigMira and MidiMira Infecting a Highly Pathogenic Proteus mirabilis Strain. Microorganisms 2023, 11, 2141. [Google Scholar] [CrossRef] [PubMed]
- Coker, C.; Poore, C.A.; Li, X.; Mobley, H.L.T. Pathogenesis of Proteus mirabilis Urinary Tract Infection. Microbes Infect. 2000, 2, 1497–1505. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Tian, Y.; Li, X. Unveiling the hidden arsenal: New insights into Proteus mirabilis virulence in UTIs. Front. Cell. Infect. Microbiol. 2024, 14, 1465460. [Google Scholar] [CrossRef]
- Zhang, J.; Hoedt, E.C.; Liu, Q.; Berendsen, E.; Teh, J.J.; Hamilton, A.; O’ Brien, A.W.; Ching, J.Y.L.; Wei, H.; Yang, K.; et al. Elucidation of Proteus mirabilis as a Key Bacterium in Crohn’s Disease Inflammation. Gastroenterology 2021, 160, 317–330.e11. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Li, P.; Qiu, K.; Liao, Y.; Chen, X.; Xuan, J.; Wang, F.; Ma, H.; Wang, Y.; Zhu, M. Proteus mirabilis exacerbates ulcerative colitis by inhibiting mucin production. Front. Microbiol. 2025, 16, 1556953. [Google Scholar] [CrossRef]
- Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Antibiotic resistance patterns of bacteria isolated from Chicks of Canarian Egyptian Vultures (Neophron percnopterus majorensis): A “One Health” Problem? Comp. Immunol. Microbiol. Infect. Dis. 2023, 92, 101925. [Google Scholar] [CrossRef]
- Gao, J.; Liu, S.; Bano, S.; Xia, X.; Baloch, Z. First Report of Complete Genome Analysis of Multiple Drug Resistance Proteus mirabilis KUST-1312 Isolate from Migratory Birds in China: A Public Health Threat. Transbound. Emerg. Dis. 2024, 2024, 8102506. [Google Scholar] [CrossRef]
- Saputra, S.; Rizal, S.; Sopha Sushadi, P.; Supriatna, N. Identification and Antibiotic Resistance Profile of Bacteria from Fruit Bat (Chironax melanocephalus). Adv. Biol. Sci. Res. 2021, 14, 478–484. [Google Scholar]
- Selmi, R.; Tayh, G.; Srairi, S.; Mamlouk, A.; Ben Chehida, F.; Lahmar, S.; Bouslama, M.; Daaloul-Jedidi, M.; Messadi, L. Prevalence, risk factors and emergence of extended-spectrum β-lactamase producing-, carbapenem- and colistin-resistant Enterobacterales isolated from wild boar (Sus scrofa) in Tunisia. Microb. Pathog. 2022, 163, 105385. [Google Scholar] [CrossRef]
- Nguema, P.P.M.; Onanga, R.; Atome, G.R.N.; Tewa, J.J.; Mabika, A.M.; Nzambe, J.U.M.; Mbeang, J.C.O.; Essono, P.Y.B.; Bretagnolle, F.; Godreuil, S. High level of intrinsic phenotypic antimicrobial resistance in enterobacteria from terrestrial wildlife in Gabonese national parks. PLoS ONE 2021, 16, e0257994. [Google Scholar]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum β-Lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Eliopulos, N.; Alsina, L.; Diana, L.; Brandl, S. Multiple antibiotic resistance in Enterobacteriaceae isolated from a Sea Lion (Otaria flavescens) specimen from Isla de Lobos, Uruguay: A case report. Braz. J. Anim. Environ. Res. 2022, 5, 3477–3486. [Google Scholar] [CrossRef]
