Whole-Genome-Sequencing Analysis of the Pathogen Causing Spotting Disease and Molecular Response in the Strongylocentrotus intermedius
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Animals
2.2. Strain Isolation and Identification
2.3. Drug Sensitivity Test of Isolated Strains
2.4. Experimental Infection on V. splendidus
2.5. Whole-Genome Sequencing and Analysis
2.6. Genome Functional Annotation
2.7. Libraries Construction and High-Throughput Sequencing
2.8. Transcriptome Assembly and Annotation
2.9. Real-Time Fluorescent PCR (qRT-PCR) Gene Validation
3. Results
3.1. Pathogenic Bacterium of Sea Urchin Spotting Disease
3.2. Results of Experimental Infection on V. splendidus
3.3. Whole-Genome Sequencing Analysis of HZ-3-2
3.3.1. Genome Assembly
3.3.2. NR Database Annotation
3.3.3. Database Annotation
3.4. Results of Drug Susceptibility Testing of V. splendidus
3.5. Transcriptome Analysis of Sea Urchins Infected with V. splendidus in Different Ways
3.5.1. Transcriptomic Data Quality Control Information
3.5.2. Statistical Analysis of Differentially Expressed Genes
3.5.3. KEGG Pathway Classification Analysis
3.5.4. KEGG Pathway Enrichment Analysis
3.6. Transcriptome Quality Analysis Based on qRT-PCR Verification
4. Discussion
4.1. V. splendidus Is the Pathogen of S. intermedius Spotting Disease
4.2. Spotting Disease Prevention and Treatment Recommendations
4.3. Molecular Responses of Sea Urchins Infected with V. splendidus
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DEGs | Differentially expressed genes |
UV | Ultraviolet |
NA | Nutrient Agar |
PCR | Polymerase Chain Reaction |
HGAP | Hierarchical Genome Assembly Process |
COG | Cluster of Orthologous Groups |
NR | non-redundant |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
GO | Gene Ontology |
CARD | Comprehensive Antibiotic Resistance Database |
RCA | rolling circle amplification |
DNABs | DNA nanoballs |
PE | Paired-end |
DEGSeq | Differentially Expressed Genes from RNA-seq data |
FDR | false discovery rate |
qRT-PCR | Real-Time Fluorescent PCR |
Q20 | Ratio of bases with mass values >20 |
Q30 | Ratio of bases with mass values >30 |
References
- Hao, P.; Han, L.; Quan, Z.; Jin, X.; Li, Y.; Wu, Y.; Zhang, X.; Wang, W.; Gao, C.; Wang, L. Integrative mRNA-miRNA interaction analysis associated with the immune response of Strongylocentrotus intermedius to Vibrio harveyi infection. Fish Shellfish Immunol. 2023, 134, 108577. [Google Scholar] [CrossRef]
- Dai, F.; Zhuang, Q.; Zhao, X.; Shao, Y.; Guo, M.; Lv, Z.; Li, C.; Han, Q.; Zhang, W. Green fluorescent protein-tagged Vibrio splendidus for monitoring bacterial infection in the sea cucumber Apostichopus japonicus. Aquaculture 2020, 523, 735169. [Google Scholar] [CrossRef]
- Li, R.; Dang, H.; Huang, Y.; Quan, Z.; Jiang, H.; Zhang, W.; Ding, J. Vibrio coralliilyticus as an agent of red spotting disease in the sea urchin Strongylocentrotus intermedius. Aquac. Rep. 2019, 16, 100244. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs; China Fisheries Society. China Fishery Statistical Yearbook; China Statistics Press: Beijing, China, 2024; Volume 978, p. 3, (In Chinese). [Google Scholar] [CrossRef]
- Lawrence, J.M.; Zhao, C.; Chang, Y. Large-scale production of sea urchin (Strongylocentrotus intermedius) seed in a hatchery in China. Aquac. Int. 2019, 27, 1–7. [Google Scholar] [CrossRef]
- James, P.; Siikavuopio, S.; Mortensen, A. Sea urchin aquaculture in Norway. In Echinoderm Aquaculture; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 147–173. [Google Scholar]
- Rogier, T.T. An Integrated Assessment of the Red Sea Urchin (Strongylocentrotus franciscanus) Fisheries in Southern California and Washington State: Addressing Sustainability and Vulnerability in the face of Climate Change. Environmental Science, Biology. Master’s Thesis, University of Washington, Seattle, WA, USA, 2016. Available online: http://hdl.handle.net/1773/36739 (accessed on 5 July 2025).
