Review of the Arbitrium (ARM) System: Molecular Mechanisms, Ecological Impacts, and Applications in Phage–Host Communication
Abstract
1. Introduction
2. Molecular Mechanisms of ARM Systems
2.1. The AimP-AimR-AimX Signal Transduction Pathway
2.2. Structural Plasticity and Environmental Responsiveness
2.3. Implications for Synthetic Biology
3. Comparative Analysis: ARM System vs. Classic Phage Regulatory Mechanisms
3.1. Molecular Signaling and Environmental Adaptation
3.2. Structural and Evolutionary Insights
4. Ecological Impact of ARM Systems
4.1. Environmental Specificity of ARM-Mediated Regulation
4.1.1. Soil Ecosystems: Lysogeny for Stability
4.1.2. Aquatic Ecosystems: Balancing Lysis and Dispersal
4.2. Ecological Consequences of Lysogeny and Lysis Switching
4.3. Response to Anthropogenic Perturbations
4.4. Ecological Impacts of ARM-Mediated Regulation
4.5. Anthropogenic Perturbations and ARM Responses
5. Application and Prospect
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kimchi, O.; Meir, Y.; Wingreen, N.S. Lytic and temperate phage naturally coexist in a dynamic population model. ISME J. 2024, 18, 5. [Google Scholar] [CrossRef]
- Erez, Z.; Steinberger-Levy, I.; Shamir, M.; Doron, S.; Stokar-Avihail, A.; Peleg, Y.; Melamed, S.; Leavitt, A.; Savidor, A.; Albeck, S.; et al. Communication between viruses guides lysis-lysogeny decisions. Nature 2017, 541, 488–493. [Google Scholar] [CrossRef]
- Zamora-Caballero, S.; Chmielowska, C.; Quiles-Puchalt, N.; Brady, A.; del Sol, F.G.; Mancheno-Bonillo, J.; Felipe-Ruiz, A.; Meijer, W.J.J.; Penades, J.R.; Marina, A. Antagonistic interactions between phage and host factors control arbitrium lysis-lysogeny decision. Nat. Microbiol. 2024, 9, 13–14. [Google Scholar] [CrossRef]
- Oppenheim, A.B.; Kobiler, O.; Stavans, J.; Court, D.L.; Adhya, S. Switches in bacteriophage lambda development. Annu. Rev. Genet. 2005, 39, 409–429. [Google Scholar] [CrossRef]
- Atsumi, S.; Little, J.W. Role of the lytic repressor in prophage induction of phage λ as analyzed by a module-replacement approach. Proc. Natl. Acad. Sci. USA 2006, 103, 4558–4563. [Google Scholar] [CrossRef]
- Guan, Z.Y.; Pei, K.; Wang, J.; Cui, Y.Q.; Zhu, X.; Su, X.; Zhou, Y.B.; Zhang, D.L.; Tang, C.; Yin, P.; et al. Structural insights into DNA recognition by AimR of the arbitrium communication system in the SPbeta phage. Cell Discov. 2019, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Hochschild, A.; Lewis, M. The bacteriophage λ Cl protein finds an asymmetric solution. Curr. Opin. Struct. Biol. 2009, 19, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Shivam, S.; Li, G.L.; Lucia-Sanz, A.; Weitz, J.S. Timescales modulate optimal lysis-lysogeny decision switches and near-term phage reproduction. Virus Evol. 2022, 8, veac037. [Google Scholar] [CrossRef] [PubMed]
- del Sol, F.G.; Penadés, J.R.; Marina, A. Deciphering the Molecular Mechanism Underpinning Phage Arbitrium Communication Systems. Mol. Cell 2019, 74, 59–72.e3. [Google Scholar] [CrossRef]
- Pei, K.; Zhang, J.; Zou, T.T.; Liu, Z. AimR Adopts Preexisting Dimer Conformations for Specific Target Recognition in Lysis-Lysogeny Decisions of Bacillus Phage phi3T. Biomolecules 2021, 11, 1321. [Google Scholar] [CrossRef]
- Aframian, N.; Bendori, S.O.; Kabel, S.; Guler, P.; Stokar-Avihail, A.; Manor, E.; Msaeed, K.; Lipsman, V.; Grinberg, I.; Mahagna, A.; et al. Dormant phages communicate via arbitrium to control exit from lysogeny. Nat. Microbiol. 2022, 7, 145–153. [Google Scholar] [CrossRef]
- Lee, S.; Lewis, D.E.A.; Adhya, S. The Developmental Switch in Bacteriophage λ: A Critical Role of the Cro Protein. J. Mol. Biol. 2018, 430, 58–68. [Google Scholar] [CrossRef]
