Anti-Inflammatory Potential of Extracellular Polysaccharide from the Moss Endophyte Ovatospora brasiliensis During Pathogen Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Isolation and Identification of Fungi from Moss Sample
2.3. Extraction and Purification of the Exopolysaccharides ObEPS
2.4. Monosaccharide Composition Analysis
2.5. Molecular Weight and Conformation Analysis of ObEPS by SEC-MALS
2.5.1. Sample Preparation
2.5.2. Instrumentation
2.5.3. Calibration and dn/dc Determination
2.5.4. Data Analysis
2.6. Nuclear Magnetic Resonance (NMR) Analysis
2.7. Cell Culture
2.8. Macrophage Viability Assay
2.9. NO Assay
2.10. Animals
2.11. C. albicans Systemic Infection Model
2.12. RNA Extraction and Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
2.13. Enzyme-Linked Immunosorbent Assay (ELISA)
2.14. Flow Cytometry Assay
2.15. PAS Staining
2.16. Hematoxylin and Eosin (H&E) Staining
3. Results
3.1. Isolation and Characterization of Moss Endophytic Fungi Producing Anti-Inflammatory EPS
3.2. Characterization of O. brasiliensis EPS
3.3. Anti-Inflammatory Effect and Cytocompatibility of ObEPS in Macrophages
3.4. ObEPS Suppresses LPS-Induced Inflammation via Modulation of the NO Pathway
3.5. ObEPS Enhances Antifungal Efficacy and Reduces Renal Inflammation During Systemic C. albicans Infection
3.6. ObEPS Suppresses Pro-Inflammatory Macrophage Polarization In Vivo
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hebecker, B.; Vlaic, S.; Conrad, T.; Bauer, M.; Brunke, S.; Kapitan, M.; Linde, J.; Hube, B.; Jacobsen, I.D. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci. Rep. 2016, 6, 36055. [Google Scholar]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The epidemiology of sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef]
- Duggan, S.; Leonhardt, I.; Hünniger, K.; Kurzai, O. Host response to Candida albicans bloodstream infection and sepsis. Virulence 2015, 6, 316–326. [Google Scholar] [PubMed]
- Biswas, P.S. Vaccine-Induced Immunological Memory in Invasive Fungal Infections—A Dream so Close yet so Far. Front. Immunol. 2021, 12, 671068. [Google Scholar] [CrossRef] [PubMed]
- Kainz, K.; Bauer, M.A.; Madeo, F.; Carmona-Gutierrez, D. Fungal infections in humans: The silent crisis. Microb. Cell 2020, 7, 143–145. [Google Scholar] [CrossRef]
- Cornely, O.A.; Sprute, R.; Bassetti, M.; Chen, S.C.; Groll, A.H.; Kurzai, O.; Lass-Florl, C.; Ostrosky-Zeichner, L.; Rautemaa-Richardson, R.; Revathi, G.; et al. Global guideline for the diagnosis and management of candidiasis: An initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infect. Dis. 2025, 25, e280–e293, Erratum in Lancet Infect. Dis. 2025, 25, e261. [Google Scholar] [CrossRef]
- Feng, Y.; Zhou, B.; Wang, Z.; Xu, G.; Wang, L.; Zhang, T.; Zhang, Y. Risk of Candida Infection and Serious Infections in Patients with Moderate-to-Severe Psoriasis Receiving Biologics: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Clin. Pract. 2022, 2022, 2442603. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Khan, M.N.; Khan, S.; Fang, W.; Chang, W.; Yin, B.; Song, N.J.; Liu, Z.; Zhang, D.; Yao, F.; et al. Risk of candidiasis associated with interleukin-17 inhibitors: Implications and management. Mycology 2024, 15, 30–44. [Google Scholar] [CrossRef]