- Ergunay, K.; Mutinda, M.; Bourke, B.; Justi, S.A.; Caicedo-Quiroga, L.; Kamau, J.; Mutura, S.; Akunda, I.K.; Cook, E.; Gakuya, F.; et al. Metagenomic Investigation of Ticks from Kenyan Wildlife Reveals Diverse Microbial Pathogens and New Country Pathogen Records. Front. Microbiol. 2022, 13, 932224. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, W.; Huang, H.; Liu, S.; Yang, M.; Yan, X.; Li, Y.; Yue, C.; Hou, R.; Zhang, D. Establishment and application of multiplex PCR detection method for Proteus mirabilis, Klebsiella pneumoniae and Escherichia coli from giant panda. Chin. J. Prev. Vet. Med. 2023, 45, 598–603. [Google Scholar]
- Liu, S.; Li, Y.; Zhang, D.; Su, X.; Yue, C.; E.Ayala, J.; Yan, X.; Hou, R.; Li, L.; Xie, Y.; et al. Mortality analysis of captive red panda cubs within Chengdu, China. BMC Vet. Res. 2022, 18, 68. [Google Scholar] [CrossRef]
- Lv, P.; Hao, G.; Cao, Y.; Cui, L.; Wang, G.; Sun, S. Detection of Carbapenem Resistance of Proteus mirabilis Strains Isolated from Foxes, Raccoons and Minks in China. Biology 2022, 11, 292. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; He, Z.; Huang, F. Multidrug-Resistant Proteus mirabilis Isolated from Newly Weaned Infant Rhesus Monkeys and Ferrets. Jundishapur J. Microbiol. 2015, 8, e16822. [Google Scholar] [CrossRef]
- Gu, W.; Wang, W.; Tong, P.; Liu, C.; Jia, J.; Lu, C.; Han, Y.; Sun, X.; Kuang, D.; Li, N.; et al. Comparative Genomic Analysis of Proteus Spp. Isolated from Tree Shrews Indicated Unexpectedly High Genetic Diversity. PLoS ONE 2020, 15, e0229125. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wen, S.; Zhao, L.; Xia, Q.; Pan, Y.; Liu, H.; Wei, C.; Chen, H.; Ge, J.; Wang, H. Association among biofilm formation, virulence gene expression, and antibiotic resistance in Proteus mirabilis isolates from diarrhetic animals in Northeast China. BMC Vet. Res. 2020, 16, 176. [Google Scholar] [CrossRef]
- Chinnam, B.K.; Nelapati, S.; Tumati, S.R.; Bobbadi, S.; Peddada, V.C.; Bodempudi, B. Detection of β-Lactamase-Producing Proteus mirabilis Strains of Animal Origin in Andhra Pradesh, India and Their Genetic Diversity. J. Food Prot. 2021, 84, 1374–1379. [Google Scholar] [CrossRef]
- Qu, X.; Zhou, J.; Huang, H.; Wang, W.; Xiao, Y.; Tang, B.; Liu, H.; Xu, C.; Xiao, X. Genomic Investigation of Proteus mirabilis Isolates Recovered from Pig Farms in Zhejiang Province, China. Front. Microbiol. 2022, 13, 952982. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Pitoiu, E.; Iancu, I.; Degi, J.; Hulea, A.; Pascu, C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and antibiotic Resistance Profile. Animals 2022, 12, 43. [Google Scholar] [CrossRef]
- Ge, Q.; Ma, D.; Zhou, Y.; Chen, H.; Yuan, J.; Li, X.; Wang, X. Isolation, Identification and Biological Characteristics of Proteus mirabilis of Swine. China Anim. Husb. Vet. Med. 2021, 48, 1804–1815. [Google Scholar]
- Li, Z.; Peng, C.; Zhang, G.; Shen, Y.; Zhang, Y.; Liu, C.; Liu, M.; Wang, F. Prevalence and characteristics of multidrug-resistant Proteus mirabilis from broiler farms in Shandong Province, China. Poult. Sci. 2022, 101, 101710. [Google Scholar] [CrossRef] [PubMed]
- Ramatla, T.; Ramaili, T.; Lekota, K.; Mileng, K.; Ndou, R.; Mphuthi, M.; Khasapane, N.; Syakalima, M.; Thekisoe, O. Antibiotic resistance and virulence profiles of Proteus mirabilis isolated from broiler chickens at abattoir in South Africa. Vet. Med. Sci. 2024, 10, e1371. [Google Scholar] [CrossRef] [PubMed]
