pDNA Impurities in mRNA Vaccines
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
mRNA | Messenger RNA |
pDNA | Plasmid DNA |
S | Spike |
WHO | World Health Organization |
HHS | Health and Human Services |
BARDA | Biomedical Advanced Research and Development Authority |
dsDNA | Double-stranded DNA |
ssDNA | Single-stranded DNA |
COVID-19 | Coronavirus disease 2019 |
UTRs | Untranslated regions |
References
- European Medicines Agency (EMA), Comirnaty (COVID-19 mRNA Vaccine). Available online: https://www.ema.europa.eu/en/documents/product-information/comirnaty-epar-product-information_en.pdf (accessed on 14 August 2025).
- European Medicines Agency (EMA), Spikevax (previously COVID-19 Vaccine Moderna). Available online: https://www.ema.europa.eu/en/documents/product-information/spikevax-epar-product-information_en.pdf (accessed on 18 August 2025).
- World Health Organization (WHO), WHO Study Group on Cell Substrates for Production of Biologicals. Available online: https://cdn.who.int/media/docs/default-source/biologicals/cell-substrates/cells.final.mtgrep.ik.26_sep_07.pdf?sfvrsn=3db7d37a_3&download=true (accessed on 11 June 2007).
- U.S. Department of Health and Human Services (HHS), HHS winds down mRNA Vaccine Development under BARDA. Available online: https://www.hhs.gov/press-room/hhs-winds-down-mrna-development-under-barda.html (accessed on 5 August 2025).
- Choi, J.Y.; Lee, Y.; Park, N.G.; Kim, M.S.; Rhie, S.J. Serious safety signals and prediction features following COVID-19 mRNA vaccines using the Vaccine Adverse Event Reporting System. Pharmaceuticals 2024, 17, 356. [Google Scholar] [CrossRef] [PubMed]
- Tachita, T.; Takahata, T.; Yamashita, S.; Ebina, T.; Kamata, K.; Yamagata, K.; Tamai, Y.; Sakuraba, H. Newly diagnosed extranodal NK/T-cell lymphoma, nasal type, at the injected left arm after BNT162b2 mRNA COVID-19 vaccination. Int. J. Hematol. 2023, 118, 503–507. [Google Scholar] [CrossRef]
- Ukishima, S.; Miyagami, T.; Arikawa, M.; Kushiro, S.; Takaku, T.; Naito, T. Subcutaneous panniculitis-like T-cell lymphoma post-mRNA-1273 COVID-19 vaccination. Clin. Case Rep. 2023, 11, 7143. [Google Scholar] [CrossRef] [PubMed]
- Roncati, L.; Manenti, A.; Corsi, L. A three-case series of thrombotic deaths in patients over 50 with comorbidities temporally after modRNA COVID-19 vaccination. Pathogens 2022, 11, 435. [Google Scholar] [CrossRef]
- Fraiman, J.; Erviti, J.; Jones, M.; Greenland, S.; Whelan, P.; Kaplan, R.M.; Doshi, P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine 2022, 40, 5798–5805. [Google Scholar] [CrossRef] [PubMed]
- Roncati, L.; Galeazzi, C.; Bartolacelli, G.; Caramaschi, S. A real-world nationwide study on COVID-19 trend in Italy during the autumn-winter season of 2020 (before mass vaccination) and 2021 (after mass vaccination) integrated with a retrospective analysis of the mortality burden per year. Microorganisms 2024, 12, 435. [Google Scholar] [CrossRef]
- Roncati, L.; Huo, Q.T. Editorial: Post COVID-19: The nucleoside-modified messenger RNA (modRNA) platform. Front. Med. 2024, 10, 1324610. [Google Scholar] [CrossRef]
- Kwon, S.; Kwon, M.; Im, S.; Lee, K.; Lee, H. mRNA vaccines: The most recent clinical applications of synthetic mRNA. Arch. Pharm. Res. 2022, 45, 245–262. [Google Scholar] [CrossRef]
- Roncati, L.; Corsi, L. Nucleoside-modified messenger RNA COVID-19 vaccine platform. J. Med. Virol. 2021, 93, 4054–4057. [Google Scholar] [CrossRef]
- König, B.; Kirchner, J.O. Methodological considerations regarding the quantification of DNA impurities in the COVID-19 mRNA vaccine Comirnaty®. Methods Protoc. 2024, 7, 41. [Google Scholar] [CrossRef]
- Kaiser, S.; Kaiser, S.; Reis, J.; Marschalek, R. Quantification of objective concentrations of DNA impurities in mRNA vaccines. Vaccine 2025, 55, 127022. [Google Scholar] [CrossRef]
- Vieths, S.; Waibler, Z.; Schumann, G.G. Opting for the appropriate methodology for quantification of residual DNA impurities in mRNA vaccines. Vaccine 2025, 56, 127186. [Google Scholar] [CrossRef]
- Methods and Protocols Editorial Office. Expression of concern: König, B.; Kirchner, J.O. Methodological considerations regarding the quantification of DNA impurities in the COVID-19 mRNA Vaccine Comirnaty®. Methods Protoc. 2024, 7, 41. Methods Protoc. 2025, 8, 68. [Google Scholar] [CrossRef]
