High-Value Bioactive Molecules Extracted from Microalgae
Abstract
1. Introduction
2. Types of Bioactive Compounds: High-Value Primary Metabolites
2.1. Proteins
2.2. Lipids
2.3. Polysaccharides
3. Types of Bioactive Compounds: High-Value Secondary Metabolites of Microalgae
4. Perspectives
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DHA | Docosahexaenoic acid |
EPA | Eicosapentaenoic acid |
FA | Fatty acid |
MAE | Microwave-assisted extraction |
PS | Polysaccharides |
PUFA | Polyunsaturated fatty acid |
SFE | Supercritical fluid extraction |
References
- Patel, A.K.; Joun, J.M.; Hong, M.E. Effect of light conditions on mixotrophic cultivation of green microalgae. Bioresour. Technol. 2019, 282, 245–253. [Google Scholar] [CrossRef]
- Fernandes, T.; Cordeiro, N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar. Drugs 2022, 19, 573. [Google Scholar] [CrossRef]
- Eze, C.N.; Aoyagi, H.; Ogbonna, J.C. Simultaneous accumulation of lipid and carotenoid in freshwater green microalgae Desmodesmus subspicatus LC172266 by nutrient replete strategy under mixotrophic condition. Korean J. Chem. Eng. 2020, 37, 1522–1529. [Google Scholar] [CrossRef]
- Occhipinti, P.S.; Russo, N.; Foti, P.; Zingale, I.M.; Pino, A.; Romeo, F.V.; Randazzo, C.L.; Caggia, C. Current challenges of microalgae applications: Exploiting the potential of non-conventional microalgae species. J. Sci. Food Agric. 2023, 104, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Barsanti, L.; Gualtieri, P. Algae: Anatomy, Biochemistry, and Biotechnology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Eze, C.N.; Ogbonna, I.O.; Aoyagi, H.; Ogbonna, J.C. Comparison of growth, protein and carotenoid contents of some freshwater microalgae and effects of urea and cultivation in a photobioreactor with reflective broth circulation guide on Desmodesmus subspicatus LC172266. Braz. J. Chem. Eng. 2021, 39, 23–33. [Google Scholar] [CrossRef]
- Miguel, S.P.; Ribeiro, M.P.; Otero, A.; Coutinho, P. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Res. 2021, 58, 102395. [Google Scholar] [CrossRef]
- Barsanti, L.; Gualtieri, P. Glucans, Paramylon and Other Algae Bioactive Molecules. Int. J. Mol. Sci. 2023, 24, 5844. [Google Scholar] [CrossRef]
- Blockchain Market Worth $67.4 Billion by 2026—Report by MarketsandMarkets™. Available online: https://www.marketsandmarkets.com/PressReleases/algae-product.asp (accessed on 26 May 2025).
- Sathasivam, R.; Radhakrishnan, R.; Hashem, A. Microalgae metabolites: A rich source for food and medicine. Saudi J. Biol. Sci. 2019, 26, 709–722. [Google Scholar] [CrossRef]
- Hassan, S.; Meenatchi, R.; Pachillu, K.; Bansal, S.; Brindangnanam, P.; Arockiaraj, J.; Kiran, G.S.; Selvin, J. Identification and characterization of the novel bioactive compounds from microalgae and cyanobacteria for pharmaceutical and nutraceutical applications. J. Basic Microbiol. 2023, 62, 999–1029. [Google Scholar] [CrossRef]
- Silva, S.C.; Almeida, T.; Colucci, G.; Santamaria-Echart, A.; Manrique, Y.A.; Dias, M.M.; Barros, L.; Fernandes, A.; Colla, E.; Barreiro, M.F. Spirulina (Arthrospira platensis) protein-rich extract as a natural emulsifier for oil-in-water emulsions: Optimization through a sequential experimental design strategy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129264. [Google Scholar] [CrossRef]
- Acquah, C.; Ekezie, F.G.; Udenigwe, C.C. Cultured Microalgae for the Food Industry: Current and Potential Applications; Academic Press: Oxford, UK, 2021; pp. 97–126. [Google Scholar]
- Kumar, R.; Hegde, A.S.; Sharma, K.; Parmar, P.; Srivatsan, V. Microalgae as a sustainable source of edible proteins and bioactive peptides—Current trends and future prospects. Food Res. Int. 2022, 157, 111338. [Google Scholar] [CrossRef] [PubMed]
- García-Encinas, J.P.; Ruiz-Cruz, S.; Juárez, J.; Ornelas-Paz, J.d.J.; Del Toro-Sánchez, C.L.; Márquez-Ríos, E. Proteins from Microalgae: Nutritional, Functional and Bioactive Properties. Foods 2025, 14, 921. [Google Scholar] [CrossRef] [PubMed]