- Boutin, C.A.; Durocher, F.; Beauchemin, S.; Ziegler, D.; Abou Chakra, C.N.; Dufresne, S.F. Breakthrough Invasive Fungal Infections in Patients With High-Risk Hematological Disorders Receiving Voriconazole and Posaconazole Prophylaxis: A Systematic Review. Clin. Infect. Dis. 2024, 79, 151–160. [Google Scholar] [CrossRef]
- Thomas-Rüddel, D.O.; Schlattmann, P.; Pletz, M.; Kurzai, O.; Bloos, F. Risk Factors for Invasive Candida Infection in Critically Ill Patients: A Systematic Review and Meta-analysis. Chest 2022, 161, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Maccallum, D.M. Hosting infection: Experimental models to assay Candida virulence. Int. J. Microbiol. 2012, 2012, 363764. [Google Scholar] [CrossRef]
- Sims, C.R.; Ostrosky-Zeichner, L.; Rex, J.H. Invasive Candidiasis in Immunocompromised Hospitalized Patients. Arch. Med. Res. 2005, 36, 660–671. [Google Scholar] [CrossRef]
- MacCallum, D.M.; Castillo, L.; Brown, A.J.; Gow, N.A.; Odds, F.C. Early-expressed chemokines predict kidney immunopathology in experimental disseminated Candida albicans infections. PLoS ONE 2009, 4, e6420. [Google Scholar] [CrossRef]
- Kollef, M.; Micek, S.; Hampton, N.; Doherty, J.A.; Kumar, A. Septic Shock Attributed to Infection: Importance of Empiric Therapy and Source Control. Clin. Infect. Dis. 2012, 54, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Y.; Lai, X.F.; Yu, R.L.; Ding, H.; Bai, H.B.; Yang, Z.B.; Yin, Y.B.; Xu, F.; Cao, J. Progranulin aggravates lethal sepsis by regulating inflammatory response and antifungal immunity. PLoS Pathog. 2022, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.L.; Zhang, L.L.; Xu, Z.; Zhang, J.Y.; Jiang, Y.Y.; Cao, Y.B.; Yan, T.H. Innate immune cell response upon infection. Virulence 2016, 7, 512–526. [Google Scholar] [CrossRef]
- Majer, O.; Bourgeois, C.; Zwolanek, F.; Lassnig, C.; Kerjaschki, D.; Mack, M.; Müller, M.; Kuchler, K. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 2012, 8, e1002811. [Google Scholar] [CrossRef]
- Wu, K.Y.; Li, Y.Y.; Lin, Y.Q.; Xu, B.J.; Yang, J.J.; Mo, L.; Huang, R.M.; Zhang, X.Y. Structural characterization and immunomodulatory activity of an exopolysaccharide from marine-derived Aspergillus versicolor SCAU141. Int. J. Biol. Macromol. 2023, 227, 329–339. [Google Scholar] [CrossRef]
- Xie, L.M.; Chen, T.; Li, H.; Xiao, J.D.; Wang, L.C.; Kim, S.K.; Huang, Z.B.; Xie, J.H. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. J. Agril. Food Chem. 2024, 72, 7476–7496. [Google Scholar]
- Yuan, Y.; Che, L.H.; Qi, C.; Meng, Z.L. Protective effects of polysaccharides on hepatic injury: A review. Int. J. Biol. Macromol. 2019, 141, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Pi, X.; Li, X.; Huo, J.; Wang, W. Edible herbal source-derived polysaccharides as potential prebiotics: Composition, structure, gut microbiota regulation, and its related health effects. Food Chem. 2024, 458, 140267. [Google Scholar] [CrossRef]
- Gupta, P.K.; Rajan, M.G.R.; Kulkarni, S. Activation of murine macrophages by G1-4A, a polysaccharide from Tinospora cordifolia, in TLR4/MyD88 dependent manner. Int. Immunopharmacol. 2017, 50, 168–177. [Google Scholar] [CrossRef]
- Whitelock, J.M.; Iozzo, R.V. Heparan sulfate: A complex polymer charged with biological activity. Chem. Rev. 2005, 105, 2745–2764. [Google Scholar] [CrossRef]
- Zeng, Y.J.; Yang, H.R.; Wu, X.L.; Peng, F.; Huang, Z.; Pu, L.; Zong, M.H.; Yang, J.G.; Lou, W.Y. Structure and immunomodulatory activity of polysaccharides from DO7 by solid-state fermentation. Int. J. Biol. Macromol. 2019, 137, 568–575. [Google Scholar] [CrossRef]