- Angwin, R.E.; Hentschel, B.T.; Anderson, T.W. Gonad enhancement of the purple sea urchin, Strongylocentrotus purpuratus, collected from barren grounds and fed prepared diets and kelp. Aquac. Int. 2022, 30, 1353–1367. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Dvoretsky, V.G. Aquaculture of green sea urchin in the Barents Sea: A brief review of Russian studies. Rev. Aquac. 2020, 12, 2080–2090. [Google Scholar] [CrossRef]
- Dvoretsky, A.G.; Dvoretsky, V.G. Distribution patterns and biological aspects of Strongylocentrotus droebachiensis (Echinoidea: Echinoida) in Russian waters of the Barents Sea: Implications for commercial exploration. Rev. Fish Biol. Fish. 2024, 34, 1215–1229. [Google Scholar] [CrossRef]
- Rogers-Bennett, L.; Okamoto, D. Mesocentrotus franciscanus and Strongylocentrotus purpuratus. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2020; Volume 43, pp. 593–608. [Google Scholar]
- Wang, B.; Li, Y.; Li, X.; Qu, J.; Zhao, X. Pathogenic mechanism of causative Vibrio found in “red spotting” diseased sea urchin Strongylocentrotus intermedius. J. Dalian Ocean Univ. 2005, 20, 11–15. (In Chinese) [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Li, X.; Chen, H.; Liu, M.; Kong, Y. Biological characteristic and pathogenicity of the pathogenic vibrio on the “red spot disease” of Strongylocentrotus intermedius. J. Fish. China 2006, 30, 371–376. (In Chinese) [Google Scholar]
- Wang, L.; He, B.; Chang, Y.; Ding, J. Characterization of the bacterial community associated with red spotting disease of the echinoid Strongylocentroyus intermedius. Aquaculture 2020, 529, 735606. [Google Scholar] [CrossRef]
- Tajima, K.; Hirano, T.; Shimizu, M.; Ezura, Y. Isolation and pathogenicity of the causative bacterium of spotting disease of sea urchin Strongylocentrotus intermedius. Fish. Sci. 1997, 63, 249–252. [Google Scholar] [CrossRef]
- Masuda, Y.; Tajima, K.; Ezura, Y. Resuscitation of Tenacibaculum sp., the causative bacterium of spotting disease of sea urchin Strongylocentroutus intermedius, from the viable but non-culturable state. Fish. Sci. 2004, 70, 277–284. [Google Scholar] [CrossRef]
- Fan, Y.; Wang, X.; Wang, Y.; Liu, H.; Yu, X.; Li, L.; Ye, H.; Wang, S.; Gai, C.; Xu, L. Potential effects of dietary probiotics with Chinese herb polysaccharides on the growth performance, immunity, disease resistance, and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). J. World Aquac. Soc. 2021, 52, 1194–1208. [Google Scholar] [CrossRef]
- Rengpipat, S.; Rukpratanporn, S.; Piyatiratitivorakul, S.; Menasaveta, P. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 2000, 191, 271–288. [Google Scholar] [CrossRef]
- Chattaraj, S.; Ganguly, A.; Mandal, A.; Das Mohapatra, P. A review of the role of probiotics for the control of viral diseases in aquaculture. Aquac. Int. 2022, 30, 2513–2539. [Google Scholar] [CrossRef]
- Munang’andu, H.; Mutoloki, S.; Evensen, Ø. Prevention and control of viral diseases in aquaculture. In Aquaculture Virology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–93. [Google Scholar]
