Molecular Epidemiology, Antimicrobial Resistance, and Virulence Profiles of Staphylococcus aureus from Fish, Aquatic Environments, and Fish Handlers in Southeast Nigeria
Abstract
1. Introduction
2. Materials and Methods
2.1. Schematic Overview of the Experimental Program
2.2. Ethical Approval
2.3. Sampling
2.4. Bacterial Isolation and Identification
2.5. Antimicrobial Susceptibility Testing
2.6. Molecular Typing of Staphylococcus aureus Isolates
2.6.1. Extraction of Genomic DNA for Amplification
2.6.2. Staphylococcal Protein A (spa) Typing and DNA Microarray Analysis
2.7. Statistical Analysis
3. Results
3.1. Prevalence of Staphylococcus aureus
3.2. spa Typing and Distribution of Clonal Complex (CC) of Staphylococcus aureus Isolates
3.3. Antimicrobial Resistance Profile of Staphylococcus aureus Isolates
3.4. Antimicrobial Resistance Genotypes of Staphylococcus aureus Isolates
3.5. Prevalence of Virulence-Associated Genes in Staphylococcus aureus Isolates
3.5.1. Regulatory Genes
3.5.2. Virulence Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Touaitia, R.; Mairi, A.; Ibrahim, N.A.; Basher, N.S.; Idres, T.; Touati, A. Staphylococcus aureus: A Review of the Pathogenesis and Virulence Mechanisms. Antibiotics 2025, 14, 470. [Google Scholar] [CrossRef]
- Lee, S.O.; Lee, S.; Lee, J.E.; Song, K.H.; Kang, C.K.; Wi, Y.M.; San-Juan, R.; López-Cortés, L.E.; Lacoma, A.; Prat, C.; et al. Dysfunctional Accessory Gene Regulator (Agr) as a Prognostic Factor in Invasive Staphylococcus aureus Infection: A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 20697. [Google Scholar] [CrossRef] [PubMed]
- Cieza, M.Y.R.; Bonsaglia, E.C.R.; Rall, V.L.M.; dos Santos, M.V.; Silva, N.C.C. Staphylococcal Enterotoxins: Description and Importance in Food. Pathogens 2024, 13, 676. [Google Scholar] [CrossRef] [PubMed]
- Arfatahery, N.; Davoodabadi, A.; Abedimohtasab, T. Characterization of Toxin Genes and Antimicrobial Susceptibility of Staphylococcus aureus Isolates in Fishery Products in Iran. Sci. Rep. 2016, 6, srep34216. [Google Scholar] [CrossRef] [PubMed]
- Kadariya, J.; Smith, T.C.; Thapaliya, D. Staphylococcus aureus and Staphylococcal Food-Borne Disease: An Ongoing Challenge in Public Health. Biomed Res. Int. 2014, 2014, 827965. [Google Scholar] [CrossRef]
- Okpala, C.O.R.; Korzeniowska, M. Understanding the relevance of quality management in agro-food product industry: From ethical considerations to assuring food hygiene quality safety standards and its associated processes. Food Rev. Int. 2023, 39, 1879–1952. [Google Scholar] [CrossRef]
- Lee, Y.; Oh, H.; Seo, Y.; Kang, J.; Park, E.; Yoon, Y. Risk and Socio-Economic Impact for Staphylococcus aureus Foodborne Illness by Ready-to-Eat Salad Consumption. Microb. Risk Anal. 2022, 21, 100219. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Robles Aguilar, G.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Davis Weaver, N.; Wool, E.E.; Han, C.; Gershberg Hayoon, A.; et al. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050 Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar]
- Jesudason, T. WHO Publishes Updated List of Bacterial Priority Pathogens. Lancet Microbe 2024, 5, 100940. [Google Scholar] [CrossRef]
- Cheung, G.Y.C.; Bae, J.S.; Otto, M. Pathogenicity and Virulence of Staphylococcus aureus. Virulence 2021, 12, 547–569. [Google Scholar] [CrossRef]
- Rong, D.; Wu, Q.; Xu, M.; Zhang, J.; Yu, S. Prevalence, Virulence Genes, Antimicrobial Susceptibility, and Genetic Diversity of Staphylococcus aureus from Retail Aquatic Products in China. Front. Microbiol. 2017, 8, 714. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Huang, Y.; Shang, W.; Yang, Y.; Peng, H.; Hu, Z.; Wang, Y.; Rao, Y.; Hu, Q.; Rao, X.; et al. Accessory Gene Regulator (Agr) Allelic Variants in Cognate Staphylococcus aureus Strain Display Similar Phenotypes. Front. Microbiol. 2022, 13, 700894. [Google Scholar] [CrossRef] [PubMed]
- Salman, M.B.; Salah Eldin, D.A.; Eldin, A.I.A.Z.; Shaapan, R.M.; Ata, E.B.; Elaadli, H. Prevalence, Virulence Determinants and Antimicrobial Resistance Genes of Staphylococcus aureus Strains Isolated from Retail Market Fish and Their Handlers in Egypt. Egypt. J. Aquat. Biol. Fish. 2024, 28, 1101–1118. [Google Scholar] [CrossRef]
- Fri, J.; Njom, H.A.; Ateba, C.N.; Ndip, R.N. Antibiotic Resistance and Virulence Gene Characteristics of Methicillin-Resistant Staphylococcus aureus (MRSA) Isolated from Healthy Edible Marine Fish. Int. J. Microbiol. 2020, 2020, 9803903. [Google Scholar] [CrossRef]
- Obaidat, M.M.; Salman, A.E.B.; Lafi, S.Q. Prevalence of Staphylococcus aureus in Imported Fish and Correlations between Antibiotic Resistance and Enterotoxigenicity. J. Food Prot. 2015, 78, 1999–2005. [Google Scholar] [CrossRef]