- Kohm, K.; Clanner, A.; Hertel, R.; Commichau, F.M. Closely related and yet special-how SPβ family phages control lysis-lysogeny decisions. Trends Microbiol. 2025, 33, 387–396. [Google Scholar] [CrossRef]
- Stokar-Avihail, A.; Tal, N.; Erez, Z.; Lopatina, A.; Sorek, R. Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria. Cell Host Microbe 2019, 25, 746–755.e745. [Google Scholar] [CrossRef] [PubMed]
- Chibani-Chennoufi, S.; Bruttin, A.; Dillmann, M.L.; Brüssow, H. Phage-host interaction:: An ecological perspective. J. Bacteriol. 2004, 186, 3677–3686. [Google Scholar] [CrossRef]
- Liao, H.P.; Liu, C.; Zhou, S.G.; Liu, C.Q.; Eldridge, D.J.; Ai, C.F.; Wilhelm, S.W.; Singh, B.K.; Liang, X.L.; Radosevich, M.; et al. Prophage-encoded antibiotic resistance genes are enriched in human-impacted environments. Nat. Commun. 2024, 15, 13. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.M.; Fan, L.Y.; Jin, H.; Wu, Q.P.; Ding, Y. Phage engineering using synthetic biology and artificial intelligence to enhance phage applications in food industry. Curr. Opin. Food Sci. 2025, 62, 101274. [Google Scholar] [CrossRef]
- Liang, X.L.; Radosevich, M. Commentary: A Host-Produced Quorum-Sensing Autoinducer Controls a Phage Lysis-Lysogeny Decision. Front. Microbiol. 2019, 10, 1201. [Google Scholar] [CrossRef]
- Brady, A.; Quiles-Puchalt, N.; del Sol, F.G.; Zamora-Caballero, S.; Felipe-Ruíz, A.; Val-Calvo, J.; Meijer, W.J.J.; Marina, A.; Penadés, J.R. The arbitrium system controls Prophage induction. Curr. Biol. 2021, 31, 5037–5045.e3. [Google Scholar] [CrossRef]
- Doekes, H.M.; Mulder, G.A.; Hermsen, R. Repeated outbreaks drive the evolution of bacteriophage communication. Elife 2021, 10, e58410. [Google Scholar] [CrossRef]
- Bruce, J.B.; Lion, S.; Buckling, A.; Westra, E.R.; Gandon, S. Regulation of prophage induction and lysogenization by phage communication systems. Curr. Biol. 2021, 31, 5046–5051.e7. [Google Scholar] [CrossRef]
- Sun, Q.Q.; Shen, L.X.; Zhang, B.L.; Yu, J.Y.; Wei, F.; Sun, Y.M.; Chen, W.; Wang, S.W. Advance on Engineering of Bacteriophages by Synthetic Biology. Infect. Drug Resist. 2023, 16, 1941–1953. [Google Scholar] [CrossRef]
- Shao, Q.Y.; Trinh, J.T.; Zeng, L.Y. High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda. J. Biol. Chem. 2019, 294, 3343–3349. [Google Scholar] [CrossRef]
- Schubert, R.A.; Dodd, I.B.; Egan, J.B.; Shearwin, K.E. Cro’s role in the CI-Cro bistable switch is critical for λ’s transition from lysogeny to lytic development. Genes Dev. 2007, 21, 2461–2472. [Google Scholar] [CrossRef]
- Gencay, Y.E.; Jasinskyté, D.; Robert, C.; Semsey, S.; Martínez, V.; Petersen, A.O.; Brunner, K.; Torio, A.D.; Salazar, A.; Turcu, I.C.; et al. Engineered phage with antibacterial CRISPR-Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 2024, 42, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Sharma, S.; Tom, L.; Liao, Y.T.; Wu, V.C.H. Gut Phageome-An Insight into the Role and Impact of Gut Microbiome and Their Correlation with Mammal Health and Diseases. Microorganisms 2023, 11, 2454. [Google Scholar] [CrossRef]
- Huang, D.; Yu, P.F.; Ye, M.; Schwarz, C.; Jiang, X.; Alvarez, P.J.J. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress. Microbiome 2021, 9, 15. [Google Scholar] [CrossRef] [PubMed]
- Bezuidt, O.K.I.; Lebre, P.H.; Pierneef, R.; León-Sobrino, C.; Adriaenssens, E.M.; Cowan, D.A.; Van de Peer, Y.; Makhalanyane, T.P. Phages Actively Challenge Niche Communities in Antarctic Soils. mSystems 2020, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Braga, L.P.P.; Spor, A.; Kot, W.; Breuil, M.C.; Hansen, L.H.; Setubal, J.C.; Philippot, L. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 2020, 8, 52. [Google Scholar] [CrossRef]