- Algammal, A.M.; Hashem, H.R.; Alfifi, K.J.; Hetta, H.F.; Sheraba, N.S.; Ramadan, H.; El-Tarabili, R.M. atpD gene sequencing, multidrug resistance traits, virulence-determinants, and antibiotic resistance genes of emerging XDR and MDR-Proteus mirabilis. Sci. Rep. 2021, 11, 9476. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Menezes, J.; da Silva, J.M.; Cavaco-Silva, P.; Trigueiro, G.; Gama, L.T.; Pomba, C. Human and Companion Animal Proteus mirabilis Sharing. Microbiol. Res. 2022, 13, 38–48. [Google Scholar] [CrossRef]
- Liu, L.; Dong, Z.; Ai, S.; Chen, S.; Dong, M.; Li, Q.; Zhou, Z.; Liu, H.; Zhong, Z.; Ma, X.; et al. Virulence-related factors and antibiotic resistance in Proteus mirabilis isolated from domestic and stray dogs. Front. Microbiol. 2023, 14, 1141418. [Google Scholar]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of urinary bacterial cultures and antibiotic susceptibility testing of dogs and cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef]
- Moyaert, H.; Morrissey, I.; De Jong, A.; El Garch, F.; Klein, U.; Ludwig, C.; Thiry, J.; Youala, M. Antibiotic Susceptibility Monitoring of Bacterial Pathogens Isolated from Urinary Tract Infections in Dogs and Cats across Europe: ComPath Results. Microb. Drug Resist. 2017, 23, 391–403. [Google Scholar] [CrossRef]
- Amphaiphan, C.; Yano, T.; Som-in, M.; Kungwong, P.; Wongsawan, K.; Pusoonthornthum, R.; Salman, M.D.; Tangtrongsup, S. Antibiotic drug resistance profile of isolated bacteria in dogs and cats with urologic problems at Chiang Mai University Veterinary Teaching Hospital, Thailand (2012–2016). Zoonoses Public Health 2021, 68, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Kong, L.; Dong, W.; Liu, S.; Gao, Y.; Ma, H.; Luan, W. Isolation identification and biological characteristics of Proteus mirabilis of canine. Heilongjiang Anim. Sci. Vet. Med. 2020, 68, 72–76+154. [Google Scholar]
- Sui, Z. Isolation, Identification and Drug Susceptibility of Proteus mirabilis Isolates from Dogs in Weifang City. Chin. J. Anim. Infect. Dis. 2022, 30, 59–63. [Google Scholar]
- Marques, C.; Belas, A.; Aboim, C.; Trigueiro, G.; Cavaco-Silva, P.; Gama, L.T.; Pomba, C. Clonal relatedness of Proteus mirabilis strains causing urinary tract infections in companion animals and humans. Vet. Microbiol. 2019, 228, 77–82. [Google Scholar] [CrossRef] [PubMed]
- El-Tarabili, R.M.; Ahmed, E.M.; Alharbi, N.K.; Alharbi, M.A.; AlRokban, A.H.; Naguib, D.; Alhag, S.K.; El Feky, T.M.; Ahmed, A.E.; Mahmoud, A.E. Prevalence, antibiotic profile, virulence determinants, ESBLs, and non-β-lactam encoding genes of MDR Proteus Spp. isolated from infected dogs. Front. Genet. 2022, 13, 952689. [Google Scholar] [CrossRef]
- Pathirana, H.N.K.S.; De Silva, B.C.J.; Wimalasena, S.H.M.P.; Hossain, S.; Heo, G.J. Comparison of virulence genes in Proteus species Isolated from human and pet turtle. Iran. J. Vet. Res. 2018, 19, 48–52. [Google Scholar]
- Sanches, M.S.; Rodrigues da Silva, C.; Silva, L.C.; Montini, V.H.; Lopes Barboza, M.G.; Migliorini Guidone, G.H.; Dias de Oliva, B.H.; Nishio, E.K.; Faccin Galhardi, L.C.; Vespero, E.C.; et al. Proteus mirabilis from community-acquired urinary tract infections (UTI-CA) shares genetic similarity and virulence factors with isolates from chicken, beef and pork meat. Microb. Pathog. 2021, 158, 105098. [Google Scholar] [CrossRef]