- Sivaraman, G.K.; Sivam, V.; Ganesh, B.; Elangovan, R.; Vijayan, A.; Mothadaka, M.P. Whole Genome Sequence Analysis of Multi Drug Resistant Community Associated Methicillin Resistant Staphylococcus aureus from Food Fish: Detection of Clonal Lineage ST 28 and Its Antimicrobial Resistance and Virulence Genes. PeerJ 2021, 9, e11224. [Google Scholar] [CrossRef]
- Vázquez-Sánchez, D.; López-Cabo, M.; Saá-Ibusquiza, P.; Rodríguez-Herrera, J.J. Incidence and Characterization of Staphylococcus aureus in Fishery Products Marketed in Galicia (Northwest Spain). Int. J. Food Microbiol. 2012, 157, 286–296. [Google Scholar] [CrossRef]
- Silva, V.; Ferreira, E.; Manageiro, V.; Reis, L.; Tejedor-Junco, M.T.; Sampaio, A.; Capelo, J.L.; Caniça, M.; Igrejas, G.; Poeta, P. Distribution and Clonal Diversity of Staphylococcus aureus and Other Staphylococci in Surface Waters: Detection of ST425-T742 and ST130-T843 MecC-Positive MRSA Strains. Antibiotics 2021, 10, 1416. [Google Scholar] [CrossRef]
- Abrahim, A.; Sergelidis, D.; Kirkoudis, I.; Anagnostou, V.; Kaitsa-Tsiopoulou, E.; Kazila, P.; Papa, A. Isolation and Antimicrobial Resistance of Staphylococcus spp. in Freshwater Fish and Greek Marketplaces. J. Aquat. Food Prod. Technol. 2010, 19, 93–102. [Google Scholar] [CrossRef]
- Hassan Mohammed, U.; Mustapha Bala, A.; Bako Malam, M.; Zanna Barde, M. Phenotypic and Molecular Detection of Methicillin Resistant Staphylococcus aureus (MRSA) Isolated from Clarias gariepinus (Burchel, 1822) and Oreochromis niloticus (Linneaus, 1758) IN Maiduguri. Int. J. Fish. Aquat. Stud. 2020, 8, 365–372. [Google Scholar]
- Rosenberg Goldstein, R.E.; Micallef, S.A.; Gibbs, S.G.; He, X.; George, A.; Sapkota, A.; Joseph, S.W.; Sapkota, A.R. Occupational Exposure to Staphylococcus aureus and Enterococcus spp. among Spray Irrigation Workers Using Reclaimed Water. Int. J. Environ. Res. Public. Health 2014, 11, 4340–4355. [Google Scholar] [CrossRef]
- Okocha, R.C.; Olatoye, I.O.; Alabi, P.I.; Ogunnoiki, M.G.; Adedeji, O.B. Aquaculture Management Practices Associated with Antimicrobial Residues in Southwestern Nigeria. Aquaculture 2021, 533, 736195. [Google Scholar] [CrossRef]
- Famoofo, O.O.; Adeniyi, I.F. Impact of Effluent Discharge from a Medium-Scale Fish Farm on the Water Quality of Odo-Owa Stream near Ijebu-Ode, Ogun State, Southwest Nigeria. Appl. Water Sci. 2020, 10, 68. [Google Scholar] [CrossRef]
- EGUN, N.K.; OBOH, I.P. Potential Contribution of Captured Fishes to the Recommended Nutrient Intakes (RNIs): A Case Study of Commercial Fish Species from Ikpoba Reservoir, Edo State, Nigeria. Meas. Food 2022, 5, 100014. [Google Scholar] [CrossRef]
- WMA Declaration of Helsinki-Ethical Principles For Medical Research Involving Human Participants General Principles. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki/ (accessed on 10 June 2025).
- CLSI M100-ED35; Performance Standards for Antimicrobial Susceptibility Testing, 35th ed. Clinical and Laboratory Standards Institute: Malvern, PA, USA, 2025.
- CLSI. 2020a; Methods for Antimicrobial Broth Dilution and Disk Diffusion Susceptibility Testing of Bacteria Isolated from Aquatic Animals. CLSI Guideline VET03, 2nd ed. Clinical Laboratory Standards Institute: Wayne, PA, USA, 2020.
- CLSI. 2020b; Performance Standards for Antimicrobial Susceptibility Testing of Bacteria Isolated from Aquatic Animals. CLSI Guideline VET04, 3rd ed. Clinical Laboratory Standards Institute: Wayne, PA, USA, 2020.
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0. 2024. Available online: http://www.eucast.org (accessed on 12 May 2025).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Al-Haqan, A.; Boswihi, S.S.; Pathan, S.; Udo, E.E. Antimicrobial Resistance and Virulence Determinants in Coagulase-Negative Staphylococci Isolated Mainly from Preterm Neonates. PLoS ONE 2020, 15, e0236713. [Google Scholar] [CrossRef] [PubMed]
- Harmsen, D.; Claus, H.; Witte, W.; Rothgänger, J.; Claus, H.; Turnwald, D.; Vogel, U. Typing of Methicillin-Resistant Staphylococcus aureus in a University Hospital Setting by Using Novel Software for Spa Repeat Determination and Database Management. J. Clin. Microbiol. 2003, 41, 5442–5448. [Google Scholar] [CrossRef]
- Boswihi, S.S.; Udo, E.E.; Al-Sweih, N. Shifts in the Clonal Distribution of Methicillin-Resistant Staphylococcus aureus in Kuwait Hospitals: 1992–2010. PLoS ONE 2016, 11, e0162744. [Google Scholar] [CrossRef]