- Li, W.X.; Pan, H.F.; Li, L.H.; Zhang, N.; Li, J.; Fan, Y.G.; Feng, J.B.; Tang, X.W.; Chen, H.; Li, X.P.; et al. Prevalence and clinical significance of 15 autoantibodies in patients with new-onset systemic lupus erythematosus. Ir. J. Med. Sci. 2010, 179, 623–627. [Google Scholar] [CrossRef]
- Pedro, A.B.; Romaldini, J.H.; Americo, C.; Takei, K. Association of circulating antibodies against double-stranded and single-stranded DNA with thyroid autoantibodies in Graves’ disease and Hashimoto’s thyroiditis patients. Exp. Clin. Endocrinol. Diabetes 2006, 114, 35–38. [Google Scholar] [CrossRef]
- Triolo, G.; Palumbo, A.A.; Giardina, E.; Davi, G.; Triolo, G. Anti platelet property of anti-single-stranded DNA antibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetes Res. 1994, 26, 79–87. [Google Scholar] [PubMed]
- Czaja, A.J.; Morshed, S.A.; Parveen, S.; Nishioka, M. Antibodies to single-stranded and double-stranded DNA in antinuclear antibody-positive type 1-autoimmune hepatitis. Hepatology 1997, 26, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Sagy, I.; Zeller, L.; Raviv, Y.; Porges, T.; Bieber, A.; Abu-Shakra, M. New-onset systemic lupus erythematosus following BNT162b2 mRNA COVID-19 vaccine: A case series and literature review. Rheumatol. Int. 2022, 42, 2261–2266. [Google Scholar] [CrossRef]
- Jung, S.W.; Jeon, J.J.; Kim, Y.H.; Choe, S.J.; Lee, S. Long-term risk of autoimmune diseases after mRNA-based SARS-CoV-2 vaccination in a Korean, nationwide, population-based cohort study. Nat. Commun. 2024, 15, 6181. [Google Scholar] [CrossRef]
- Chee, Y.J.; Liew, H.; Hoi, W.H.; Lee, Y.; Lim, B.; Chin, H.X.; Lai, R.T.R.; Koh, Y.; Tham, M.; Seow, C.J.; et al. SARS-CoV-2 mRNA vaccination and Graves’ disease: A report of 12 cases and review of the literature. J. Clin. Endocrinol. Metab. 2022, 107, 2324–2330. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, M.A.; Ameer, B.; Sinha Gregory, N. Graves disease following the SARS-CoV-2 vaccine: Case series. J. Investig. Med. High Impact Case Rep. 2021, 9, 23247096211063356. [Google Scholar] [CrossRef]
- Paschou, S.A.; Karalis, V.; Psaltopoulou, T.; Vasileiou, V.; Charitaki, I.; Bagratuni, T.; Ktena, V.; Papandroulaki, F.; Gumeni, S.; Kassi, G.N.; et al. Patients with autoimmune thyroiditis present similar immunological response to COVID-19 BNT162b2 mRNA vaccine with healthy subjects, while vaccination may affect thyroid function: A clinical study. Front. Endocrinol. 2022, 13, 840668. [Google Scholar] [CrossRef]
- Aydoğan, B.İ.; Ünlütürk, U.; Cesur, M. Type 1 diabetes mellitus following SARS-CoV-2 mRNA vaccination. Endocrine 2022, 78, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Chae, H.B.; Woo, S.; Song, M.S.; Kim, H.J.; Woo, C.G. Clinicopathological characteristics of autoimmune-like hepatitis induced by COVID-19 mRNA vaccine (Pfizer-BioNTech, BNT162b2): A case report and literature review. Int. J. Surg. Pathol. 2023, 31, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Liu, X.; Chen, X.; Li, Q. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun. Rev. 2023, 22, 103340. [Google Scholar] [CrossRef] [PubMed]
- Dişli, F.; Yılmaz, Y.; Yıldız, S. The effects of SARS-CoV-2 vaccines on antinuclear autoantibody formation in individuals without prior COVID-19 infection. Hum. Immunol. 2025, 86, 111332. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roncati, L.; Ghaleb, N.; Ghaleb, J.; Kfoury, K. pDNA Impurities in mRNA Vaccines. Microorganisms 2025, 13, 1975. https://doi.org/10.3390/microorganisms13091975
Roncati L, Ghaleb N, Ghaleb J, Kfoury K. pDNA Impurities in mRNA Vaccines. Microorganisms. 2025; 13(9):1975. https://doi.org/10.3390/microorganisms13091975
Chicago/Turabian StyleRoncati, Luca, Nazha Ghaleb, Joya Ghaleb, and Karl Kfoury. 2025. "pDNA Impurities in mRNA Vaccines" Microorganisms 13, no. 9: 1975. https://doi.org/10.3390/microorganisms13091975
APA StyleRoncati, L., Ghaleb, N., Ghaleb, J., & Kfoury, K. (2025). pDNA Impurities in mRNA Vaccines. Microorganisms, 13(9), 1975. https://doi.org/10.3390/microorganisms13091975