Optimization of Fermentation Conditions for Antarctic Bacteria and Investigation of Its Antimicrobial Mechanism Against Klebsiella pneumoniae
Abstract
1. Introduction
2. Materials and Methods
2.1. Antarctic Sample, Bacterial Strain, and Culture Medium
2.2. Isolation and Screening of Antarctic Microorganisms
2.3. Identification of Antagonistic Microbial Strains
2.4. Inhibition Spectrum of the Antagonistic Bacteria
2.5. Screening for Optimal Ingredients in Fermentation Medium
2.6. Single-Factor of Fermentation Parameters on the Antibacterial Activity of Tie-10
2.7. Response Surface Optimization Test
2.8. Preparation and Characterization of Antibacterial Crude Extracts from Tie-10
2.9. Determination of Minimum Inhibitory Concentration (MIC) of Crude Extracts Against K. pneumoniae
2.10. Effects of the Crude Extract on the Growth Curve of K.pneumoniae
2.11. Viability Assessment of K. pneumoniae by PI/DAPI Fluorescent Staining
2.12. Effects of Crude Extract on AKP Content in Culture Medium
2.13. Effects of Crude Extract on Cell Morphology of K. pneumoniae
2.14. Effects of Crude Extracts on Extracellular Protease Secretion in K. pneumoniae
2.15. Effects of Crude Extract on Biofilm Formation in K. pneumoniae
2.16. Effects of Crude Extracts on Virulence Gene Expression in K. pneumoniae
2.17. Statistical Analysis
3. Results
3.1. Screening and Identification of Antagonistic Strains
3.2. Inhibition Spectrum of Tie-10
3.3. Results of Fermentation Medium Components Through Systematic Screening
3.4. Results of Single-Factor Experimental Analysis
3.5. Optimization Outcomes from Response Surface Methodology Experiments
3.5.1. Regression Equation and Analysis of Variance
3.5.2. Response Surface Analysis of the Interaction of Various Factors
3.6. MIC Determination of the Crude Extract
3.7. Effect of the Crude Extract on Growth Curve of K. pneumoniae
3.8. Antimicrobial Efficacy of the Crude Extracts Against K. pneumoniae
3.9. Results of AKP Content in Culture Supernatants
3.10. Morphological Characterization of K. pneumoniae Cells
3.11. Inhibitory Effects of Crude Extracts on Extracellular Protease Secretion in K. pneumoniae
3.12. Inhibitory Effects of the Crude Extract on Biofilm Formation in K. pneumoniae
3.13. Evaluation of the Crude Extract on Gene Expression Levels in K. pneumoniae
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.; Yang, Y.; Feng, Y.; Fang, Q.; Wang, C.; Zhao, F.; McNally, A.; Zong, Z. Prevalence and clonal diversity of carbapenem-resistant Klebsiella pneumoniae causing neonatal infections: A systematic review of 128 articles across 30 countries. PLOS Med. 2023, 20, e1004233. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Wu, W.; Wu, X.; Ren, J. Klebsiella pneumoniae capsular polysaccharide: Mechanism in regulation of synthesis, virulence, and pathogenicity. Virulence 2024, 15, 2439509. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef]
- Li, Y.; Kumar, S.; Zhang, L.; Wu, H. Klebsiella pneumonia and Its Antibiotic Resistance: A Bibliometric Analysis. BioMed Res. Int. 2022, 2022, 1668789. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Liu, W.-J.; Xing, S.; Zhou, M.-Y.; Zhang, Y.-C.; Xia, X.-K.; Wu, H.-K. Bioactive Compounds from the Antarctic Bacterium Pseudomonas SP. A6-5. Chem. Nat. Compd. 2022, 58, 371–373. [Google Scholar] [CrossRef]
- Rizzo, C.; Lo Giudice, A. Life from a Snowflake: Diversity and Adaptation of Cold-Loving Bacteria among Ice Crystals. Crystals 2022, 12, 312. [Google Scholar] [CrossRef]
- Efimenko, T.A.; Efremenkova, O.V.; Demkina, E.V.; Petrova, M.A.; Sumarukova, I.G.; Vasilyeva, B.F.; El’-Registan, G.I. Bacteria Isolated from Antarctic Permafrost are Efficient Antibiotic Producers. Microbiology 2018, 87, 692–698. [Google Scholar] [CrossRef]