- Monecke, S.; Coombs, G.; Shore, A.C.; Coleman, D.C.; Akpaka, P.; Borg, M.; Chow, H.; Ip, M.; Jatzwauk, L.; Jonas, D.; et al. A Field Guide to Pandemic, Epidemic and Sporadic Clones of Methicillin-Resistant Staphylococcus aureus. PLoS ONE 2011, 6, e17936. [Google Scholar] [CrossRef]
- Monecke, S.; Berger-Bächi, B.; Coombs, G.; Holmes, A.; Kay, I.; Kearns, A.; Linde, H.J.; O’Brien, F.; Slickers, P.; Ehricht, R. Comparative Genomics and DNA Array-Based Genotyping of Pandemic Staphylococcus aureus Strains Encoding Panton-Valentine Leukocidin. Clin. Microbiol. Infect. 2007, 13, 236–249. [Google Scholar] [CrossRef]
- Matuszewska, M.; Dabrowska, A.; Murray, G.G.R.; Kett, S.M.; Vick, A.J.A.; Banister, S.C.; Pantoja Munoz, L.; Cunningham, P.; Welch, J.J.; Holmes, M.A.; et al. Absence of Staphylococcus aureus in Wild Populations of Fish Supports a Spillover Hypothesis. Microbiol. Spectr. 2023, 11, e0485822. [Google Scholar] [CrossRef] [PubMed]
- Saito, E.; Yoshida, N.; Kawano, J.; Shimizu, A.; Igimi, S. Isolation of Staphylococcus aureus from Raw Fish in Relation to Culture Methods. J. Vet. Med. Sci. 2011, 73, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Sivaraman, G.K.; Gupta, S.S.; Visnuvinayagam, S.; Muthulakshmi, T.; Elangovan, R.; Perumal, V.; Balasubramanium, G.; Lodha, T.; Yadav, A. Prevalence of S. Aureus and/or MRSA from Seafood Products from Indian Seafood Products. BMC Microbiol. 2022, 22, 233. [Google Scholar] [CrossRef] [PubMed]
- Matouke, M.M.; Nour, K. Characterization of Antibiotic-Resistant Staphylococcus aureus from Gills and Gastro-Intestinal Tracts of Catfish (Clarias gariepinus), and Water Samples from Jabi Lake, Abuja, Nigeria. Afr. J. Clin. Exp. Microbiol. 2019, 20, 231. [Google Scholar] [CrossRef]
- Okorie-Kanu, O.J.; Anyanwu, M.U.; Ezenduka, E.V.; Mgbeahuruike, A.C.; Thapaliya, D.; Gerbig, G.; Ugwuijem, E.E.; Okorie-Kanu, C.O.; Agbowo, P.; Olorunleke, S.; et al. Molecular Epidemiology, Genetic Diversity and Antimicrobial Resistance of Staphylococcus aureus Isolated from Chicken and Pig Carcasses, and Carcass Handlers. PLoS ONE 2020, 15, e0232913. [Google Scholar] [CrossRef]
- Shittu, A.O.; Adesoji, T.; Udo, E.E. DNA Microarray Analysis of Staphylococcus aureus from Nigeria and South Africa. PLoS ONE 2021, 16, e0237124. [Google Scholar] [CrossRef]
- Ghebremedhin, B.; Olugbosi, M.O.; Raji, A.M.; Layer, F.; Bakare, R.A.; König, B.; König, W. Emergence of a Community-Associated Methicillin-Resistant Staphylococcus aureus Strain with a Unique Resistance Profile in Southwest Nigeria. J. Clin. Microbiol. 2009, 47, 2975–2980. [Google Scholar] [CrossRef]
- Obasuyi, O.; McClure, J.; Oronsaye, F.E.; Akerele, J.O.; Conly, J.; Zhang, K. Molecular Characterization and Pathogenicity of Staphylococcus aureus Isolated from Benin-City, Nigeria. Microorganisms 2020, 8, 912. [Google Scholar] [CrossRef]
- Momoh, A.H.; Kwaga, J.K.P.; Bello, M.; Sackey, A.K.B.; Larsen, A.R. Antibiotic Resistance and Molecular Characteristics of Staphylococcus aureus Isolated from Backyard-Raised Pigs and Pig Workers. Trop. Anim. Health Prod. 2018, 50, 1565–1571. [Google Scholar] [CrossRef]
- Schaumburg, F.; Alabi, A.S.; Peters, G.; Becker, K. New Epidemiology of Staphylococcus aureus Infection in Africa. Clin. Microbiol. Infect. 2014, 20, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Ruffing, U.; Alabi, A.; Kazimoto, T.; Vubil, D.C.; Akulenko, R.; Abdulla, S.; Alonso, P.; Bischoff, M.; Germann, A.; Grobusch, M.P.; et al. Community-Associated Staphylococcus aureus from Sub-Saharan Africa and Germany: A Cross-Sectional Geographic Correlation Study. Sci. Rep. 2017, 7, 154. [Google Scholar] [CrossRef] [PubMed]
- Vaiyapuri, M.; Joseph, T.C.; Rao, B.M.; Lalitha, K.V.; Prasad, M.M. Methicillin-Resistant Staphylococcus aureus in Seafood: Prevalence, Laboratory Detection, Clonal Nature, and Control in Seafood Chain. J. Food Sci. 2019, 84, 3341–3351. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M. Methicillin-Resistant Staphylococcus aureus among Animals: Current Overview. Clin. Microbiol. Infect. 2017, 23, 373–380. [Google Scholar] [CrossRef]
- Jones, S.U.; Chua, K.H.; Chew, C.H.; Yeo, C.C.; Abdullah, F.H.; Othman, N.; Kee, B.P.; Puah, S.M. Spa Diversity of Methicillin-Resistant and -Susceptible Staphylococcus aureus in Clinical Strains from Malaysia: A High Prevalence of Invasive European Spa-Type T032. PeerJ 2021, 9, e11195. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Pan, Y.; Zhai, Y.; Cai, T.; Yuan, X.; Gao, Y.; He, D.; Liu, J.; Yuan, L.; et al. Prevalence, Resistance Pattern, and Molecular Characterization of Staphylococcus aureus Isolates from Healthy Animals and Sick Populations in Henan Province, China. Gut Pathog. 2018, 10, 31. [Google Scholar] [CrossRef]