- Siahbalaei, R.; Kavoosi, G.; Noroozi, M. Protein nutritional quality, amino acid profile, anti-amylase and anti-glucosidase properties of microalgae: Inhibition and mechanisms of action through in vitro and in silico studies. LWT—Food Sci. Technol. 2021, 150, 112023. [Google Scholar] [CrossRef]
- Wu, J.; Gu, X.; Yang, D.; Xu, S.; Wang, S.; Chen, X.; Wang, Z. Bioactive substances and potentiality of marine microalgae. Food Sci. Nutr. 2021, 9, 5279–5292. [Google Scholar] [CrossRef]
- Eilam, Y.; Khattib, H.; Pintel, N.; Avni, D. Microalgae-Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob. Chall. 2023, 7, 2200177. [Google Scholar] [CrossRef]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs. Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef]
- Cunha, S.A.; Coscueta, E.R.; Nova, P.; Silva, J.L.; Pintado, M.M. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules 2022, 27, 2505. [Google Scholar] [CrossRef]
- Callejo-López, J.A.; Ramírez, M.; Bolívar, J.; Cantero, D. Main variables affecting a chemical-enzymatic method to obtain protein and amino acids from resistant microalgae. J. Chem. 2019, 2019, 1390463. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hosano, N.; Hosano, H. Recovering microalgal bioresources: A review of cell disruption methods and extraction technologies. Molecules 2022, 27, 2786. [Google Scholar] [CrossRef]
- Safi, C.; Frances, C.; Ursu, A.V.; Laroche, C.; Pouzet, C.; Vaca-Garcia, C.; Pontalier, P.Y. Understanding the effect of cell disruption methods on the diffusion of Chlorella vulgaris proteins and pigments in the aqueous phase. Algal Res. 2015, 8, 61–68. [Google Scholar] [CrossRef]
- Postma, P.R.; Miron, T.L.; Olivieri, G.; Barbosa, M.J.; Wijffels, R.H.; Eppink, M.H.M. Mild disintegration of the green microalgae Chlorella vulgaris using bead milling. Bioresour. Technol. 2015, 184, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Günerken, E.; D’Hondt, E.; Eppink, M.H.; Garcia-Gonzalez, L.; Elst, K.; Wijffels, R.H. Cell disruption for microalgae biorefineries. Biotechnol. Adv. 2015, 33, 243–260. [Google Scholar] [CrossRef] [PubMed]
- Amiri, M.; Hosseini, S.E.; Asadi, G.; Khayambashi, B.; Abedinia, A. Optimization of microalgae protein extraction from Scenedesmus obliquus and investigating its functional properties. LWT—Food Sci. Technol. 2024, 198, 116028. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Mao, X.; Qi, P.; Zhang, X. Anti-inflammatory and anti-aging evaluation of pigment-protein complex extracted from Chlorella pyrenoidosa. Mar. Drugs 2019, 17, 586. [Google Scholar] [CrossRef]
- Mendes Costa, M.; Pinheiro Spínola, M.; Diogo Alves, V.; Mestre Prates, J.A. Improving protein extraction and peptide production from Chlorella vulgaris using combined mechanical/physical and enzymatic pre-treatments. Heliyon 2024, 10, 2405–8440. [Google Scholar] [CrossRef]
- Martínez-Sanz, M.; Garrido-Fernández, A.; Mijlkovic, A.; Krona, A.; Martínez-Abad, A.; Coll-Marqués, J.M.; López-Rubio, A.; Lopez-Sanchez, P. Composition and rheological properties of microalgae suspensions: Impact of ultrasound processing. Algal Res. 2020, 49, 101960. [Google Scholar] [CrossRef]
- Menegazzo, M.L.; Fonseca, G.G. Biomass recovery and lipid leaching processes for microalgae biofuels production: A review. Renew. Sustain. Energy Rev. 2019, 107, 87–107. [Google Scholar] [CrossRef]
- Dolganyuk, V.; Belova, D.; Babich, O.; Prosekov, A.; Ivanova, S.; Katserov, D.; Patyukov, N.; Sukhikh, S. Microalgae: A Promising Source of Valuable Bioproducts. Biomolecules 2020, 10, 1153. [Google Scholar] [CrossRef]
- Leal, E.; de Beyer, L.; O’Connor, W.; Dove, M.; Ralph, P.J.; Pernice, M. Production optimisation of Tisochrysis lutea as a live feed for juvenile Sydney rock oysters, Saccostrea glomerata, using large-scale photobioreactors. Aquaculture 2021, 533, 736077. [Google Scholar] [CrossRef]
- Nascimento, T.C.; Cazarin, C.B.B.; Maróstica, M.R.; Mercadante, A.Z.; Jacob-Lopes, E.; Zepka, L.Q. Microalgae carotenoids intake: Influence on cholesterol levels, lipid peroxidation and antioxidant enzymes. Food Res. Int. 2020, 128, 108770. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Manning, microalgae for high-value products towards human health and nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef] [PubMed]