- Zhang, M.H.; Zhang, T.Y.; Yu, M.S.; Chen, Y.L.; Jin, M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022, 14, 1904. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.J.; Jia, P.P.; Yin, S.P.; Bu, L.K.; Yang, G.; Pei, D.S. Engineering bacteriophages for enhanced host range and efficacy: Insights from bacteriophage-bacteria interactions. Front. Microbiol. 2023, 14, 1172635. [Google Scholar] [CrossRef]
- Zhang, J.; Ning, H.Q.; Lin, H.; She, J.Y.; Wang, L.K.; Jing, Y.J.; Wang, J.X. Expansion of the Plaquing Host Range and Improvement of the Absorption Rate of a T5-like Salmonella Phage by Altering the Long Tail Fibers. Appl. Environ. Microbiol. 2022, 88, e00895-22. [Google Scholar] [CrossRef]
- Hibstu, Z.; Belew, H.; Akelew, Y.; Mengist, H.M. Phage Therapy: A Different Approach to Fight Bacterial Infections. Biol. Targets Ther. 2022, 16, 173–186. [Google Scholar] [CrossRef]
- Dunne, M.; Prokhorov, N.S.; Loessner, M.J.; Leiman, P.G. Reprogramming bacteriophage host range: Design principles and strategies for engineering receptor binding proteins. Curr. Opin. Biotechnol. 2021, 68, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Emencheta, S.C.; Olovo, C.V.; Eze, O.C.; Kalu, C.F.; Berebon, D.P.; Onuigbo, E.B.; Vila, M.; Balcao, V.M.; Attama, A.A. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023, 15, 2416. [Google Scholar] [CrossRef] [PubMed]
- Aranda, Y.N.; Bhatt, P.; Ates, N.; Engel, B.A.; Simsek, H. Cyanophage-cyanobacterial interactions for sustainable aquatic environment. Environ. Res. 2023, 229, 14. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Wang, K.; Zhou, Q.; Wei, Y. The Role of Quorum Sensing in Phage Lifecycle Decision: A Switch Between Lytic and Lysogenic Pathways. Viruses 2025, 17, 317. [Google Scholar] [CrossRef]
- Zhou, J.; Jiang, X.; Wei, D.; Zhao, B.S.; Ma, M.C.; Chen, S.F.; Cao, F.M.; Shen, D.L.; Guan, D.W.; Li, J. Consistent effects of nitrogen fertilization on soil bacterial communities in black soils for two crop seasons in China. Sci. Rep. 2017, 7, 3267. [Google Scholar] [CrossRef]
- Morozov, A.; Ageel, A.; Bates, A.; Galyov, E. Modelling the effects of climate change on the interaction between bacteria and phages with a temperature-dependent lifecycle switch. Sci. Rep. 2025, 15, 6428. [Google Scholar] [CrossRef]
- Au, A.; Lee, H.; Ye, T.; Dave, U.; Rahman, A. Bacteriophages: Combating Antimicrobial Resistance in Food-Borne Bacteria Prevalent in Agriculture. Microorganisms 2022, 10, 46. [Google Scholar] [CrossRef]
- Cheng, G.Y.; Hao, H.H.; Xie, S.Y.; Wang, X.; Dai, M.H.; Huang, L.L.; Yuan, Z.H. Antibiotic alternatives: The substitution of antibiotics in animal husbandry? Front. Microbiol. 2014, 5, 217. [Google Scholar] [CrossRef]
- Bondad-Reantaso, M.G.; MacKinnon, B.; Karunasagar, I.; Fridman, S.; Alday-Sanz, V.; Brun, E.; Le Groumellec, M.; Li, A.H.; Surachetpong, W.; Karunasagar, I.; et al. Review of alternatives to antibiotic use in aquaculture. Rev. Aquac. 2023, 15, 1421–1451. [Google Scholar] [CrossRef]
- Gdanetz, K.; Dobbins, M.R.; Villani, S.M.; Outwater, C.A.; Slack, S.M.; Nesbitt, D.; Svircev, A.M.; Lauwers, E.M.; Zeng, Q.; Cox, K.D.; et al. Multisite Field Evaluation of Bacteriophages for Fire Blight Management: Incorporation of Ultraviolet Radiation Protectants and Impact on the Apple Flower Microbiome. Phytopathology 2024, 114, 1028–1038. [Google Scholar] [CrossRef]