- Sarkhoo, E.; Udo, E.E.; Boswihi, S.S.; Monecke, S.; Mueller, E.; Ehricht, R. The Dissemination and Molecular Characterization of Clonal Complex 361 (CC361) Methicillin-Resistant Staphylococcus aureus (MRSA) in Kuwait Hospitals. Front. Microbiol. 2021, 12, 658772. [Google Scholar] [CrossRef]
- Li, T.; Lu, H.; Wang, X.; Gao, Q.; Dai, Y.; Shang, J.; Li, M. Molecular Characteristics of Staphylococcus aureus Causing Bovine Mastitis between 2014 and 2015. Front. Cell Infect. Microbiol. 2017, 7, 127. [Google Scholar] [CrossRef]
- Shittu, A.O.; Okon, K.; Adesida, S.; Oyedara, O.; Witte, W.; Strommenger, B.; Layer, F.; Nübel, U. Antibiotic Resistance and Molecular Epidemiology of Staphylococcus aureus in Nigeria. BMC Microbiol. 2011, 11, 92. [Google Scholar] [CrossRef]
- Raji, A.; Ojemhen, O.; Umejiburu, U.; Ogunleye, A.; Blanc, D.S.; Basset, P. High Genetic Diversity of Staphylococcus aureus in a Tertiary Care Hospital in Southwest Nigeria. Diagn. Microbiol. Infect. Dis. 2013, 77, 367–369. [Google Scholar] [CrossRef]
- Egyir, B.; Guardabassi, L.; Sørum, M.; Nielsen, S.S.; Kolekang, A.; Frimpong, E.; Addo, K.K.; Newman, M.J.; Larsen, A.R. Molecular Epidemiology and Antimicrobial Susceptibility of Clinical Staphylococcus aureus from Healthcare Institutions in Ghana. PLoS ONE 2014, 9, e89716. [Google Scholar] [CrossRef] [PubMed]
- Ilczyszyn, W.M.; Sabat, A.J.; Akkerboom, V.; Szkarlat, A.; Klepacka, J.; Sowa-Sierant, I.; Wasik, B.; Kosecka-Strojek, M.; Buda, A.; Miedzobrodzki, J.; et al. Clonal Structure and Characterization of Staphylococcus aureus Strains from Invasive Infections in Paediatric Patients from South Poland: Association between Age, Spa Types, Clonal Complexes, and Genetic Markers. PLoS ONE 2016, 11, e0151937. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.; Yu, F.; Zhang, W.; Li, X.; Wang, H. Molecular Epidemiology and Antibiotic Resistance Profiles of Methicillin-Resistant Staphylococcus aureus Strains in a Tertiary Hospital in China. Front. Microbiol. 2017, 8, 838. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.H.; de Lourdes Ribeiro de Souza da Cunha, M.; Bonesso, M.F.; Da Cunha, F.P.; Barbosa, A.N.; Fortaleza, C.M.C.B. Systemic CA-MRSA Infection Following Trauma during Soccer Match in Inner Brazil: Clinical and Molecular Characterization. Diagn. Microbiol. Infect. Dis. 2013, 76, 372–374. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, F.; Zhang, J.; Lei, T.; Chen, M.; Ding, Y.; Xue, L. Prevalence and Characterization of Staphylococcus aureus Isolated from Retail Vegetables in China. Front. Microbiol. 2018, 9, 1263. [Google Scholar] [CrossRef]
- Grundmann, H.; Aanensen, D.M.; Van Den Wijngaard, C.C.; Spratt, B.G.; Harmsen, D.; Friedrich, A.W.; Sabat, A.J.; Muilwijk, J.; Monen, J.; Tami, A.; et al. Geographic Distribution of Staphylococcus aureus Causing Invasive Infections in Europe: A Molecular-Epidemiological Analysis. PLoS Med. 2010, 7, e1000215. [Google Scholar] [CrossRef]
- Fall, C.; Seck, A.; Richard, V.; Ndour, M.; Sembene, M.; Laurent, F.; Breurec, S. Epidemiology of Staphylococcus aureus in Pigs and Farmers in the Largest Farm in Dakar, Senegal. Foodborne Pathog. Dis. 2012, 9, 962–965. [Google Scholar] [CrossRef]
- Nulens, E.; Stobberingh, E.E.; Van Desse, H.; Sebastian, S.; Van Tiel, F.H.; Beisser, P.S.; Deurenberg, R.H. Molecular Characterization of Staphylococcus aureus Bloodstream Isolates Collected in a Dutch University Hospital between 1999 and 2006. J. Clin. Microbiol. 2008, 46, 2438–2441. [Google Scholar] [CrossRef]
- Baig, S.; Rhod Larsen, A.; Martins Simões, P.; Laurent, F.; Johannesen, T.B.; Lilje, B.; Tristan, A.; Schaumburg, F.; Egyir, B.; Cirkovic, I.; et al. Evolution and Population Dynamics of Clonal Complex 152 Community-Associated Methicillin-Resistant Staphylococcus aureus. mSphere 2020, 5, e00226-20. [Google Scholar] [CrossRef]
- Mohammed, K.A.S.; Abdulkareem, Z.H.; Alzaalan, A.R.; Yaqoob, A.K. Spa Typing of Staphylococcus aureus Isolated from Clinical Specimens from Outpatients in Iraq. Pol. J. Microbiol. 2021, 70, 79–85. [Google Scholar] [CrossRef]
- Udo, E.E.; Al-Lawati, B.A.H.; Al-Muharmi, Z.; Thukral, S.S. Genotyping of Methicillin-Resistant Staphylococcus aureus in the Sultan Qaboos University Hospital, Oman Reveals the Dominance of Panton-Valentine Leucocidin-Negative ST6-IV/T304 Clone. New Microbes New Infect. 2014, 2, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Hakimi Alni, R.; Mohammadzadeh, A.; Mahmoodi, P. Molecular Typing of Staphylococcus aureus of Different Origins Based on the Polymorphism of the Spa Gene: Characterization of a Novel Spa Type. 3Biotech 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fang, F.; Zhao, J.; Lou, N.; Li, C.; Huang, T.; Li, Y. Molecular Characteristics and Virulence Gene Profiles of Staphylococcus aureus Causing Bloodstream Infection. Braz. J. Infect. Dis. 2018, 22, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Odetokun, I.A.; Maurischat, S.; Adetunji, V.O.; Fetsch, A. Methicillin-Resistant Staphylococcus aureus from Municipal Abattoirs in Nigeria: Showing Highly Similar Clones and Possible Transmission from Slaughter Animals to Humans. Foodborne Pathog. Dis. 2022, 19, 56–61. [Google Scholar] [CrossRef]