- Jessel, K.; Chapman, M.R. Microbial warfare: B. subtilis antagonizes E. coli biofilm formation. Trends Microbiol. 2024, 32, 221–223. [Google Scholar] [CrossRef]
- Camacho, K.F.; de Melo Carlos, L.; Bernal, S.P.F.; de Oliveira, V.M.; Ruiz, J.L.M.; Ottoni, J.R.; Vieira, R.; Neto, A.; Rosa, L.H.; Passarini, M.R.Z. Antarctic marine sediment as a source of filamentous fungi-derived antimicrobial and antitumor compounds of pharmaceutical interest. Extremophiles 2024, 28, 21. [Google Scholar] [CrossRef]
- Aghayeva, A.G.; Streatfield, S.J.; Huseynova, I.M. AZ-130 Strain from Oil-Contaminated Soil of Azerbaijan: Isolation, Antibacterial Screening, and Optimization of Cultivation Conditions. Microbiology 2021, 90, 754–762. [Google Scholar] [CrossRef]
- Hemthanon, T.; Ungcharoenwiwat, P. Antibacterial activity, stability, and hemolytic activity of heartwood extract from Caesalpinia sappan for application on nonwoven fabric. Electron. J. Biotechnol. 2021, 5, 9–17. [Google Scholar] [CrossRef]
- Santos, S.N.; Ferraris, F.K.; de Souza, A.O.; Henriques, M.d.G.; Melo, I.S. Endophytic fungi from combretum leprosum with potential anticancer and antifungal activity. Symbiosis 2012, 58, 109–117. [Google Scholar] [CrossRef]
- Guenter, S.; Gorkiewicz, G.; Halwachs, B.; Kashofer, K.; Thueringer, A.; Wurm, P.; Zollner-Schwetz, I.; Valenti, T.; Prattes, J.; Wunsch, S. Impact of ITS-based sequencing on antifungal treatment of patients with suspected invasive fungal infections. J. Fungi. 2020, 6, 43. [Google Scholar] [CrossRef]
- Kim, T.I.; Choi, E.J.; Chung, C.P.; Han, S.B.; Ku, Y. Antimicrobial effect of Zea mays L. and Magnoliae cortex extract mixtures on periodontal pathogen and effect on human gingival fibroblast cellular activity. J. Korean Acad. Periodontol. 2002, 32, 249–255. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Kang, X.; Lim, S.; Li, F. Isolation, identification and optimization of fermentation conditions against Sclerotinia sclerotiorum strains in high salt Doenjang. Food Sci. Hum. Wellness 2021, 10, 205–213. [Google Scholar] [CrossRef]
- Chen, X.; Wei, Z.; Feng, Z.; Che, Y.; Wang, X.; Long, H.; Cai, X.; Ren, W.; Xie, Z. Large-scale fermentation of Lactiplantibacillus pentosus 292 for the production of lactic acid and the storage strategy based on molasses as a preservative. BMC Microbiol. 2025, 25, 125. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, X.; Wang, Q.; Li, N.; Ding, D.; Wang, B. Optimization of the fermentation conditions of Metarhizium robertsii and its biological control of wolfberry root rot disease. Microorganisms 2023, 11, 2380. [Google Scholar] [CrossRef]
- Filimonova, A.V.; Golikova, M.V.; Strukova, E.N.; Portnoy, Y.A.; Kuznetsova, A.A.; Zinner, S.H. Predicting the Effects of Carbapenem/Carbapenemase Inhibitor Combinations against KPC-Producing Klebsiella pneumoniae in Time-Kill Experiments: Alternative versus Traditional Approaches to MIC Determination. Antibiotics 2021, 10, 1520. [Google Scholar] [CrossRef] [PubMed]
- Shu, Q.; Niu, Y.-W.; Zhao, W.-J.; Chen, Q.-H. Antibacterial activity and mannosylerythritol lipids against vegetative cells and spores of Bacillus cereus. Food Control 2019, 106, 106711. [Google Scholar] [CrossRef]
- He, R.; Zhang, Z.; Xu, L.; Chen, W.; Zhang, M.; Zhong, Q.; Chen, H.; Chen, W. Antibacterial mechanism of linalool emulsion against Pseudomonas aeruginosa and its application to cold fresh beef. World J. Microbiol. Biotechnol. 2022, 38, 56. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, J.; Liu, C.; Wu, D.; Wang, X. In-vitro antibacterial activity and mechanism of Monarda didyma essential oils against Carbapenem-resistant Klebsiella pneumoniae. BMC Microbiol. 2023, 23, 263. [Google Scholar] [CrossRef]