- Ma, W.Q.; Han, Y.Y.; Zhou, L.; Peng, W.Q.; Mao, L.Y.; Yang, X.; Wang, Q.; Zhang, T.J.; Wang, H.N.; Lei, C.W. Contamination of Proteus mirabilis harbouring various clinically important antibiotic resistance genes in retail meat and aquatic products from food markets in China. Front. Microbiol. 2022, 13, 1086800. [Google Scholar] [CrossRef]
- Lan, C.; Hu, Y.; Wang, M.; Li, C.; Bi, S. Prevalence and Antibiotics Resistance of Proteus mirabilis in Raw Meat. Sci. Technol. Food Ind. 2023, 44, 257–263. [Google Scholar]
- Edris, S.N.; Hamad, A.; Awad, D.A.B.; Sabeq, I.I. Prevalence, antibiotic resistance patterns, and biofilm formation ability of Enterobacterales recovered from food of animal origin in Egypt. Vet. World 2023, 16, 403–413. [Google Scholar] [CrossRef]
- Yu, Z.; Joossens, M.; Van den Abeele, A.M.; Kerkhof, P.J.; Houf, K. Isolation, characterization and antibiotic resistance of Proteus mirabilis from Belgian broiler carcasses at retail and human stool. Food Microbiol. 2021, 96, 103724. [Google Scholar] [CrossRef] [PubMed]
- Li, C.A.; Guo, C.H.; Yang, T.Y.; Li, F.Y.; Song, F.J.; Liu, B.T. Whole-Genome Analysis of blaNDM-Bearing Proteus mirabilis Isolates and mcr-1-Positive Escherichia coli Isolates Carrying blaNDM from the Same Fresh Vegetables in China. Foods 2023, 12, 492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, L.; Li, H.; Liu, N.; Liu, Y.; Du, J. Quantitative PCR Detection and Drug Resistance Analysis of Proteus mirabilis in Fresh Chicken meat. Agri. Prod. Process 2022, 24, 63–67+71. [Google Scholar]
- Zaher, A.H.; Kabadaia, M.M.; Hammad, K.M.; Mekky, A.E.; Salem, S.S. Forensic flies as carries of pathogenic bacteria associated with a pig carcass in Egypt. Al-Azhar Bull. Sci. 2023, 34, 5. [Google Scholar] [CrossRef]
- Sanches, M.S.; Silva, L.C.; da Silva, C.R.; Montini, V.H.; Oliva, B.H.D.d.; Guidone, G.H.M.; Nogueira, M.C.L.; Menck-Costa, M.F.; Kobayashi, R.K.T.; Vespero, E.C.; et al. Prevalence of antibiotic Resistance and Clonal Relationship in ESBL/AmpC-Producing Proteus mirabilis Isolated from Meat Products and Community-Acquired Urinary Tract Infection (UTI-CA) in Southern Brazil. Antibiotics 2023, 12, 370. [Google Scholar] [CrossRef]
- Costa, T.; Linhares, I.; Ferreira, R.; Neves, J.; Almeida, A. Frequency and Antibiotic Resistance of Bacteria Implicated in Community Urinary Tract Infections in North Aveiro between 2011 and 2014. Microb. Drug Resist. 2018, 24, 493–504. [Google Scholar] [CrossRef]
- Schaffer, J.N.; Pearson, M.M. Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr. 2015, 3, 383–433. [Google Scholar] [CrossRef]
- Chakkour, M.; Hammoud, Z.; Farhat, S.; El Roz, A.; Ezzeddine, Z.; Ghssein, G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Front. Microbiol. 2024, 15, 1383618. [Google Scholar] [CrossRef]
- Hafiz, T.A.; Alghamdi, G.S.; Alkudmani, Z.S.; Alyami, A.S.; Almazyed, A.; Alhumaidan, O.S.; Mubaraki, M.A.; Alotaibi, F.E. Multidrug-Resistant Proteus mirabilis Infections and Clinical Outcome at Tertiary Hospital in Riyadh, Saudi Arabia. Infect. Drug Resist. 2024, 17, 571–581. [Google Scholar] [CrossRef]
- Song, J.; Ruan, H.; Yang, H.; Mu, H.; Jin, Y.; Wang, Z.; Ge, Y.; Zheng, J. Study on identification, biological characteristic of Proteus mirabilis isolated from canine and its ability to induced calculus formation. Heilongjiang Anim. Sci. Vet. Med. 2021, 68, 80–84, 163. [Google Scholar]