- Ogundipe, F.O.; Ojo, O.E.; Feßler, A.T.; Hanke, D.; Awoyomi, O.J.; Ojo, D.A.; Akintokun, A.K.; Schwarz, S.; Maurischat, S. Antimicrobial Resistance and Virulence of Methicillin-Resistant Staphylococcus aureus from Human, Chicken and Environmental Samples within Live Bird Markets in Three Nigerian Cities. Antibiotics 2020, 9, 588. [Google Scholar] [CrossRef]
- Kukułowicz, A.; Steinka, I.; Siwek, A. Presence of Antibiotic-Resistant Staphylococcus aureus in Fish and Seafood Originating from Points of Sale in the Tri-City Area (Poland). J. Food Prot. 2021, 84, 1911–1914. [Google Scholar] [CrossRef]
- Baumgartner, A.; Niederhauser, I.; Johler, S. Virulence and Resistance Gene Profiles of Staphylococcus aureus Strains Isolated from Ready-to-Eat Foods. J. Food Prot. 2014, 77, 1232–1236. [Google Scholar] [CrossRef]
- Coombs, G.W.; Pearson, J.C.; O’Brien, F.G.; Murray, R.J.; Grubb, W.B.; Christiansen, K.J. Methicillin-Resistant Staphylococcus aureus Clones, Western Australia. Emerg. Infect. Dis. 2006, 12, 241–247. [Google Scholar] [CrossRef]
- Dupieux, C.; Mouton, W.; André, C.; Vandenesch, F.; Bes, M.; Tristan, A.; Laurent, F. Performance of the Revised Version of an Immunochromatographic Assay for Detection of MecA- and MecC-Mediated Methicillin Resistance in Staphylococci. J. Clin. Microbiol. 2020, 58, e01346-19. [Google Scholar] [CrossRef]
- Chung, M.; Kim, C.K.; Conceição, T.; Aires-De-Sousa, M.; De Lencastre, H.; Tomasz, A. Heterogeneous Oxacillin-Resistant Phenotypes and Production of PBP2A by Oxacillin-Susceptible/MecA-Positive MRSA Strains from Africa. J. Antimicrob. Chemother. 2016, 71, 2804–2809. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Ruppitsch, W.; Allerberger, F. Molecular Characterization of Clonal Lineage and Staphylococcal Toxin Genes from S. aureus in Southern Nigeria. PeerJ 2018, 6, e5204. [Google Scholar] [CrossRef]
- Shittu, A.; Oyedara, O.; Abegunrin, F.; Okon, K.; Raji, A.; Taiwo, S.; Ogunsola, F.; Onyedibe, K.; Elisha, G. Characterization of Methicillin-Susceptible and -Resistant Staphylococci in the Clinical Setting: A Multicentre Study in Nigeria. BMC Infect. Dis. 2012, 12, 286. [Google Scholar] [CrossRef] [PubMed]
- Conceição, T.; Aires-de-sousa, M.; Füzi, M.; Tóth, Á.; Pászti, J.; Ungvári, E.; Van Leeuwen, W.B.; Van Belkum, A.; Grundmann, H.; De Lencastre, H. Replacement of Methicillin-Resistant Staphylococcus aureus Clones in Hungary over Time: A 10-Year Surveillance Study. Clin. Microbiol. Infect. 2007, 13, 971–979. [Google Scholar] [CrossRef] [PubMed]
- Mkrtchyan, H.V.; Xu, Z.; Yacoub, M.; Ter-Stepanyan, M.M.; Karapetyan, H.D.; Kearns, A.M.; Cutler, R.R.; Pichon, B.; Hambardzumyan, A.D. Detection of Diverse Genotypes of Methicillin-Resistant Staphylococcus aureus from Hospital Personnel and the Environment in Armenia. Antimicrob. Resist. Infect. Control 2017, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Adelowo, O.O.; Okunlola, I. Field Assessment of Antibiotic Use in Fish Farms in Southwestern Nigeria. Rev. D’elevage Et. De. Med. Vet. Des. Pays Trop. 2019, 72, 187–191. [Google Scholar] [CrossRef]
- Oloso, N.O.; Fagbo, S.; Garbati, M.; Olonitola, S.O.; Awosanya, E.J.; Aworh, M.K.; Adamu, H.; Odetokun, I.A.; Fasina, F.O. Antimicrobial Resistance in Food Animals and the Environment in Nigeria: A Review. Int. J. Environ. Res. Public Health 2018, 15, 1284. [Google Scholar] [CrossRef]
- Ishihara, K.; Koizumi, A.; Saito, M.; Muramatsu, Y.; Tamura, Y. Detection of Methicillin-Resistant Staphylococcus Pseudintermedius ST169 and Novel ST354 SCCmec II-III Isolates Related to the Worldwide ST71 Clone. Epidemiol. Infect. 2016, 144, 434–442. [Google Scholar] [CrossRef]
- Côrtes, M.F.; Botelho, A.M.N.; Almeida, L.G.P.; Souza, R.C.; Cunha, O.d.L.; Nicolás, M.F.; Vasconcelos, A.T.R.; Figueiredo, A.M.S. Community-Acquired Methicillin-Resistant Staphylococcus aureus from ST1 Lineage Harboring a New SCCmec IV Subtype (SCCmec IVm) Containing the TetK Gene. Infect. Drug Resist. 2018, 11, 2583–2592. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Ito, T.; Tamai, M.; Nakagawa, S.; Nakamura, Y. The Role of Staphylococcus aureus Quorum Sensing in Cutaneous and Systemic Infections. Inflamm. Regen. 2024, 44, 9. [Google Scholar] [CrossRef]