- Arun, J.; Gopinath, K.P.; SundarRajan, P.; Felix, V.; JoselynMonica, M.; Malolan, R. A conceptual review on microalgae biorefinery through thermochemical and biological pathways: Bio-circular approach on carbon capture and wastewater treatment. Bioresour. Technol. Rep. 2020, 11, 100477. [Google Scholar] [CrossRef]
- Li, X.P.; Liu, J.P.; Chen, G.Y.; Zhang, J.G.; Wang, C.B.; Liu, B. Extraction and purification of eicosapentaenoic acid and docosahexaenoic acid from microalgae: A critical review. Algal Res. Biomass Biofuels Bioprod. 2019, 43, 101619. [Google Scholar] [CrossRef]
- Sharma, A.K.; Chintala, V.; Ghodke, P.; Prasher, P.; Patel, A. Extraction and purification of PUFA from microbial biomass. In Nutraceutical Fatty Acids from Oleaginous Microalgae; John Wiley and Sons: Hoboken, NJ, USA, 2020; pp. 249–279. [Google Scholar]
- Zhou, J.; Wang, M.; Saraiva, J.A.; Martins, A.P.; Pinto, C.A.; Prieto, M.A.; Simal-Gandara, J.; Cao, H.; Xiao, J.; Barba, F.J. Extraction of lipids from microalgae using classical and innovative approaches. Food Chem. 2022, 384, 132236. [Google Scholar] [CrossRef]
- Jesus, S.D.; Ferreira, G.F.; Moreira, L.S.; Regina, M.; Maciel, W.; Maciel, R. Comparison of several methods for effective lipid extraction from wet microalgae using green solvents. Renew. Energy 2019, 143, 130–141. [Google Scholar] [CrossRef]
- Nagappan, S.; Devendran, S.; Tsai, P.C.; Dinakaran, S.; Dahms, H.U.; Ponnusamy, V.K. Passive cell disruption lipid extraction methods of microalgae for biofuel production—A review. Fuel 2019, 252, 699–709. [Google Scholar] [CrossRef]
- Sallet, D.; Souza, P.O.; Fischer, L.T.; Ugalde, G.; Zabot, G.L.; Mazutti, M.A.; Kuhn, R.C. Ultrasound-assisted extraction of lipids from Mortierella isabellina. J. Food Eng. 2019, 242, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Wang, Z.; Sun, Y.; Zhu, S.; Li, L.; Lv, P. Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp. Renew. Energy 2018, 125, 1049–1057. [Google Scholar] [CrossRef]
- He, Y.; Zhang, B.; Guo, S.; Guo, Z.; Chen, B.; Wang, M. Sustainable biodiesel production from the green microalga Nannochloropsis: Novel integrated processes from cultivation to enzyme-assisted extraction and lipid ethanolysis. Energy Convers. Manag. 2020, 209, 112618. [Google Scholar] [CrossRef]
- Alavijeh, R.S.; Karimi, K.; Wijffels, R.H.; van den Berg, C.; Eppink, M. Combined bead milling and enzymatic hydrolysis for efficient fractionation of lipids, proteins, and carbohydrates of Chlorella vulgaris microalgae. Bioresour. Technol. 2020, 309, 123321. [Google Scholar] [CrossRef]
- Sierra, L.S.; Dixon, C.K.; Wilken, L.R. Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction. Algal Res. 2017, 25, 149–159. [Google Scholar] [CrossRef]
- Santin, A.; Russo, M.T.; Ferrante, M.I.; Balzano, S.; Orefice, I.; Sardo, A. Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture. Molecules 2021, 26, 7697. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef] [PubMed]
- Shnyukova, E.I.; Zolotareva, E.K. Ecological role of exopolysaccharides of Bacillariophyta: A review. Algologia 2017, 27, 22–44. [Google Scholar] [CrossRef]
- Chandrarathna, H.P.S.U.; Liyanage, T.D.; Edirisinghe, S.L.; Dananjaya, S.H.S.; Thulshan, E.H.T.; Nikapitiya, C.; Oh, C.; Kang, D.H.; De Zoysa, M. Marine Microalgae, Spirulina maxima-Derived Modified Pectin and Modified Pectin Nanoparticles Modulate the Gut Microbiota and Trigger Immune Responses in Mice. Mar. Drugs 2020, 18, 175. [Google Scholar] [CrossRef] [PubMed]
- Gaignard, C.; Gargouch, N.; Dubessay, P.; Delattre, C.; Pierre, G.; Laroche, C.; Fendri, I.; Abdelkafi, S.; Michaud, P. New horizons in culture and valorization of red microalgae. Biotechnol. Adv. 2019, 37, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Mahcene, Z.; Khelil, A.; Hasni, S.; Akman, P.K.; Bozkurt, F.; Birech, K. Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int. J. Biol. Macromol. 2020, 145, 124–132. [Google Scholar] [CrossRef]