- Herout, R.; Khoddami, S.; Moskalev, I.; Reicherz, A.; Chew, B.H.; Armbruster, C.E.; Lange, D. Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection. Pathogens 2023, 12, 509. [Google Scholar] [CrossRef]
- Gong, Z.; Shi, X.; Bai, F.; He, X.; Zhang, H.; Li, Y.; Wan, Y.; Lin, Y.; Qiu, Y.; Chen, Q.; et al. Characterization of a Novel Diarrheagenic Strain of Proteus mirabilis Associated with Food Poisoning in China. Front. Microbiol. 2019, 10, 2810. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, S.; Yu, J.; Zhang, H.; Yuan, Z.; Sun, Y.; Zhang, L.; Zhu, Y.; Song, H. An outbreak of Proteus mirabilis food poisoning associated with eating stewed pork balls in brown sauce, Beijing. Food Control. 2010, 21, 302–305. [Google Scholar] [CrossRef]
- Fan, C.; Li, X.; Wu, X.; Ni, K. Etiological characteristics and clinical features analysis of 486 pediatric diarrhea cases caused by Proteus mirabilis. Chin. J. Rural Med. Pharm. 2021, 28, 52–53. [Google Scholar]
- Kitamoto, S.; Nagao-Kitamoto, H.; Jiao, Y.; Gillilland, M.G.; Hayashi, A.; Imai, J.; Sugihara, K.; Miyoshi, M.; Brazil, J.C.; Kuffa, P.; et al. The Intermucosal Connection between the Mouth and Gut in Commensal Pathobiont-Driven Colitis. Cell 2020, 182, 447–462.e14. [Google Scholar] [CrossRef]
- Zhai, Q.; Zhai, S.; Lv, Y.; Wen, X.; Wu, G.; Huo, W.; Tu, D.; Wei, W.; Jia, C.; Zhou, X. Isolation, Identification and Drug Resistance of Proteus mirabilis from Bamboo Rats. Chin. J. Anim. Infect. Dis. 2021, 29, 94–97. [Google Scholar]
- Wang, J.; Li, S.; Zhang, Z.; Wang, S.; Wei, L.; Zhu, X.; Liu, Y. Isolation, identification and pathogenicity analysis of Proteus mirabilis from rabbits. Chin. J. Prev. Vet. Med. 2024, 46, 32–38. [Google Scholar]
- Wang, J.; Xu, J.; Jin, H.; Hou, S.; Feng, J. Isolation, Identification and Drug Resistance Analysis of Rabbit Proteus mirabilis. China Anim. Husb. Vet. Med. 2019, 46, 1509–1515. [Google Scholar]
- Dong, G.; Yang, G.; Jiang, X.; Zhang, S.; Wang, Y.; Hr, J.; Tao, D. Isolation and identification of Proteus mirabilis from diarrhea lamb in Xinjiang and its pathogenicity in mice. Anim. Husb. Vet. Med. 2022, 54, 91–95. [Google Scholar]
- Mistry, R.D.; Scott, H.F.; Alpern, E.R.; Zaoutis, T.E. Prevalence of Proteus mirabilis in Skin Abscesses of the Axilla. J. Pediatr. 2010, 156, 850–851. [Google Scholar] [CrossRef]
- Qin, S.; He, C.; Li, C.; Zeng, W.; Ma, L.; Liu, J.; Bai, A.; Yang, L.; Wu, J. Isolation, and identification and biological-charactistics of swine-sourced Proteus mirabils producing AmpC enzyme. Chin. J. Anim. Infect. Dis. 2023, 31, 113–121. [Google Scholar]
- Chen, H.; Ma, L.; Qin, S.; Chen, Y.; Song, R.; Sun, Q.; Qin, S.; Liu, J.; Chen, F.; Wu, J. Isolation, identification and biological characteristics of swine-sourced Proteus mirabilis producing AmpC enzyme. Anim. Husb. Vet. Med. 2023, 55, 46–52. [Google Scholar]
- Li, N.; Wang, B.; Shu, Z.; Zeng, Z.; Huang, T.; Tang, D.; Wu, X. Isolation and identification of swine-sourced Proteus mirabilis, and detection of its drug resistance and virulence genes. Anim. Husb. Vet. Med. 2021, 53, 89–94. [Google Scholar]