- Salgueiro, V.; Manageiro, V.; Bandarra, N.M.; Ferreira, E.; Clemente, L.; Caniça, M. Genetic Relatedness and Diversity of Staphylococcus aureus from Different Reservoirs: Humans and Animals of Livestock, Poultry, Zoo, and Aquaculture. Microorganisms 2020, 8, 1345. [Google Scholar] [CrossRef]
- Saedi, S.; Derakhshan, S.; Ghaderi, E. Antibiotic Resistance and Typing of Agr Locus in Staphylococcus aureus Isolated from Clinical Samples in Sanandaj, Western Iran. Iran. J. Basic. Med. Sci. 2020, 23, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Beshiru, A.; Igbinosa, I.H.; Igbinosa, E.O. Characterization of Enterotoxigenic Staphylococcus aureus from Ready-to-Eat Seafood (RTES). LWT 2021, 135, 110042. [Google Scholar] [CrossRef]
- Monecke, S.; Akpaka, P.E.; Smith, M.R.; Unakal, C.G.; Thoms Rodriguez, C.A.; Ashraph, K.; Müller, E.; Braun, S.D.; Diezel, C.; Reinicke, M.; et al. Clonal Complexes Distribution of Staphylococcus aureus Isolates from Clinical Samples from the Caribbean Islands. Antibiotics 2023, 12, 1050. [Google Scholar] [CrossRef] [PubMed]
- Divyakolu, S.; Chikkala, R.; Ratnakar, K.S.; Sritharan, V. Hemolysins of Staphylococcus aureus—An Update on Their Biology, Role in Pathogenesis and as Targets for Anti-Virulence Therapy. Adv. Infect. Dis. 2019, 9, 80–104. [Google Scholar] [CrossRef]
- Jia, Y.; Guan, Z.; Liu, C.; Huang, M.; Li, J.; Feng, J.; Shen, B.; Yang, G. Staphylococcus aureus β-Hemolysin Causes Skin Inflammation by Acting as an Agonist of Epidermal Growth Factor Receptor. Microbiol. Spectr. 2024, 12, e0222723. [Google Scholar] [CrossRef]
- Imanishi, I.; Nicolas, A.; Caetano, A.C.B.; de Paula Castro, T.L.; Tartaglia, N.R.; Mariutti, R.; Guédon, E.; Even, S.; Berkova, N.; Arni, R.K.; et al. Exfoliative Toxin E, a New Staphylococcus aureus Virulence Factor with Host-Specific Activity. Sci. Rep. 2019, 9, 16336. [Google Scholar] [CrossRef]
- Ahmad-Mansour, N.; Loubet, P.; Pouget, C.; Dunyach-Remy, C.; Sotto, A.; Lavigne, J.P.; Molle, V. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins 2021, 13, 677. [Google Scholar] [CrossRef]
- Dufresne, K.; Al, K.F.; Craig, H.C.; Coleman, C.E.M.; Kasper, K.J.; Burton, J.P.; McCormick, J.K. TSST-1 Promotes Colonization of Staphylococcus aureus within the Vaginal Tract by Activation of CD8+ T Cells. Infect. Immun. 2025, 93, e0043924. [Google Scholar] [CrossRef]
- Simon, S.S.; Sanjeev, S. Prevalence of Enterotoxigenic Staphylococcus aureus in Fishery Products and Fish Processing Factory Workers. Food Control 2007, 18, 1565–1568. [Google Scholar] [CrossRef]
- Ali, F.S.; Lupindu, A.M.; Mdegela, R.H.; Mmoch, A.J. Occurrence of Staphylococcus aureus in Fresh Indian Mackerel Fish. Tanzan. Vet. J. 2020, 37, 7–16. [Google Scholar] [CrossRef]
- Rohmer, C.; Wolz, C. The Role of Hlb-Converting Bacteriophages in Staphylococcus aureus Host Adaption. Microb. Physiol. 2021, 31, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Beenken, K.E.; Smeltzer, M.S. Staphylococcus aureus Biofilm-Associated Infections: Have We Found a Clinically Relevant Target? Microorganisms 2025, 13, 852. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahim, U.; Kachallah, M.; Rabiu, M.; Usman, N.A.; Adeshina, G.O.; Olayinka, B.O. Molecular Detection of Biofilm-Producing Staphylococcus aureus Isolates from National Orthopaedic Hospital Dala, Kano State, Nigeria. Open J. Med. Microbiol. 2019, 9, 116–126. [Google Scholar] [CrossRef]
- Mohamed, N.; Timofeyeva, Y.; Jamrozy, D.; Rojas, E.; Hao, L.; Silmon de Monerri, N.C.; Hawkins, J.; Singh, G.; Cai, B.; Liberator, P.; et al. Molecular Epidemiology and Expression of Capsular Polysaccharides in Staphylococcus aureus Clinical Isolates in the United States. PLoS ONE 2019, 14, e0208356. [Google Scholar] [CrossRef]
Sample | Number | Number (%, 95% CI) of Isolates | ||
---|---|---|---|---|
S. aureus | MRSA | MSSA | ||
Fish | 465 | 72 (15.5, 12.2–18.8) | 11 (2.4, 1.0–3.8) | 61 (13.1, 10.0–16.2) |
Fish waters | 36 | 2 (5.6, 0.0–13.1) | 0 (0.0, 0.0–0.0) | 2 (5.6, 0.0–13.1) |
Fish handlers | 106 | 26 (24.5, 16.3–32.7) | 3 (2.8, 0.0–6.0) | 23 (21.7, 14.0–29.4) |
Total | 607 | 100 (16.5, 13.6–19.4) | 14 (2.3, 1.1–3.5) | 86 (14.2, 11.5–16.9) |
Clonal Complex (Number) | Spa Types | Number (%) of Isolates | Total % Frequency (N = 100) | ||
---|---|---|---|---|---|
Fish (N = 72) | Fish Handlers (N = 26) | Fish Water (N = 2) | |||
CC1 (21) | t948 | 15 (20.8) | 0 (0) | 1 (50) | 16 |
t174 | 3 (4.2) | 0 (0) | 0 (0) | 3 | |
t1931 | 1 (1.4) | 0 (0) | 0 (0) | 1 | |
t693 | 0 (0) | 0 (0) | 1 (50) | 1 | |