- Patel, A.K.; Singhania, R.R.; Awasthi, M.K.; Varjani, S.; Bhatia, S.K.; Tsai, M.L. Emerging prospects of macro- and microalgae as prebiotic. Microb. Cell Fact. 2021, 20, 112. [Google Scholar] [CrossRef]
- Gouda, M.; Tadda, M.A.; Zhao, Y.; Farmanullah, F.; Chu, B.; Li, X.; He, Y. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front. Nutr. 2022, 9, 806692. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Lucas, B.F.; Alvarenga, A.G.P.; Moreira, J.B.; de Morais, M.G. Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications. Polysaccharides 2021, 2, 759–772. [Google Scholar] [CrossRef]
- Ma, M.; Li, Y.; Chen, J.; Wang, F.; Yuan, L.; Li, Y.; Zhang, B.; Ye, D.; Han, D.; Jin, H.; et al. High-Cell-Density Cultivation of the Flagellate Alga Poterioochromonas Malhamensis for Biomanufacturing the Water-Soluble β-1,3-Glucan with Multiple Biological Activities. Bioresour. Technol. 2021, 337, 125447. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, X.; Liu, M.; Zhao, X. Characterization and antibacterial activities of carboxymethylated paramylon from Euglena gracilis. Polymers 2022, 14, 3022. [Google Scholar] [CrossRef]
- Kumar, V.; Bhoyar, M.S.; Mohanty, C.S.; Chauhan, P.S.; Toppo, K.; Ratha, S.K. Untapping the potential of algae for β-glucan production: A review of biological properties, strategies for enhanced production and future perspectives. Carbohydr. Polym. 2025, 348, 122895. [Google Scholar] [CrossRef]
- Laroche, C. Exopolysaccharides from Microalgae and Cyanobacteria: Diversity of Strains, Production Strategies, and Applications. Mar. Drugs. 2022, 20, 336. [Google Scholar] [CrossRef]
- Liu, F.; Chen, H.; Qin, L.; Al-Haimi, A.A.N.M.; Xu, J.; Zhou, W.; Zhu, S.; Wang, Z. Effect and characterization of polysaccharides extracted from Chlorella sp. by hot-water and alkali extraction methods. Algal Res. 2023, 70, 102970. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, W.; Li, X.; Chen, X.; Wang, Y.; Huang, G.; Wang, J.; Jia, Z. Enzyme-assisted ultrasonic extraction and antioxidant activities of polysaccharides from Schizochytrium limacinum meal. Foods 2024, 13, 880. [Google Scholar] [CrossRef]
- Malvis, A.; Morales, J.J.P.; Klose, L.; Liese, A. Enzyme-assisted extraction of Ulvan from the green macroalgae Ulva fenestrata. Molecules 2023, 28, 6781. [Google Scholar] [CrossRef] [PubMed]
- Sanjeewa, K.K.A.; Herath, K.H.I.N.M.; Kim, Y.S.; Jeon, Y.J.; Kim, S.K. Enzyme-Assisted Extraction of Bioactive Compounds from Seaweeds and Microalgae. TrAC Trends Anal. Chem. 2023, 167, 117266. [Google Scholar] [CrossRef]
- Peng, H.; Xv, X.; Cui, X.; Fu, Y.; Zhang, S.; Wang, G.; Chen, X.; Song, W. Physicochemical Characterization and Antioxidant Activity of Polysaccharides from Chlorella sp. by Microwave-Assisted Enzymatic Extraction. Front. Bioeng. Biotechnol. 2023, 11, 1264641. [Google Scholar] [CrossRef] [PubMed]
- Gurpilhares, D.d.B.; Cinelli, L.P.; Simas, N.K.; Pessoa, A.; Sette, L.D. Marine Prebiotics: Polysaccharides and Oligosaccharides Obtained by Using Microbial Enzymes. Food Chem. 2019, 280, 175–186. [Google Scholar] [CrossRef]
- Tzima, S.; Georgiopoulou, I.; Louli, V.; Magoulas, K. Recent advances in supercritical CO2 extraction of pigments, lipids and bioactive compounds from microalgae. Molecules 2023, 28, 1410. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.T.; Johir, M.A.H.; Mahlia, T.M.I.; Silitonga, A.S.; Zhang, X.; Liu, Q.; Nghiem, L.D. Microalgae-derived biolubricants: Challenges and opportunities. Sci. Total Environ. 2024, 954, 176759. [Google Scholar] [CrossRef]
- Masi, A.; Leonelli, F.; Scognamiglio, V.; Gasperuzzo, G.; Antonacci, A.; Terzidis, M.A. Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules 2023, 28, 1185. [Google Scholar] [CrossRef] [PubMed]
- Ampofo, J.O.; Ngadi, M. Elicitación fenólica asistida por ultrasonidos y potencial antioxidante de los brotes de frijol común (Phaseolus vulgaris). Ultrasonido. Sonochem. 2020, 64, 1–11. [Google Scholar]