- Cui, H.-Y.; Bai, M.; Lin, L. Plasma–treated poly (ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging. Carbohydr. Polym. 2018, 179, 360–369. [Google Scholar] [CrossRef]
- Chu, L.; Zhou, X.; Shen, Y.; Yu, Y. The inhibitory effect of trisodium citrate on biofilms formed by Klebsiella pneumoniae. J. Glob. Antimicrob. Resist. 2020, 22, 452–456. [Google Scholar] [CrossRef]
- Coriolano, M.; Brito, J.; Ferreira, G.; Moura, M.; Melo, C.; Soares, A.; Lorena, V.; Figueiredo, R.; Paiva, P.; Napoleão, T.; et al. Antibacterial lectin from Moringa oleifera seeds (WSMoL) has differential action on growth, membrane permeability and protease secretory ability of Gram-positive and Gram-negative pathogens. South Afr. J. Bot. 2020, 129, 198–205. [Google Scholar] [CrossRef]
- Xu, Z.B.; Liang, Y.R.; Lin, S.Q.; Chen, D.Q.; Li, B.; Li, L.; Deng, Y. Crystal violet and XTT assays on Staphylococcus aureus biofilm quantification. Curr. Microbiol. 2016, 73, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Bakkiyaraj, D.; Nandhini, J.R.; Malathy, B.; Pandian, S.K. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 2013, 29, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, H.; Shigemura, K.; Osawa, K.; Kado, M.; Onishi, R.; Fang, S.-B.; Sung, S.-Y.; Miyara, T.; Fujisawa, M. Comparative genetic analysis of the antimicrobial susceptibilities and virulence of hypermucoviscous and non-hypermucoviscous ESBL-producing Klebsiella pneumoniae in Japan. J. Microbiol. Immunol. Infect. 2023, 56, 93–103. [Google Scholar] [CrossRef]
- Park, Y.; Choi, Q.; Kwon, G.C.; Koo, S.H. Molecular epidemiology and mechanisms of tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae isolates. J. Clin. Lab. Anal. 2020, 34, e23506. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, Z.; Ren, Z.; Yu, L.; Zhou, H.; Han, Y.; Shah, M.; Che, Q.; Zhang, G.; Li, D.; et al. Antibacterial cyclic tripeptides from Antarctica-sponge-derived fungus Aspergillus insulicola HDN151418. Mar. Drugs 2020, 18, 532. [Google Scholar] [CrossRef]
- Turner, R.D.; Vollmer, W.; Foster, S.J. Different walls for rods and balls: The diversity of peptidoglycan. Mol. Microbiol. 2014, 91, 862–874. [Google Scholar] [CrossRef]
- Vollmer, W.; Seligman, S.J. Architecture of peptidoglycan: More data and more models. Trends Microbiol. 2010, 18, 59–66. [Google Scholar] [CrossRef]
- Rojas, E.R.; Billings, G.; Odermatt, P.D.; Auer, G.K.; Zhu, L.; Miguel, A.; Chang, F.; Weibel, D.B.; Theriot, J.A.; Huang, K.C. The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 2018, 559, 617–621. [Google Scholar] [CrossRef]
- Wu, S.; Liu, J.; Liu, C.; Yang, A.; Qiao, J. Quorum sensing for population-level control of bacteria and potential therapeutic applications. Cell. Mol. Life Sci. 2020, 77, 1319–1343. [Google Scholar] [CrossRef]
- Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas aeruginosa Biofilms. Int. J. Mol. Sci. 2020, 21, 8671. [Google Scholar] [CrossRef]
- Atiencia-Carrera, M.B.; Cabezas-Mera, F.S.; Tejera, E.; Machado, A. Prevalence of biofilms in Candida spp. bloodstream infections: A meta-analysis. PLoS ONE 2022, 17, e0263522. [Google Scholar] [CrossRef]
- Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond risk: Bacterial biofilms and their regulating approaches. Front Microbiol. 2020, 11, 928. [Google Scholar] [CrossRef]
- Jung, S.G.; Jang, J.H.; Ah-young, K. Removal of pathogenic factors from 2,3-butanediol-producing Klebsiella species by inactivating virulence-related wabG gene. Appl. Microbiol. Biotechnol. 2013, 97, 1997–2007. [Google Scholar] [CrossRef] [PubMed]
Pathogen | Type of Culture Medium |