- Sanches, M.S.; Baptista, A.A.S.; de Souza, M.; Menck-Costa, M.F.; Justino, L.; Nishio, E.K.; Oba, A.; Bracarense, A.P.F.R.L.; Rocha, S.P.D. Proteus mirabilis causing cellulitis in broiler chickens. Braz. J. Microbiol. 2020, 51, 1353–1362. [Google Scholar] [CrossRef]
- Abdollahi, M.; Javan, A.J.; Shokrpoor, S.; Beidokhtinezhad, M.; Tamai, I.A. Pyoderma caused by Proteus mirabilis in sheep. Vet. Med. Sci. 2022, 8, 2562–2567. [Google Scholar] [CrossRef]
- Najd Ghahremani, A.; Abdollahi, M.; Shokrpoor, S.; Ashrafi Tamai, I. Pericarditis caused by Proteus mirabilis in sheep. Vet. Med. Sci. 2023, 9, 1737–1741. [Google Scholar] [CrossRef] [PubMed]
- Sacristán, C.; Costa-Silva, S.; Reisfeld, L.; Navas-Suárez, P.E.; Ewbank, A.C.; Duarte-Benvenuto, A.; Coelho Couto de Azevedo Fernandes, N.; Albergaria Ressio, R.; Antonelli, M.; Rocha Lorenço, J.; et al. Novel alphaherpesvirus in a wild South American sea lion (Otaria byronia) with pulmonary tuberculosis. Braz. J. Microbiol. 2021, 52, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Pattanayak, S.; Kumar, P.R.; Sahoo, M.K.; Paul, A.; Sahoo, P.K. First field-based Evidence of association of Proteus mirabilis causing large scale mortality in Indian major carp farming. Aquaculture 2018, 495, 435–442. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, H.; Chen, G.; Dong, N. Isolation of four carbapenem-resistant gram-negative species from a single fly. Anim. Dis. 2024, 4, 4. [Google Scholar] [CrossRef]
- Odetoyin, B.; Adeola, B.; Olaniran, O. Frequency and antibiotic Resistance Patterns of Bacterial Species Isolated from the Body Surface of the Housefly (Musca Domestica) in Akure, Ondo State, Nigeria. J. Arthropod Borne Dis. 2020, 14, 88–96. [Google Scholar]
- Zhang, S.; Li, Q.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Wu, Y.; Yang, Q.; et al. Genomic Analysis of Proteus Mirabilis: Unraveling Global Epidemiology and Antimicrobial Resistance Dissemination—Emerging Challenges for Public Health and Biosecurity. Environ. Int. 2025, 199, 109487. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, J.; Li, C.; Wu, R.; Xin, J.; Yang, X.; Zheng, H.; Zhong, Z.; Fu, H. Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements. Microorganisms 2025, 13, 1802. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-L.; Wu, S.-Y.; Yu, Z. Zoonotic Risks of Proteus mirabilis: Detection, Pathogenicity, and Antibiotic Resistance in Animals and Animal-Derived Foods. Microorganisms 2025, 13, 2060. https://doi.org/10.3390/microorganisms13092060
Liu X-L, Wu S-Y, Yu Z. Zoonotic Risks of Proteus mirabilis: Detection, Pathogenicity, and Antibiotic Resistance in Animals and Animal-Derived Foods. Microorganisms. 2025; 13(9):2060. https://doi.org/10.3390/microorganisms13092060
Chicago/Turabian StyleLiu, Xiao-Li, Si-Yi Wu, and Zhongjia Yu. 2025. "Zoonotic Risks of Proteus mirabilis: Detection, Pathogenicity, and Antibiotic Resistance in Animals and Animal-Derived Foods" Microorganisms 13, no. 9: 2060. https://doi.org/10.3390/microorganisms13092060
APA StyleLiu, X.-L., Wu, S.-Y., & Yu, Z. (2025). Zoonotic Risks of Proteus mirabilis: Detection, Pathogenicity, and Antibiotic Resistance in Animals and Animal-Derived Foods. Microorganisms, 13(9), 2060. https://doi.org/10.3390/microorganisms13092060