- Hamidi, M.; Kozani, P.S.; Kozani, P.S.; Pierre, G.; Michaud, P.; Delattre, C. Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications? Mar. Drugs 2019, 18, 28. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Y.; He, Y.; Liu, B.; Mou, H.; Chen, F.; Yang, S. Microalgae-Derived Pigments for the Food Industry. Mar. Drugs 2023, 21, 82. [Google Scholar] [CrossRef]
- Duppeti, H.; Chakraborty, S.; Das, B.S.; Mallick, N.; Kotamreddy, J. Rapid assessment of algal biomass and pigment contents using diffuse reflectance spectroscopy and chemometrics. Algal Res. 2017, 27, 274–285. [Google Scholar] [CrossRef]
- Faraloni, C.; Torzillo, G. Synthesis of Antioxidant Carotenoids in Microlagae in Response to Physiological Stress. In Carotenoids; Cvetkovic, D., Nikolic, G., Eds.; IntechOpen: London, UK, 2017; Chapter 9; pp. 143–157. [Google Scholar]
- Ngamwonglumlert, L.; Devahastin, S.; Chiewchan, N. Molecular structure, stability and cytotoxicity of natural green colorants produced from Centella asiatica L. leaves treated by steaming and metal complexations. Food Chem. 2017, 232, 387–394. [Google Scholar] [CrossRef]
- Liu, C.; Hu, B.; Cheng, Y.; Guo, Y.; Yao, W.; Qian, H. Carotenoids from Fungi and Microalgae: A Review on Their Recent Production, Extraction, and Developments. Bioresour. Technol. 2021, 337, 125398. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Y.; Li, S.; Wu, Q.; Feng, X.; Zheng, Y.; Leong, Y.K.; Lee, D.-J.; Chang, J.-S. Lutein production by microalgae using corn starch wastewater pretreated with rapid enzymatic hydrolysis. Bioresour. Technol. 2022, 352, 126940. [Google Scholar] [CrossRef]
- Patel, A.K.; Albarico, F.; Perumal, P.K.; Vadrale, A.P.; Nian, C.T.; Chau, H.T.; Anwar, C.; Wani, H.; Pal, A.; Saini, R.; et al. Algae as an emerging source of bioactive pigments. Bioresour. Technol. 2022, 351, 126910. [Google Scholar] [CrossRef]
- Zaytseva, A.; Chekanov, K.; Zaytsev, P.; Bakhareva, D.; Gorelova, O.; Kochkin, D.; Lobakova, E. Sunscreen Effect Exerted by Secondary Carotenoids and Mycosporine-like Amino Acids in the Aeroterrestrial Chlorophyte Coelastrella rubescens under High Light and UV-A Irradiation. Plants 2021, 10, 2601. [Google Scholar] [CrossRef] [PubMed]
- Maoka, T. Carotenoids as natural functional pigments. J. Nat. Med. 2020, 74, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Ambati, R.R.; Gogisetty, D.; Aswathanarayana, R.G.; Ravi, S.; Bikkina, P.N.; Bo, L.; Yuepeng, S. Industrial potential of carotenoid pigments from microalgae: Current trends and future prospects. Crit. Rev. Food Sci. Nutr. 2019, 59, 1880–1902. [Google Scholar] [CrossRef] [PubMed]
- Rajput, A.; Singh, D.P.; Khattar, J.S.; Swatch, G.K.; Singh, Y. Evaluation of growth and carotenoid production by a green microalgae Scenedesmus quadricauda PUMCC 4.1. 40. under optimized culture conditions. J. Basic Microbiol. 2022, 62, 1156–1166. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Rohani, T.; Raeisossadati, M.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Monochromatic light filters to enhance biomass and carotenoid productivities of Dunaliella salina in raceway ponds. Bioresour. Technol. 2021, 340, 125689. [Google Scholar] [CrossRef]
- Rammuni, M.M.; Ariyadasa, T.U.; Nimarshana, P.H.V.; Attalage, R.A. Comparative Assessment on the Extraction of Carotenoids from Microalgal Sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 2019, 277, 128–134. [Google Scholar] [CrossRef]
- Cezare-Gomes, E.A.; Mejia-da-Silva, L.D.; Perez-Mora, L.S.; Matsudo, M.C.; Ferreira-Camargo, L.S.; Singh, A.K.; de Carvalho, J.C.M. Potential of Microalgae Carotenoids for Industrial Application. Appl. Biochem. Biotechnol. 2019, 188, 602–634. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Ren, Y.; Zhang, H.; Mao, X.; Lao, Y.; Wang, X.; Chen, F. Boost carbon availability and value in algal cell for economic deployment of biomass. Bioresour. Technol. 2020, 300, 122640. [Google Scholar] [CrossRef]
- Mularczyk, M.; Michalak, I.; Marycz, K. Astaxanthin and Other Nutrients from Haematococcus pluvialis—Multifunctional Applications. Mar. Drugs 2020, 18, 459. [Google Scholar] [CrossRef]