- Zhu, Z.; Yu, Z.; Rong, Z.; Luo, Z.; Zhang, J.; Qiu, Z.; Huang, C. The novel GINS4 axis promotes gastric cancer growth and progression by activating Rac1 and CDC42. Theranostics 2019, 9, 8294–8311. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, X.; Liang, X.; Zheng, X.; Shu, Z.; Sun, Q.; Wang, Q.; Li, N. Antioxidant and antibacterial activities of a polysaccharide produced by Chaetomium globosum CGMCC 6882. Int. J. Biol. Macromol. 2023, 233, 123628. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, N.; Zheng, J.; Hu, H.; Yang, H.; Lin, A.; Hu, B.; Liu, H. Structural characterization and anti-inflammatory activity of polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2023, 241, 124386. [Google Scholar] [CrossRef] [PubMed]
- Lionakis, M.S.; Drummond, R.A.; Hohl, T.M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 2023, 23, 433–452. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Primers 2018, 4, 18026. [Google Scholar] [CrossRef] [PubMed]
- Swidergall, M.; Khalaji, M.; Solis, N.V.; Moyes, D.L.; Drummond, R.A.; Hube, B.; Lionakis, M.S.; Murdoch, C.; Filler, S.G.; Naglik, J.R. Candidalysin Is Required for Neutrophil Recruitment and Virulence During Systemic Candida albicans Infection. J. Infect. Dis. 2019, 220, 1477–1488. [Google Scholar] [CrossRef]
- Blagojevic, M.; Camilli, G.; Maxson, M.; Hube, B.; Moyes, D.L.; Richardson, J.P.; Naglik, J.R. Candidalysin triggers epithelial cellular stresses that induce necrotic death. Cell. Microbiol. 2021, 23, e13371. [Google Scholar] [CrossRef] [PubMed]
- Jawale, C.V.; Biswas, P.S. Local antifungal immunity in the kidney in disseminated candidiasis. Curr. Opin Microbiol. 2021, 62, 1–7. [Google Scholar] [CrossRef]
- d’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2020, 45, fuaa060. [Google Scholar]
- Abrams, M.T.; Koser, M.L.; Seitzer, J.; Williams, S.C.; DiPietro, M.A.; Wang, W.; Shaw, A.W.; Mao, X.; Jadhav, V.; Davide, J.P.; et al. Evaluation of efficacy, biodistribution, and inflammation for a potent siRNA nanoparticle: Effect of dexamethasone co-treatment. Mol. Ther. 2010, 18, 171–180. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1260–1270. [Google Scholar] [CrossRef]
- Shen, Y.; Zhao, H.; Wang, X.; Wu, S.; Wang, Y.; Wang, C.; Zhang, Y.; Zhao, H. Unraveling the web of defense: The crucial role of polysaccharides in immunity. Front. Immunol. 2024, 15, 1406213. [Google Scholar] [CrossRef]
- Zheng, Z.; Huang, Q. New insight into the structure-dependent two-way immunomodulatory effects of water-soluble yeast β-glucan in macrophages. Carbohydr. Polym. 2022, 291, 119569. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Hobiger, S.; Jungbauer, A. Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 2010, 122, 987–996. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Lee, B.R.; Kim, S.Y.; Kim, D.W.; An, J.J.; Song, H.Y.; Yoo, K.Y.; Kang, T.C.; Won, M.H.; Lee, K.J.; Kim, K.H.; et al. Agrocybe chaxingu polysaccharide prevent inflammation through the inhibition of COX-2 and NO production. BMB Rep. 2009, 42, 794–799. [Google Scholar] [CrossRef]