CC5 (19) | t311 | 8 (11.1) | 4 (15.4) | 0 (0) | 12 |
t002 | 5 (6.9) | 0 (0) | 0 (0) | 5 | |
t2049 | 0 (0) | 1 (3.8) | 0 (0) | 1 | |
t1400 | 0 (0) | 1 (3.8) | 0 (0) | 1 | |
CC6 (5) | t304 | 2 (2.8) | 3 (11.5) | 0 (0) | 5 |
CC7 (9) | t091 | 7 (9.7) * | 0 (0) | 0 (0) | 7 |
t605 | 0 (0) | 2 (7.7) | 0 (0) | 2 | |
CC8 (4) | t064 | 2 (2.8) * | 0 (0) | 0 (0) | 2 |
t1476 | 2 (2.8) * | 0 (0) | 0 (0) | 2 | |
CC15 (7) | t084 | 1 (1.4) | 0 (0) | 0 (0) | 1 |
t094 | 3 (4.2) | 3 (11.5) | 0 (0) | 6 | |
CC45 (7) | t6225 | 1 (1.4) | 0 (0) | 0 (0) | 1 |
t5911 | 2 (2.8) | 4 (15.4) | 0 (0) | 6 | |
CC80 (4) | t044 | 2 (2.8) | 1 (3.8) | 0 (0) | 3 |
t934 | 1 (1.4) | 0 (0) | 0 (0) | 1 | |
CC88 (4) | t2723 | 1 (1.4) | 0 (0) | 0 (0) | 1 |
t1814 | 0 (0) | 3 (11.5) * | 0 (0) | 3 | |
CC152 (11) | t355 | 7 (9.7) | 1 (3.8) | 0 (0) | 8 |
t1299 | 1 (1.4) | 0 (0) | 0 (0) | 1 | |
t4690 | 1 (1.4) | 0 (0) | 0 (0) | 1 | |
t5227 | 0 (0) | 1 (3.8) | 0 (0) | 1 | |
CC188 (4) | t189 | 3 (4.2) | 1 (3.8) | 0 (0) | 4 |
CC361 (3) | t315 | 2 (2.8) | 1 (3.8) | 0 (0) | 3 |
CC2250/2277 (2) | t6675 | 2 (2.8) | 0 (0) | 0 (0) | 2 |
Antimicrobial Class | Antimicrobial Agent | Number (%) of Resistant Isolates | % Frequency (N = 100) | p Value | |
---|---|---|---|---|---|
MRSA (N = 14) | MSSA (N = 86) | ||||
β-lactams | Cefoxitin | 14 (100) | 0 (0.0) | 14 | 0.000 * |
Penicillin | 14 (100) | 71 (82.6) | 85 | 0.066 | |
Aminoglycosides | Gentamicin | 8 (57.1) | 15 (17.4) | 23 | 0.003 * |
Amikacin | 13 (93) | 38 (44.2) | 51 | 0.000 * | |
Macrolides | Erythromycin | 14 (100) | 20 (23.3) | 34 | 0.000 * |
Lincosamides | Clindamycin | 14 (100) | 18 (20.9) | 32 | 0.000 * |
Phenicols | Chloramphenicol | 5 (35.7) | 1 (1.2) | 6 | 0.000 * |
Tetracyclines | Tetracycline | 14 (100) | 33 (38.4) | 47 | 0.000 * |
Tigecycline | 0 (0) | 0 (0) | 0 | 1.000 * | |
Folate pathway antagonists | Trimethoprim | 14 (100) | 55 (63.9) | 69 | 0.004 * |
Ansamycins | Rifampicin | 0 (0) | 0 (0) | 0 | 1.000 |
Fluoroquinolones | Ciprofloxacin | 8 (57.1) | 3 (3.5) | 11 | 0.000 * |
Fusidanes steroidals | Fusidic acid | 0 (0) | 0 (0) | 0 | 1.000 |
Monoxycarbolic acids | Mupirocin | 0 (0) | 0 (0) | 0 | 1.000 |
Glycopeptides | Teicoplanin | 0 (0) | 0 (0) | 0 | 1.000 |
Vancomycin | 0 (0) | 0 (0) | 0 | 1.000 |
SN | Antimicrobial Resistance Pattern | No. of Antimicrobials (MARIs) | Fish (N = 69) | Handlers (N = 21) | Water (N = 2) | Total (N = 92) | No. of Antimicrobial Classes | % Frequency of MDR Strains |
---|---|---|---|---|---|---|---|---|
1 | PEN | 1 (0.06) | 7 | 1 | 0 | 8 | 1 | 52.2 |
2 | TRI | 1 | 0 | 0 | 1 | |||
3 | AMK | 2 | 1 | 0 | 3 | |||
4 | PEN-TRI | 2 (0.13) | 10 | 6 | 0 | 16 | 2 | |
5 | PEN-TET | 3 | 3 | 0 | 6 | |||
6 | AMK-TRI | 1 | 0 | 0 | 1 | |||
7 | AMK-CIP | 1 | 0 | 0 | 1 | |||
8 | TET-TRI | 3 | 0 | 0 | 3 | |||
9 | PEN-AMK | 2 | 2 | 0 | 4 | |||
10 | PEN-CIP | 1 | 0 | 0 | 1 | |||
11 | PEN-TET-TRI | 3 (0.19) | 4 | 0 | 0 | 4 | 3 | |
12 | PEN-ERY-TRI | 1 | 0 | 0 | 1 | |||
13 | PEN-CHL-TRI | 1 | 0 | 0 | 1 | |||
14 | PEN-AMK-TRI | 5 | 0 | 0 | 5 | |||
15 | PEN-TRI-CIP | 1 | 0 | 0 | 1 | |||
16 | AMK-TET-TRI | 0 | 1 | 0 | 1 | |||
17 | PEN-AMK-TET | 0 | 1 | 0 | 1 | |||
18 | PEN-AMK-TET-TRI | 4 (0.25) | 0 | 0 | 1 | 1 | 4 | |
19 | PEN-AMK-ERY-TRI | 0 | 1 | 0 | 1 | |||
20 | AMK-ERY-CLI-TRI | 0 | 1 | 0 | 1 | |||
21 | PEN-GEN-ERY-CLI-TET-TRI | 6 (0.38) | 1 | 0 | 0 | 1 | 6 | |
22 | PEN-AMK-ERY-CLI-TET-TRI | 1 | 1 | 0 | 2 | |||
23 | FOX-PEN-ERY-CLI-TET-TRI-CIP | 7 (0.44) | 1 | 0 | 0 | 1 | ||
24 | PEN-GEN-AMK-ERY-CLI-TET-TRI | 13 | 0 | 1 | 14 | |||
25 | FOX-PEN-GEN-AMK-ERY-CLI-TET-TRI | 8 (0.50) | 1 | 0 | 0 | 1 | ||
26 | FOX-PEN-GEN-AMK-ERY-CLI-TRI-CIP | 1 | 0 | 0 | 1 | |||
27 | FOX-PEN-AMK-ERY-CLI-CHL-TET-TRI | 2 | 3 | 0 | 5 | 7 | ||
28 | FOX-PEN-GEN-AMK-ERY-CLI-TET-TRI-CIP | 9 (0.56) | 6 | 0 | 0 | 6 |
Antimicrobial Resistance Function | Resistance Gene | Number (%) of Positive Isolates | Total % Frequency (N = 100) | p Value | |
---|---|---|---|---|---|
MSSA (N = 86) | MRSA (N = 14) | ||||
β-lactam determinants | mecA | 0 (0) | 14 (100) | 14 | 0.000 * |
blaZ | 67 (77.9) | 14 (100) | 81 | 0.041 * | |
blaI | 67 (77.9) | 14 (100) | 81 | 0.041 * | |
blaR | 67 (77.9) | 14 (100) | 81 | 0.041 * | |
Aminoglycoside determinants | aacA-aphD | 14 (16.3) | 9 (64.3) | 23 | 0.000 * |
aphA3 | 5 (5.8) | 6 (42.6) | 11 | 0.001 * | |
aadD | 3 (3.5) | 0 (0) | 3 | 0.633 | |
Macrolide–lincosamide determinants | erm(B) | 17 (19.8) | 1 (7.1) | 18 | 0.455 |
erm(C) | 3 (3.5) | 10 (71.4) | 13 | 0.000 * | |
Inu(A) | 5 (5.8) | 3 (21.4) | 8 | 0.081 | |
msr(A) | 2 (2.3) | 0 (0) | 2 | 1.000 | |
Phenicol determinants | cat | 1 (1.2) | 5 (35.7) | 6 | 0.000 * |
Streptothricin determinants | sat | 5 (5.8) | 11 (78.6) | 16 | 0.000 * |