- Lu, Q.; Li, H.; Zou, Y.; Liu, H.; Yang, L. Astaxanthin as a microalgal metabolite for aquaculture: A review on the synthetic mechanisms, production techniques, and practical application. Algal Res. 2021, 54, 102178. [Google Scholar] [CrossRef]
- Berman, J.; Zorrilla-López, U.; Farré, G.; Zhu, C.; Sandmann, G.; Twyman, R.M.; Capell, T.; Christou, P. Nutritionally important carotenoids as consumer products. Phytochem. Rev. 2015, 14, 727–743. [Google Scholar] [CrossRef]
- Andrade, D.; Colozzi-Filho, A.; Guedes, C.; Lima, F.; Machineski, G.; Matos, M. Main products of algal biomass and their biotechnological applications. In Microalgae from Continental Waters: Potentials and Challenges of Cultivation; Andrade, D.S., Colozzi-Filho, A., Eds.; Londrina: Iapar, Brazil, 2014; pp. 265–343. [Google Scholar]
- D’Alessandro, E.B.; Antoniosi Filho, N.R. Concepts and studies on lipid and pigments of microalgae: A review. Renew. Sustain. Energy Rev. 2016, 58, 832–841. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chen, C.-Y.; Varjani, S.; Chang, J.-S. Producing fucoxanthin from algae—Recent advances in cultivation strategies and downstream processing. Bioresour. Technol. 2022, 344, 126170. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, H.; Wu, T.; Fu, Y.; He, Y.; Mao, X.; Chen, F. Storage carbon metabolism of Isochrysis zhangjiangensis under different light intensities and its application for co-production of fucoxanthin and stearidonic acid. Bioresour. Technol. 2019, 282, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Mohamadnia, S.; Tavakoli, O.; Faramarzi, M.A. Enhancing production of fucoxanthin by the optimization of culture media of the microalga Tisochrysis lutea. Aquaculture 2021, 533, 736074. [Google Scholar] [CrossRef]
- Sun, H.; Yang, S.; Zhao, W.; Kong, Q.; Zhu, C.; Fu, X.; Zhang, F.; Liu, Z.; Zhan, Y.; Mou, H.; et al. Fucoxanthin from marine microalgae: A promising bioactive compound for industrial production and food application. Crit. Rev. Food Sci. Nutr. 2022, 63, 7996–8012. [Google Scholar] [CrossRef]
- Ren, Y.; Sun, H.; Deng, J.; Huang, J.; Chen, F. Carotenoid Production from Microalgae: Biosynthesis, Salinity Responses and Novel Biotechnologies. Mar. Drugs 2021, 19, 713. [Google Scholar] [CrossRef]
- Idenyi, J.N.; Eya, J.C.; Nwankwegu, A.S.; Nwoba, E.G. Aquaculture sustainability through alternative dietary ingredients: Microalgal value-added products. Eng. Microbiol. 2022, 2, 100049. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Chen, J.; Wang, T.; Huang, X.; Chen, G. The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits. Foods 2022, 11, 502. [Google Scholar] [CrossRef]
- Kalra, R.; Gaur, S.; Goel, M. Microalgae bioremediation: A perspective towards wastewater treatment along with industrial carotenoids production. J. Water Proc. Eng. 2021, 40, 101794. [Google Scholar] [CrossRef]
- Cichoński, J.; Chrzanowski, G. Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. Molecules 2022, 27, 8852. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Pereira, A.G.; Lourenço-Lopes, C.; Garcia-Oliveira, P.; Cassani, L.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Main Bioactive Phenolic Compounds in Marine Algae and Their Mechanisms of Action Supporting Potential Health Benefits. Food Chem. 2021, 341, 128262. [Google Scholar] [CrossRef]
- Bulut, O.; Akın, D.; Sönmez, Ç.; Öktem, A.; Yücel, M.; Öktem, H.A. Phenolic Compounds, Carotenoids, and Antioxidant Capacities of a Thermo-Tolerant Scenedesmus sp. (Chlorophyta) Extracted with Different Solvents. J. Appl. Phycol. 2019, 31, 1675–1683. [Google Scholar] [CrossRef]
- Andriopoulos, V.; Gkioni, M.D.; Koutra, E.; Mastropetros, S.G.; Lamari, F.N.; Hatziantoniou, S.; Kornaros, M. Total Phenolic Content, Biomass Composition, and Antioxidant Activity of Selected Marine Microalgal Species with Potential as Aquaculture Feed. Antioxidants 2022, 11, 1320. [Google Scholar] [CrossRef]
- Sansone, C.; Brunet, C. Promises and Challenges of Microalgal Antioxidant Production. Antioxidants 2019, 8, 199. [Google Scholar] [CrossRef]