---|---|
Klebsiella pneumoniae | Nutrient Broth |
Escherichia coli | LB Broth |
Salmonella typhimurium | LB Broth |
Staphylococcus aureus | LB Broth |
Vibrio parahaemolyticu | LB Broth |
Pseudomonas aeruginosa | LB Broth |
Acinetobacter baumannii | Brian Heart Infusion |
Enterococcus faecium | De Man, Rogosa, and Sharpe |
ESBL E. coli | LB Broth |
Methicillin-resistant S. aureus (MRSA) | LB Broth |
Levels | Factors | |||
---|---|---|---|---|
A Bottling Volume (mL) | B pH | C Temperature (°C) | D Time (h) | |
−1 | 60 | 6 | 32 | 12 |
0 | 80 | 7 | 37 | 24 |
1 | 100 | 8 | 42 | 36 |
Primer Name | Primer Sequence (5′~3′) | Primer Size/Bp |
---|---|---|
luxS-F | AGTGATGCCGGAACGCGG | 148 |
luxS-R | CGGCGTACCAATCAGGCTC | |
wabG-F | CGGACTGGCAGATCCATATC | 683 |
wabG-R | ACCATCGGCCATTTGATAGA | |
fimH-F | GCTCTGGCCGATACCACCACGG | 423 |
fimH-R | GCGAAGTAACGTGCCTGGAACGG |
Strain Number | Inhibition Zone Diameter (mm) | Strain Number | Inhibition Zone Diameter (mm) |
---|---|---|---|
TJ-3 | 21.70 ± 0.29 | Tie-36 | 21.92 ± 0.42 |
TJ-12 | 23.47 ± 0.30 | qe-15 | 18.75 ± 0.43 |
TJ-31 | 23.78 ± 0.17 | qe-35 | 23.09 ± 0.91 |
TJ-40 | 21.61 ± 0.59 | qe-45 | 23.64 ± 0.29 |
TJ-62 | 23.19 ± 0.27 | C-7 | 21.96 ± 0.64 |
Tie-10 | 25.22 ± 0.27 | HB-12 | 23.36 ± 0.39 |
Pathogen | Inhibition Zone Diameter (mm) | Pathogen | Inhibition Zone Diameter (mm) |
---|---|---|---|
Klebsiella pneumoniae | 25.41 ± 0.44 | Pseudomonas aeruginosa | 16.92 ± 1.09 |
Escherichia coli | 25.25 ± 0.12 | Acinetobacter baumannii | 16.63 ± 0.54 |
Salmonella typhimurium | 22.95 ± 0.37 | Enterococcus faecium | 15.73 ± 0.77 |
Staphylococcus aureus | 17.12 ± 0.95 | ESBL E.coli | 22.11 ± 0.66 |
Vibrio parahaemolyticu | 16.97 ± 0.67 | MRSA | 16.22 ± 0.14 |
Concentration of Crude Extract (mg/mL) | OD600 | Concentration of Crude Extract (mg/mL) | OD600 |
---|---|---|---|
3.125 | 0.097 ± 0.003 | 0.049 | 0.348 ± 0.059 |
1.56 | 0.100 ± 0.005 | 0.024 | 0.385 ± 0.064 |
0.78 | 0.118 ± 0.009 | 0.012 | 0.499 ± 0.036 |
0.39 | 0.149 ± 0.016 | Negative control | 0.047 ± 0.003 |
0.195 | 0.188 ± 0.029 | Positive control | 0.626 ± 0.011 |
0.098 | 0.262 ± 0.077 | - | - |
Concentration of Crude Extract | OD590 | Inhibition Rate (%) |
---|---|---|
0 MIC | 1.348 ± 0.035 | - |
1/2 MIC | 1.225 ± 0.048 | 9.12% |
1 MIC | 0.840 ± 0.043 | 37.69% |
2 MIC | 0.652 ± 0.020 | 51.63% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Li, M.; Huang, Y.; Mao, Y.; Cai, S.; Yang, X.; Hou, X.; Wang, L.; Quan, C.; Jin, L. Optimization of Fermentation Conditions for Antarctic Bacteria and Investigation of Its Antimicrobial Mechanism Against Klebsiella pneumoniae. Microorganisms 2025, 13, 2027. https://doi.org/10.3390/microorganisms13092027
Xu L, Li M, Huang Y, Mao Y, Cai S, Yang X, Hou X, Wang L, Quan C, Jin L. Optimization of Fermentation Conditions for Antarctic Bacteria and Investigation of Its Antimicrobial Mechanism Against Klebsiella pneumoniae. Microorganisms. 2025; 13(9):2027. https://doi.org/10.3390/microorganisms13092027
Chicago/Turabian StyleXu, Lukai, Mengyu Li, Yangzhu Huang, Yuanchao Mao, Shouyuan Cai, Xinyuan Yang, Xiyan Hou, Lulu Wang, Chunshan Quan, and Liming Jin. 2025. "Optimization of Fermentation Conditions for Antarctic Bacteria and Investigation of Its Antimicrobial Mechanism Against Klebsiella pneumoniae" Microorganisms 13, no. 9: 2027. https://doi.org/10.3390/microorganisms13092027
APA StyleXu, L., Li, M., Huang, Y., Mao, Y., Cai, S., Yang, X., Hou, X., Wang, L., Quan, C., & Jin, L. (2025). Optimization of Fermentation Conditions for Antarctic Bacteria and Investigation of Its Antimicrobial Mechanism Against Klebsiella pneumoniae. Microorganisms, 13(9), 2027. https://doi.org/10.3390/microorganisms13092027