Fosfomycin determinants | fosB | 34 (39.5) | 4 (28.5) | 38 | 0.558 |
Tetracycline determinants | tet(K) | 14 (16.3) | 14 (100) | 28 | 0.000 * |
tet(M) | 4 (4.7) | 0 (0) | 4 | 1.000 | |
Trimethoprim determinants | dfrS1 | 0 (0) | 4 (28.5) | 4 | 0.000 * |
Quaternary ammonium compound determinants | qacC | 4 (4.7) | 1 (7.1) | 5 | 0.541 |
Efflux pump determinants | sdrM | 84 (97.7) | 14 (100) | 98 | 1.000 |
Function | Gene | Number (%) of Isolates Positive | Total % Frequency (N = 100) | p Value | |
---|---|---|---|---|---|
MRSA (N = 14) | MSSA (N = 86) | ||||
Regulators | agrI | 11 (78.6) | 32 (37.2) | 43 | 0.007 * |
agrII | 0 (0) | 26 (30.2) | 26 | 0.018 * | |
agrIII | 3 (21.4) | 25 (29.1) | 28 | 0.752 | |
agrIV | 8 (57.1) | 23 (26.7) | 31 | 0.031 * | |
sarA | 14 (100) | 86 (100) | 100 | 1.000 | |
saeS | 14 (100) | 86 (100) | 100 | 1.000 | |
vraS | 14 (100) | 86 (100) | 100 | 1.000 | |
Leucocidins | lukF/lukS (pvl) | 0 (0) | 40 (46.5) | 40 | 0.001 * |
lukD/lukE | 14 (100) | 70 (81.4) | 84 | 0.117 | |
lukX/lukY | 14 (100) | 74 (86.0) | 88 | 0.208 | |
Haemolysins | hla | 14 (100) | 84 (97.7) | 98 | 1.000 |
hlb | 14 (100) | 69 (80.2) | 83 | 0.119 | |
hld/hlIII | 14 (100) | 84 (97.7) | 98 | 1.000 | |
hlgA | 14 (100) | 84 (97.7) | 98 | 1.000 | |
Toxic shock toxins | tsst-1 | 1 (7.1) | 13 (15.1) | 14 | 0.685 |
Exfoliative toxins | etA | 0 (0) | 1 (1.2) | 1 | 1.000 |
etD | 0 (0) | 4 (4.7) | 4 | 1.000 | |
Epidermal cell differentiation inhibitors | edinA | 0 (0) | 1 (1.2) | 1 | 1.000 |
edinB | 0 (0) | 14 (16.3) | 14 | 0.208 | |
Enterotoxins | sea | 9 (64.3) | 36 (41.9) | 45 | 0.151 |
seb | 3 (21.4) | 6 (7.0) | 9 | 0.111 | |
sec | 0 (0) | 11 (12.8) | 11 | 0.352 | |
sed | 0 (0) | 6 (7.0) | 6 | 0.591 | |
sek | 2 (14.3) | 20 (23.3) | 22 | 0.729 | |
seq | 3 (21.4) | 19 (22.1) | 22 | 0.729 | |
seh | 0 (0) | 19 (22.1) | 19 | 0.066 | |
sej | 0 (0) | 29 (33.7) | 29 | 0.009 * | |
sej | 0 (0) | 6 (7) | 6 | 0.591 | |
seg | 0 (0) | 6 (7) | 6 | 0.591 | |
sel | 0 (0) | 9 (10.5) | 9 | 0.352 | |
ser | 0 (0) | 5 (5.8) | 5 | 1.000 | |
seln | 0 (0) | 29 (33.7) | 29 | 0.009 | |
selm | 0 (0) | 29 (33.7) | 29 | 0.009 * | |
selo | 0 (0) | 29 (33.7) | 29 | 0.009 * | |
selu | 0 (0) | 29 (33.7) | 29 | 0.009 * | |
Hlb-converting phages/Immune evasion | chp | 3 (21.4) | 37 (43.0) | 40 | 0.152 |
sak | 14 (100) | 73 (84.9) | 87 | 0.205 | |
scn | 14 (100) | 80 (93) | 94 | 0.591 | |
Capsule | cap5 | 4 (28.6) | 29 (33.7) | 33 | 1.000 |
cap8 | 9 (64.3) | 56 (65.1) | 65 | 1.000 | |
Biofilm | icaA | 14 (100) | 86 (100) | 100 | 1.000 |
icaC | 14 (100) | 73 (84.9) | 87 | 0.205 | |
icaD | 14 (100) | 74 (86) | 98 | 0.208 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okafor, U.C.; Okorie-Kanu, O.J.; Ogugua, A.J.; Ikeogu, C.F.; Okafor, S.C.; Anyanwu, M.U.; Nwobi, O.C.; Anyaoha, C.O.; Mgbeahuruike, A.C.; Majesty-Alukagberie, L.O.; et al. Molecular Epidemiology, Antimicrobial Resistance, and Virulence Profiles of Staphylococcus aureus from Fish, Aquatic Environments, and Fish Handlers in Southeast Nigeria. Microorganisms 2025, 13, 2059. https://doi.org/10.3390/microorganisms13092059
Okafor UC, Okorie-Kanu OJ, Ogugua AJ, Ikeogu CF, Okafor SC, Anyanwu MU, Nwobi OC, Anyaoha CO, Mgbeahuruike AC, Majesty-Alukagberie LO, et al. Molecular Epidemiology, Antimicrobial Resistance, and Virulence Profiles of Staphylococcus aureus from Fish, Aquatic Environments, and Fish Handlers in Southeast Nigeria. Microorganisms. 2025; 13(9):2059. https://doi.org/10.3390/microorganisms13092059
Chicago/Turabian StyleOkafor, Uju Catherine, Onyinye Josephine Okorie-Kanu, Akwoba Joseph Ogugua, Chika Florence Ikeogu, Simeon Chibuko Okafor, Madubuike Umunna Anyanwu, Obichukwu Chisom Nwobi, Chidiebere Ohazuruike Anyaoha, Anthony Christian Mgbeahuruike, Lynda Onyinyechi Majesty-Alukagberie, and et al. 2025. "Molecular Epidemiology, Antimicrobial Resistance, and Virulence Profiles of Staphylococcus aureus from Fish, Aquatic Environments, and Fish Handlers in Southeast Nigeria" Microorganisms 13, no. 9: 2059. https://doi.org/10.3390/microorganisms13092059
APA StyleOkafor, U. C., Okorie-Kanu, O. J., Ogugua, A. J., Ikeogu, C. F., Okafor, S. C., Anyanwu, M. U., Nwobi, O. C., Anyaoha, C. O., Mgbeahuruike, A. C., Majesty-Alukagberie, L. O., Nwankwo, I. O., Obi, C. F., Ugwuijem, E. E., Ikenna-Ezeh, N. H., Okosi, I. R., Ugboh, O., Ezeifeka, G. O., Ezenduka, E. V., Okpala, C. O. R., & Udo, E. E. (2025). Molecular Epidemiology, Antimicrobial Resistance, and Virulence Profiles of Staphylococcus aureus from Fish, Aquatic Environments, and Fish Handlers in Southeast Nigeria. Microorganisms, 13(9), 2059. https://doi.org/10.3390/microorganisms13092059