- Huang, P.; Cheng, J.; Feng, W.; Lei, M.; Zhou, W.; Zhao, Q.; Lu, Y.; Deng, G. Identification and antibiotic sensitivity of a pathogenic Aeromonas veronii from Ctenopharyngodon idellus. Genom. Appl. Biol. 2021, 40, 2047–2053. (In Chinese) [Google Scholar] [CrossRef]
- Hao, P.; Ding, B.; Han, L.; Xie, J.; Wu, Y.; Jin, X.; Zhang, X.; Wang, W.; Wang, L.; Zhang, W. Gene expression patterns of sea urchins (Strongylocentrotus intermedius) exposed to different combinations of temperature and hypoxia. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 41, 100953. [Google Scholar] [CrossRef]
- Wang, P.; Wang, J.; Su, Y.; Mao, Y.; Zhang, J.; Wu, C.; Ke, Q.; Han, K.; Zheng, W. Transcriptome analysis of the Larimichthys crocea liver in response to Cryptocaryon irritans. Fish Shellfish Immunol. 2016, 48, 1–11. [Google Scholar] [CrossRef]
- Silvaraj, S.; Yasin, I.; Karim, M.; Saad, M. Transcriptome analysis of immune response in recombinant cell vaccine expressing OmpK vaccinated juvenile seabass (lates calcarifer) head kidney against vibrio harveyi infection. Aquac. Rep. 2021, 21, 100799. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, Z.; Leng, X.; Jiang, H.; Liu, L.; Li, C.; Chang, Y. Transcriptome sequencing reveals phagocytosis as the main immune response in the pathogen-challenged sea urchin Strongylocentrotus intermedius. Fish Shellfish Immunol. 2019, 94, 780–791. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Yamamoto, F.; Low, C.; Loh, J.; Chong, C. Gut immune system and the implications of oral-administered immunoprophylaxis in finfish aquaculture. Front. Immunol. 2021, 12, 773193. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef]
- Tanaka, M.; Hongyu, B.; Jiang, C.; Mino, S.; Meirelles, P.M.; Thompson, F.; Gomez-Gil, B.; Sawabe, T. Vibrio taketomensis sp. nov. by genome taxonomy. Syst. Appl. Microbiol. 2020, 43, 126048. [Google Scholar] [CrossRef]
- Limin, F.; Beifang, N.; Zhengwei, Z.; Sitao, W.; Weizhong, L. CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 2012, 28, 3150–3152. [Google Scholar]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Alvarez, R.V.; Landsman, D.; Koonin, E.V. COG database update: Focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2020, 49, D274–D281. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.; Blake, J.; Botstein, D.; Butler, H.; Cherry, J.; Davis, A.; Dolinski, K.; Dwight, S.; Eppig, J.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Minoru, K.; Susumu, G.; Shuichi, K.; Yasushi, O.; Masahiro, H. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004, 32, D277–D280. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Ye, Q.; Gao, C.; Xiao, H.; Ruan, S.; Wang, Y.; Li, X.; Chang, Y.; Zhao, C.; Wang, H.; Han, B. Feeding Behavior, Gut Microbiota, and Transcriptome Analysis Reveal Individual Growth Differences in the Sea Urchin Strongylocentrotus intermedius. Biology 2024, 13, 705. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Y.; Shi, C.; Huang, Z.; Zhang, Y.; Li, S.; Li, Y.; Ye, J.; Yu, C.; Li, Z. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2018, 7, gix120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef]