- Del Mondo, A.; Smerilli, A.; Sané, E.; Sansone, C.; Brunet, C. Challenging Microalgal Vitamins for Human Health. Microb. Cell Factories 2020, 19, 201. [Google Scholar] [CrossRef]
- Smerilli, A.; Orefice, I.; Corato, F.; Ruban, A.; Brunet, C. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatom Skeletonema marinoi. Environ. Microbiol. 2017, 19, 611–627. [Google Scholar] [CrossRef]
- Fawcett, C.A.; Senhorinho, G.N.A.; Laamanen, C.A.; Scott, J.A. Microalgae as an Alternative to Oil Crops for Edible Oils and Animal Feed. Algal Res. 2022, 64, 102663. [Google Scholar] [CrossRef]
- Santiago-Morales, I.S.; Trujillo-Valle, L.; Márquez-Rocha, F.J.; López Hernández, J.F. Tocopherols, Phycocyanin and Superoxide Dismutase from Microalgae as Potential Food Antioxidants. Appl. Food Biotechnol. 2018, 5, 19–27. [Google Scholar]
Extraction Methods | Advantages | Disadvantages | Efficiency/Observations | References |
---|---|---|---|---|
Mechanical (microsphere grinding, high-pressure homogenization) | High efficiency of cell disruption | It requires expensive equipment and high energy consumption | Milling extracted >90% of the total protein in Chlorella vulgaris | [20,21,22,23,24] |
Enzymatic (proteases, carbohydrases) | High selectivity, preserves functionality | High cost of enzymes | At Scenedesmus obliquus, 27% multi-enzyme extraction; 21% cellulase extraction | [25,26] |
Combined (lyophilization, micronization + enzymes) | Synergy increases performance | Greater complexity of the process | Triples the concentration of bioactive peptides in Chlorella vulgaris | [27,28] |
Ultrasound | Improve efficiency when combined with other methods | Detailed individual efficiency is not reported | Produces cellular disruption by cavitation | [29] |
Extraction Methods | Advantages | Disadvantages | Efficiency/Observations | References |
---|---|---|---|---|
Conventional (Soxhlet, Folch, Bligh-Dyer) | Simple and economical | Use of toxic solvents and prolonged periods | Not environmentally recommended; low sustainability | [37,38,39] |
Modern (SFE, UAE, MAE) | Higher performance and lower environmental impact | MAE not suitable for thermo-sensitive compounds | UAE and MAE induce cell rupture by cavitation or pressure | [40,41] |
Enzymatic (cellulase, pectinase, etc.) | High specificity, mild conditions | Requires precise operating conditions | Cellulase doubled the extraction in Nannochloropsis sp. | [42,43,44,45] |
Combined (enzymes + mechanical or chemical methods) | Increases overall efficiency | Needs specific optimization | Extraction > 80% in Chlorella vulgaris with combined method | [38,45,46] |
Extraction Methods | Advantages | Disadvantages | Observations | References |
---|---|---|---|---|
Conventional (hot water, acid or alkaline extraction) | Profitable, easy to apply | Risk of co-extraction of proteins or other compounds | Highly soluble in water and alcohols | [58,59] |
Assisted (ultrasound, microwave) | Increase performance and reduce energy and time | May require special equipment | RSM + microwaves improve biological activity and reduces consumption | [60] |
Enzymatic (lysozymes, cellulase, chitinases) | High efficiency, low energy consumption | It depends on the composition of the cell wall | Strain-specific enzymes; ideal cellulase for Nannochloropsis sp. | [61,62,63,64] |
Supercritical (CO2) | Green alternative without toxic solvents | Limited research on an industrial scale | Promising for sustainable production | [65,66] |
Combined/Genetic Technologies | Optimizes performance and metabolic understanding | In development, requires further research | Genetic engineering applied to Chlamydomonas to improve performance | [67] |
Metabolite | Description/Properties | Microalgae Producers | Applications | References |
---|---|---|---|---|
Chlorophyll | Photosynthetic green pigment; types b, c, d, f depending on the species; 0.5–1% of dry weight | Chlorella vulgaris, Scenedesmus dimorphus, Pavlova lutheri, Chlamydomonas reinhardtii, Monoraphidium dybowskii | Natural coloring (food, cosmetics, toothpaste); antioxidant supplement (chlorophyllin) | [70,71,72,73] |