- Sheu, J.R.; Chen, Z.C.; Hsu, M.J.; Wang, S.H.; Jung, K.W.; Wu, W.F.; Pan, S.H.; Teng, R.D.; Yang, C.H.; Hsieh, C.Y. CME-1, a novel polysaccharide, suppresses iNOS expression in lipopolysaccharide-stimulated macrophages through ceramide-initiated protein phosphatase 2A activation. J. Cell. Mol. Med. 2018, 22, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhang, J.; Qin, J.; Guo, L.; Guo, Q.; Kang, W.; Ma, C.; Chen, L. Anti-inflammatory properties of polysaccharides from edible fungi on health-promotion: A review. Front. Pharmacol. 2024, 15, 1447677. [Google Scholar] [CrossRef]
- Zhao, J.; Niu, X.; Yu, J.; Xiao, X.; Li, W.; Zang, L.; Hu, Z.; Siu-Po Ip, P.; Li, W. Poria cocos polysaccharides attenuated ox-LDL-induced inflammation and oxidative stress via ERK activated Nrf2/HO-1 signaling pathway and inhibited foam cell formation in VSMCs. Int. Immunopharmacol. 2020, 80, 106173. [Google Scholar] [CrossRef]
- Wold, C.; Christopoulos, P.; Arias, M.; Dzovor, D.; Øynebråten, I.; Corthay, A.; Inngjerdingen, K. Polysaccharides from the fungus Inonotus obliquus activate macrophages into a tumoricidal phenotype via interaction with TLR2, TLR4 and Dectin-1a. bioRxiv 2020, 2020, 2020-11. [Google Scholar]
- Fang, F.C.; Vazquez-Torres, A. Nitric oxide production by human macrophages: There’s NO doubt about it. Am. J. Physiol. Lung. Cell. Mol. Physiol. 2002, 282, L941–L943. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Guo, D.; Fang, L.; Sang, T.; Wu, J.; Guo, C.; Wang, Y.; Wang, Y.; Chen, C.; Chen, J.; et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr. Polym. 2021, 267, 118231. [Google Scholar] [CrossRef]
- Liu, C.; Wang, F.; Zhang, R. An Acidic Polysaccharide with Anti-Inflammatory Effects from Blackened Jujube: Conformation and Rheological Properties. Foods 2022, 11, 2488. [Google Scholar] [CrossRef]
- Al-Saadi, H.M.; Pang, K.-L.; Ima-Nirwana, S.; Chin, K.-Y. Multifaceted Protective Role of Glucosamine against Osteoarthritis: Review of Its Molecular Mechanisms. Sci. Pharm. 2019, 87, 34. [Google Scholar] [CrossRef]
- Henrotin, Y.; Mobasheri, A.; Marty, M. Is there any scientific evidence for the use of glucosamine in the management of human osteoarthritis? Arthritis Res. Ther. 2012, 14, 201. [Google Scholar] [CrossRef]
- Largo, R.; Alvarez-Soria, M.A.; Díez-Ortego, I.; Calvo, E.; Sánchez-Pernaute, O.; Egido, J.; Herrero-Beaumont, G. Glucosamine inhibits IL-1beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthr. Cartil. 2003, 11, 290–298. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Sun, Y.; Li, M.; Yu, Q. Anti-Inflammatory Potential of Extracellular Polysaccharide from the Moss Endophyte Ovatospora brasiliensis During Pathogen Infection. Microorganisms 2025, 13, 2037. https://doi.org/10.3390/microorganisms13092037
Yang J, Sun Y, Li M, Yu Q. Anti-Inflammatory Potential of Extracellular Polysaccharide from the Moss Endophyte Ovatospora brasiliensis During Pathogen Infection. Microorganisms. 2025; 13(9):2037. https://doi.org/10.3390/microorganisms13092037
Chicago/Turabian StyleYang, Jiayue, Ying Sun, Mingchun Li, and Qilin Yu. 2025. "Anti-Inflammatory Potential of Extracellular Polysaccharide from the Moss Endophyte Ovatospora brasiliensis During Pathogen Infection" Microorganisms 13, no. 9: 2037. https://doi.org/10.3390/microorganisms13092037
APA StyleYang, J., Sun, Y., Li, M., & Yu, Q. (2025). Anti-Inflammatory Potential of Extracellular Polysaccharide from the Moss Endophyte Ovatospora brasiliensis During Pathogen Infection. Microorganisms, 13(9), 2037. https://doi.org/10.3390/microorganisms13092037