- Han, L.; Ding, J.; Wang, H.; Zuo, R.; Quan, Z.; Fan, Z.; Liu, Q.; Chang, Y. Molecular characterization and expression of SiFad1 in the sea urchin (Strongylocentrotus intermedius). Gene 2019, 705, 133–141. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Busse, H.; Denner, E.; Lubitz, W. Classification and identification of bacteria: Current approaches to an old problem. Overview of methods used in bacterial systematics. J. Biotechnol. 1996, 47, 3–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, Y.; Wang, H.; Zhou, Q.; Zhu, J.; Chang, Y.; Cui, Y.; Qiu, X. Phylogenetic analysis of four Vibrio strains of pathogenic bacteria based on hemolysin genes and 16S rRNA genes. In Proceedings of the 2009 3rd International Conference on Bioinformatics and Biomedical Engineering, Beijing, China, 11–13 June 2009; pp. 1–4. [Google Scholar]
- Chuang, G.; Jiayang, L.; Lingshu, H.; Chao, G.; Xianglei, Z.; Luo, W.; Weijie, Z.; Yaqing, C.; Jun, D. Structural Characteristics of Bacterial Flora in Coelomatic Fluid of Sea Urchin with. Chin. J. Fish. 2023, 36, 14. (In Chinese) [Google Scholar]
- Thomson, R.; Macpherson, H.; Riaza, A.; Birkbeck, T. Vibrio splendidus biotype 1 as a cause of mortalities in hatchery-reared larval turbot, Scophthalmus maximus (L.). J. Appl. Microbiol. 2005, 99, 243–250. [Google Scholar] [CrossRef]
- Rørbo, N.; Rønneseth, A.; Kalatzis, P.G.; Rasmussen, B.B.; Engell-Sørensen, K.; Kleppen, H.P.; Wergeland, H.I.; Gram, L.; Middelboe, M. Exploring the effect of phage therapy in preventing Vibrio anguillarum infections in cod and turbot larvae. Antibiotics 2018, 7, 42. [Google Scholar] [CrossRef]
- Lacoste, A.; Jalabert, F.; Malham, S.; Cueff, A.; Gelebart, F.; Cordevant, C.; Lange, M.; Poulet, S. A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). Dis. Aquat. Org. 2001, 46, 139–145. [Google Scholar] [CrossRef]
- Song, T.; Liu, H.; Lv, T.; Zhao, X.; Shao, Y.; Han, Q.; Li, C.; Zhang, W. Characteristics of the iron uptake-related process of a pathogenic Vibrio splendidus strain associated with massive mortalities of the sea cucumber Apostichopus japonicus. J. Invertebr. Pathol. 2018, 155, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Egan, S.; Gardiner, M. Microbial dysbiosis: Rethinking disease in marine ecosystems. Front. Microbiol. 2016, 7, 991. [Google Scholar] [CrossRef] [PubMed]
- Mougin, J.; Joyce, A. Fish disease prevention via microbial dysbiosis-associated biomarkers in aquaculture. Rev. Aquac. 2023, 15, 579–594. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, W.; Jing, C.; Wang, H.; Zhao, S.; Zhou, M.; Chang, Y. Long-term effects of stocking density on survival, growth performance and marketable production of the sea urchin Strongylocentrotus intermedius. Aquac. Int. 2016, 24, 1323–1339. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, X.; Jiang, H.; Wang, Z.; Wang, B.; Zhan, Y.; Qi, S.; Chang, Y. Interactive effects of family and stocking density on survival and growth of the sea urchin Strongylocentrotus intermedius. J. World Aquac. Soc. 2019, 50, 969–982. [Google Scholar] [CrossRef]