Carotenoids | Tetraterpenoid pigments; high antioxidant bioactivity; intensified under stress | Coelastrella striolata, Haematococcus pluvialis, Spirulina platensis, Dunaliella salina, Nanochloropsis sp., Chlorella sp. | Animal feed, pharmaceuticals, cosmetics and nutraceuticals | [73,74,75,76,77,78,79] |
β- carotene | Provitamin A; yellow-orange pigment; high Dunaliella salina content (98.5%) | Dunaliella salina | Nutritional supplements, cosmetics, food antioxidants | [80,81,82,83] |
Astaxanthin | Red pigment; accumulates under stress; more potent antioxidant than vitamin E | Haematococcus pluvialis, Chlorella zofingiensis, Chlorococcum sp. | Nutraceuticals, aquaculture, cosmetics, antioxidant supplements | [84,85,86,87] |
Lutein | Filters blue light (~500 nm); lipophilic antioxidant; 0.4–0.6% dry weight in Muriellopsis sp. | Muriellopsis sp., Scenedesmus almeriensis, Chlorella protothecoides | Eye health, food additive, natural coloring | [88,89] |
Fucoxanthin | Orange pigment; antioxidant, anti-inflammatory, anticancer properties | Tisochrysis lutea, Phaeodactylum tricornutum, Odontella aurita, Navicula sp. | Cosmetics, functional foods, poultry farming, aquaculture | [90,91,92,93] |
Zeaxanthin | Protects the macula; antioxidant and neuroprotective | Chromochloris zofingiensis, Dunaliella salina | Eye health, nutraceuticals, natural supplements | [94,95] |
Phenolic compounds | They include phenolic acids, flavonoids, tannins, and stilbenes. Antioxidant activity depends on functional structure. | Scenedesmus sp., Dunaliella salina, Chlorella minutissima | Pharmaceutical, cosmetics and food industry | [96,97,98,99,100,101,102] |
Vitamins (A, C, E, B12) | Antioxidant activity: synthesis and accumulation depend on species and conditions | Isochrysis galbana, Euglena gracilis, Skeletonema marinei, Tetraselmis suecica, Chlorella sp. | Human health, vegan diets, cosmetics, supplements | [103,104] |
Type of Compound | Extraction Methods | Characteristics of the Method | Observations/Examples | References |
---|---|---|---|---|
Carotenoids | Conventional with nonpolar solvents | Simple, easy to apply in the laboratory | Suitable for general carotenoids; low sustainability | [96] |
Two-phase solvent systems | Greater efficiency in specific carotenoids such as lutein and β-carotene | Optimize performance by combining solvents of different polarity | [97] | |
Ultrasound, pressurized fluids, sub/supercritical solvents | Ecological and efficient alternatives | Supercritical CO2: a fast, safe, and efficient process | [79] | |
Compounds Phenolics | Solvent extraction (water, ethanol, methanol) | Varies depending on species, cultivation phase and solvent used | Ethanol/water in Scenedesmus sp. increased phenols and quercetin; aqueous extract of D. salina showed high levels in the stationary phase | [106] |
HPLC for identification | Detects individual phenolic compounds | Quercetin, gallic acid, chlorogenic acid and 4-hydroxybenzoic acid identified | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenas Colarte, C.; Balic, I.; Díaz, Ó.; Moreno, A.A.; Amenabar, M.J.; Bruna Larenas, T.; Caro Fuentes, N. High-Value Bioactive Molecules Extracted from Microalgae. Microorganisms 2025, 13, 2018. https://doi.org/10.3390/microorganisms13092018
Arenas Colarte C, Balic I, Díaz Ó, Moreno AA, Amenabar MJ, Bruna Larenas T, Caro Fuentes N. High-Value Bioactive Molecules Extracted from Microalgae. Microorganisms. 2025; 13(9):2018. https://doi.org/10.3390/microorganisms13092018
Chicago/Turabian StyleArenas Colarte, Carla, Iván Balic, Óscar Díaz, Adrián A. Moreno, Maximiliano J. Amenabar, Tamara Bruna Larenas, and Nelson Caro Fuentes. 2025. "High-Value Bioactive Molecules Extracted from Microalgae" Microorganisms 13, no. 9: 2018. https://doi.org/10.3390/microorganisms13092018
APA StyleArenas Colarte, C., Balic, I., Díaz, Ó., Moreno, A. A., Amenabar, M. J., Bruna Larenas, T., & Caro Fuentes, N. (2025). High-Value Bioactive Molecules Extracted from Microalgae. Microorganisms, 13(9), 2018. https://doi.org/10.3390/microorganisms13092018