- Favor, A.H.; Llanos, C.D.; Youngblut, M.D.; Bardales, J.A. Optimizing bacteriophage engineering through an accelerated evolution platform. Sci. Rep. 2020, 10, 13981. [Google Scholar] [CrossRef]
- Wang, Q.; Guan, Z.Y.; Pei, K.; Wang, J.; Liu, Z.; Yin, P.; Peng, D.H.; Zou, T.T. Structural basis of the arbitrium peptide-AimR communication system in the phage lysis-lysogeny decision. Nat. Microbiol. 2018, 3, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Guler, P.; Bendori, S.O.; Borenstein, T.; Aframian, N.; Kessel, A.; Eldar, A. Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system. Nat. Microbiol. 2024, 9, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Diard, M. Crowd Controlled-Host Quorum Sensing Drives Phage Decision. Cell Host Microbe 2019, 25, 179–181. [Google Scholar] [CrossRef]
- Lewis, J.M.; Williams, J.; Sagona, A.P. Making the leap from technique to treatment—Genetic engineering is paving the way for more efficient phage therapy. Biochem. Soc. Trans. 2024, 52, 1373–1384. [Google Scholar] [CrossRef]
- León-Félix, J.; Villicaña, C. The Impact of Quorum Sensing on the Modulation of Phage-Host Interactions. J. Bacteriol. 2021, 203, 11. [Google Scholar] [CrossRef]
- del Sol, F.G.; Quiles-Puchalt, N.; Brady, A.; Penadés, J.R.; Marina, A. Insights into the mechanism of action of the arbitrium communication system in SPbeta phages. Nat. Commun. 2022, 13, 3627. [Google Scholar] [CrossRef]
- Salmond, G.P.C.; Fineran, P.C. A century of the phage: Past, present and future. Nat. Rev. Microbiol. 2015, 13, 777–786. [Google Scholar] [CrossRef] [PubMed]
- Ipoutcha, T.; Racharaks, R.; Huttelmaier, S.; Wilson, C.J.; Ozer, E.A.; Hartmann, E.M. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol. Spectr. 2024, 12, e02897-23. [Google Scholar] [CrossRef] [PubMed]
Comparative Dimension | ARM System | Lambda Phage CI/Cro System | The Uniqueness of the ARM System | Ref. |
---|---|---|---|---|
Signal Type | Small peptide (AimP) | Proteins (CI and Cro) | The first peptide-mediated quorum sensing mechanism | [2,4] |
Environmental Response | Directly sensing host density | Dependent on host stress signals (e.g., SOS response) | Dynamically adapts to population pressure, reducing host dependence | [5,6] |
Regulatory Architecture | Conformational changes in the TPR domain inhibit DNA binding | Competitive binding of HTH proteins to operator sites | Eukaryote-like signaling mechanism with high modularity | [4,7,9] |
Therapeutic Applications | Easily engineered control of the lysis/lysogeny balance | Complex to modify, with efficacy easily affected by host state | Precise and controllable, suitable for customized phage therapy | [10,24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, J.; Zhou, Q.; Wei, Y. Review of the Arbitrium (ARM) System: Molecular Mechanisms, Ecological Impacts, and Applications in Phage–Host Communication. Microorganisms 2025, 13, 2058. https://doi.org/10.3390/microorganisms13092058
Shang J, Zhou Q, Wei Y. Review of the Arbitrium (ARM) System: Molecular Mechanisms, Ecological Impacts, and Applications in Phage–Host Communication. Microorganisms. 2025; 13(9):2058. https://doi.org/10.3390/microorganisms13092058
Chicago/Turabian StyleShang, Junjie, Qian Zhou, and Yunlin Wei. 2025. "Review of the Arbitrium (ARM) System: Molecular Mechanisms, Ecological Impacts, and Applications in Phage–Host Communication" Microorganisms 13, no. 9: 2058. https://doi.org/10.3390/microorganisms13092058
APA StyleShang, J., Zhou, Q., & Wei, Y. (2025). Review of the Arbitrium (ARM) System: Molecular Mechanisms, Ecological Impacts, and Applications in Phage–Host Communication. Microorganisms, 13(9), 2058. https://doi.org/10.3390/microorganisms13092058