- Hu, F.; Yang, M.; Chi, X.; Ding, P.; Sun, J.; Wang, H.; Yu, Y.; Chang, Y.; Zhao, C. Segregation in multi-layer culture avoids precocious puberty, improves thermal tolerance and decreases disease transmission in the juvenile sea urchin Strongylocentrotus intermedius: A new approach to longline culture. Aquaculture 2021, 543, 736956. [Google Scholar] [CrossRef]
- Chi, X.; Huang, X.; Hu, F.; Yang, M.; Yin, D.; Tian, R.; Li, X.; Chang, Y.; Zhao, C. Transmission of black mouth disease shed light on the aquaculture management of the sea urchin Strongylocentrotus intermedius. Aquaculture 2022, 549, 737788. [Google Scholar] [CrossRef]
- Announcement of the Ministry of Agriculture of the People’s Republic of China (No. 560). Gaz. Minist. Agric. People’s Repub. China 2005, 40, 40. (In Chinese)
- Announcement of the Ministry of Agriculture of the People’s Republic of China (No. 2292). Gaz. Minist. Agric. People’s Repub. China 2005, 49, 40. (In Chinese)
- Lei, Y.; Dan, L.; Xin-Hua, W.; Yunkun, W.; Bo, Z.; Mingyu, W.; Hai, X. Bacterial plasmid-mediated quinolone resistance genes in aquatic environments in China. Sci. Rep. 2017, 7, 40610. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; McArthur, J.V.; Lindell, A.H.; Wright, M.S.; Tuckfield, R.C.; Gooch, J.; Warner, L.; Oliver, J.; Stepanauskas, R. Multi-site analysis reveals widespread antibiotic resistance in the marine pathogen Vibrio vulnificus. Microb. Ecol. 2009, 57, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Li, Y.; Shi, W.; Zhang, W.; Han, Q. Ajpacifastin-like is involved in the immune response of Apostichopus japonicus challenged by Vibrio splendidus. Fish Shellfish Immunol. 2023, 140, 108997. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Liu, L.; Leng, X.; Gao, H.; Jiang, H.; Chang, Y. Effects of artificial challenge of black mouth disease pathogen on phagocytosis related immune parameters in sea urchin Strongylocentrotus intermedius. J. Dalian Ocean Univ. 2021, 36, 241–247. (In Chinese) [Google Scholar] [CrossRef]
- Zheng, J.; Wang, D.; Chen, X.; Song, H.; Xiang, L.; Yu, H.; Peng, L.; Zhu, Q. Nutritional-status dependent effects of microplastics on activity and expression of alkaline phosphatase and alpha-amylase in Brachionus rotundiformis. Sci. Total Environ. 2022, 806, 150213. [Google Scholar] [CrossRef]
- Brayer, G.D.; Sidhu, G.; Maurus, R.; Rydberg, E.H.; Braun, C.; Wang, Y.; Nguyen, N.T.; Overall, C.M.; Withers, S.G. Subsite mapping of the human pancreatic α-amylase active site through structural, kinetic, and mutagenesis techniques. Biochemistry 2000, 39, 4778–4791. [Google Scholar] [CrossRef]
- Nichols, B.L.; Avery, S.; Sen, P.; Swallow, D.M.; Hahn, D.; Sterchi, E. The maltase-glucoamylase gene: Common ancestry to sucrase-isomaltase with complementary starch digestion activities. Proc. Natl. Acad. Sci. USA 2003, 100, 1432–1437. [Google Scholar] [CrossRef]
- Lee, B.; Rose, D.; Lin, A.H.; Quezada-Calvillo, R.; Nichols, B.; Hamaker, B. Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides. J. Agric. Food Chem. 2016, 64, 6487–6494. [Google Scholar] [CrossRef]
- Infante, R.E.; Wang, M.L.; Radhakrishnan, A.; Kwon, H.J.; Brown, M.S.; Goldstein, J.L. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 2008, 105, 15287–15292. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Abi-Mosleh, L.; Wang, M.L.; Deisenhofer, J.; Goldstein, J.L.; Brown, M.S.; Infante, R.E. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 2009, 137, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Yanagisawa, R.; He, C.; Asai, A.; Hellwig, M.; Henle, T.; Toda, M. The impacts of cholesterol, oxysterols, and cholesterol lowering dietary compounds on the immune system. Int. J. Mol. Sci. 2022, 23, 12236. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Fatemi, S.; Ghaheri, M.; Rezvani, A.; Khezri, D.; Natami, M.; Yasamineh, S.; Gholizadeh, O.; Bahmanyar, Z. An overview of the role of Niemann-pick C1 (NPC1) in viral infections and inhibition of viral infections through NPC1 inhibitor. Cell Commun. Signal. 2023, 21, 352. [Google Scholar] [CrossRef] [PubMed]
Type | Concentration μg/Disk | Inhibition Zone Standard Value | Diameter of the Inhibition Zone/mm | ||
---|---|---|---|---|---|
R | I | S | |||
Ceftazidime | 30 | ≤14 | 15–17 | ≥18 | 27.36 (S) |
Ciprofloxacin | 5 | ≤15 | 16–20 | ≥21 | 22.07 (S) |
Doxycycline | 30 | ≤12 | 13–15 | ≥16 | 23.82 (S) |
Enoxacin | 5 | ≤15 | 16–20 | ≥21 | 26.91 (S) |
Erythromycin | 15 | ≤13 | 14–22 | ≥23 | 14.50 (I) |
Florfenicol | 30 | ≤12 | 13–17 | ≥18 | 28.60 (S) |
Ofloxacin | 5 | ≤12 | 13–15 | ≥16 | 11.63 (R) |
Polymyxin | 300 | ≤8 | 8–11 | ≥12 | 19.13 (S) |
Rifampin | 5 | ≤16 | 17–19 | ≥20 | 19.97 (I) |
Streptomycin | 10 | ≤11 | 12–14 | ≥15 | 20.93 (S) |
Chloramphenicol | 30 | ≤12 | 13–17 | ≥18 | 15.30 (I) |
Gentamicin | 10 | ≤12 | 13–14 | ≥15 | 27.52 (S) |
Levofloxacin | 5 | ≤13 | 14–16 | ≥17 | 28.83 (S) |
Norfloxacin | 10 | ≤12 | 13–16 | ≥17 | 21.36 (S) |
Penicillin | 10 | ≤19 | 20–27 | ≥28 | 23.77 (I) |
Tetracycline | 30 | ≤14 | 15–18 | ≥19 | 13.85 (R) |
TMP-SMX | 1.25 | ≤10 | 11–15 | ≥16 | 23.33 (S) |
Vancomycin | 30 | ≤14 | 15–16 | ≥17 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Tian, F.; Wang, Y.; Xiao, H.; Zhou, Z.; Cao, L.; Han, L.; Sun, J.; Zhao, C.; Ding, J. Whole-Genome-Sequencing Analysis of the Pathogen Causing Spotting Disease and Molecular Response in the Strongylocentrotus intermedius. Microorganisms 2025, 13, 2019. https://doi.org/10.3390/microorganisms13092019
Li S, Tian F, Wang Y, Xiao H, Zhou Z, Cao L, Han L, Sun J, Zhao C, Ding J. Whole-Genome-Sequencing Analysis of the Pathogen Causing Spotting Disease and Molecular Response in the Strongylocentrotus intermedius. Microorganisms. 2025; 13(9):2019. https://doi.org/10.3390/microorganisms13092019
Chicago/Turabian StyleLi, Shufeng, Fenglin Tian, Yongjie Wang, Haoran Xiao, Zijie Zhou, Lina Cao, Lingshu Han, Junxiao Sun, Chong Zhao, and Jun Ding. 2025. "Whole-Genome-Sequencing Analysis of the Pathogen Causing Spotting Disease and Molecular Response in the Strongylocentrotus intermedius" Microorganisms 13, no. 9: 2019. https://doi.org/10.3390/microorganisms13092019
APA StyleLi, S., Tian, F., Wang, Y., Xiao, H., Zhou, Z., Cao, L., Han, L., Sun, J., Zhao, C., & Ding, J. (2025). Whole-Genome-Sequencing Analysis of the Pathogen Causing Spotting Disease and Molecular Response in the Strongylocentrotus intermedius. Microorganisms, 13(9), 2019. https://doi.org/10.3390/microorganisms13092019