The Impact of Sugar Beet Seed Pelletization on the Proliferation of Nematophagous Fungi
Abstract
1. Introduction
2. Materials and Methods
2.1. Microorganisms
2.2. Seeds
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sielemann, K.; Pucker, B.; Orsini, E.; Elashry, A.; Schulte, L.; Viehöver, P.; Müller, A.E.; Schechert, A.; Weisshaar, B.; Holtgräwe, D. Genomic characterization of a nematode tolerance locus in sugar beet. BMC Genom. 2023, 24, 748. [Google Scholar] [CrossRef] [PubMed]
- Kockelmann, A.; Tilcher, R.; Fischer, U. Seed Production and Processing. Sugar Tech 2010, 12, 267–275. [Google Scholar] [CrossRef]
- Manasova, M.; Wenzlova, J.; Douda, O.; Zouhar, M.; Novotný, D.; Ryšánek, P.; Mazáková, J.; Chochola, J.; Pavlů, K.; Šarovská, L.; et al. Research on alternative methods of sugar beet protection against sugar beet cyst nematode heterodera schachtii (Schmidt, 1871). Listy Cukrov. A Reparske 2017, 133, 276–284. Available online: http://www.cukr-listy.cz/on_line/2017/abs297-301.html (accessed on 25 May 2025).
- Zhang, Y.; Li, S.; Li, H.; Wang, R.; Zhang, K.-Q.; Xu, J. Fungi–Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. J. Fungi 2020, 6, 206. [Google Scholar] [CrossRef]
- Nordbring-Hertz, B.; Jansson, H.B.; Tunlid, A. Nematophagous fungi. Encycl. Life Sci. 2006, 1, 11. [Google Scholar] [CrossRef]
- Zhang, F.; Boonmee, S.; Bhat, J.D.; Xiao, W.; Yang, X.-Y. New Arthrobotrys Nematode-Trapping Species (Orbiliaceae) from Terrestrial Soils and Freshwater Sediments in China. J. Fungi 2022, 8, 671. [Google Scholar] [CrossRef]
- Doolotkeldieva, T.; Bobushova, S.; Muratbekova, A.; Schuster, C.; Leclerque, A. Isolation, Identification, and Characterization of the Nematophagous Fungus Arthrobotrys oligospora from Kyrgyzstan. Acta Parasit. 2021, 66, 1349–1365. [Google Scholar] [CrossRef]
- Stirling, G.R. Biological Control of Plant-Parasitic Nematodes. In Diseases of Nematodes, 1st ed.; Poinar, G.O., Ed.; CRC Press: Boca Raton, FL, USA, 1988; pp. 1–48. [Google Scholar] [CrossRef]
- Liang, L.; Wu, H.; Liu, Z.; Shen, R.; Gao, H.; Yang, J.; Zhang, K. Proteomic and transcriptional analyses of Arthrobotrys oligospora cell wall related proteins reveal complexity of fungal virulence against nematodes. Appl. Microbiol. Biotechnol. 2013, 97, 8683–8692. [Google Scholar] [CrossRef]
- Gray, N.F. Nematophagous fungi with particular reference to their ecology. Biol. Rev. Camb. Philos. Soc. 1987, 62, 245–304. [Google Scholar] [CrossRef]
- Suzuki, T.; Ono, A.; Choi, J.-H.; Wu, J.; Kawagishi, H.; Dohra, H. The complete mitochondrial genome sequence of the edible mushroom Stropharia rugosoannulata (Strophariaceae, Basidiomycota). Mitochondrial DNA Part B 2019, 4, 570–572. [Google Scholar] [CrossRef]
- Zouhar, M.; Douda, O.; Nováková, J.; Doudová, E.; Mazáková, J.; Wenzlová, J.; Ryšánek, P.; Renčo, M. First report about the trapping activity of Stropharia rugosoannulata acanthocytes for Northern Root Knot Nematode. Helminthologia 2013, 50, 127–131. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Huang, X.; Zhang, K. Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochem. 2006, 41, 925–929. [Google Scholar] [CrossRef]
- Schroers, H.J.; Samuels, G.J.; Seifert, K.A.; Gams, W. Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 1999, 91, 365–385. [Google Scholar] [CrossRef]
- Morandi, M.A.B.; Maffia, L.A.; Mizubuti, E.S.G.; Alfenas, A.C.; Barbosa, J.G. Suppression of Botrytis cinerea sporulation by Clonostachys rosea on rose debris: A valuable component in Botrytis blight management in commercial greenhouse. Biol. Control 2003, 26, 311–317. [Google Scholar] [CrossRef]
- Johansen, A.; Knudsen, I.M.B.; Binnerup, S.J.; Winding, A.; Johansen, J.E.; Jensen, L.E.; Andersen, K.S.; Svenning, M.M.; Bonde, T.A. Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: A greenhouse assessment. Soil Biol. Biochem. 2005, 37, 2225–2239. [Google Scholar] [CrossRef]
- Clémençon, H.; Emmett, V. Cytology and Plectology of the Hymenomycetes, 1st ed.; Schweizerbart Science Publishers: Stuttgart, Germany, 2004; pp. 1–488. [Google Scholar]
- Thorn, R.G.; Barron, G.L. Carnivorous Mushrooms. Science 1984, 224, 76–78. [Google Scholar] [CrossRef]
- Lee, C.; Lee, Y.; Chang, Y.; Pon, W.-L.; Lee, S.-P.; Wali, N.; Nakazawa, T.; Honda, Y.; Shie, J.-J. A carnivorous mushroom paralyzes and kills nematodes via a volatile ketone. Sci. Adv. 2023, 9, 4809. [Google Scholar] [CrossRef]
- Hussain, M.; Zouhar, M.; Ryšánek, P. Effect of some Nematophagous Fungi on Reproduction of a Nematode Pest, Heterodera schachtii, and Growth of Sugar Beet. Pak. J. Zool. 2017, 49, 197–205. [Google Scholar] [CrossRef]
- Mensin, S.; Soytong, K.; McGovern, R.J.; Toanun, C. Effect of agricultural pesticides on the growth and sporulation of nematophagous fungi. J. Agric. Technol. 2013, 9, 953–961. [Google Scholar]
- Bengtsson, S. Combining Biocontrol Fungus Clonostachys rosea with Chemical Fungicides–for Integrated Management of Fusariumfoot/Root Rot. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2020. [Google Scholar]
- Goltapeh, E.M.; Shams-bakhsh, M.; Pakdaman, B.S. Sensitivity of the Nematophagous Fungus Arthrobotrys oligospora to Fungicides, Insecticides and Crop Supplements Used in the Commercial Cultivation of Agaricus bisporus. J. Agric. Sci. Technol. 2008, 10, 383–389. [Google Scholar]
- Rajtár, S. Cruiser Force SB® and Force Magna®—Sugar beet pests have no chance! Listy Cukrov. A Reparske 2010, 126, 18. Available online: http://www.cukr-listy.cz/on_line/2010/PDF/18-20.PDF (accessed on 25 May 2025).
- EPA: Registration Review Label Mitigation for Hymexazol. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/086203-00002-20230118.pdf (accessed on 24 February 2025).
- Thiram1 Fungicide Label. Available online: https://cs-assets.bayer.com/is/content/bayer/42-S_Thiram1_Fungicide_Labelpdf (accessed on 24 February 2025).
- Usman, H.M.; Tan, Q.; Karim, M.M.; Adnan, M.; Yin, W.-X.; Zhu, F.-X.; Luo, C.-X. Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. Plant Dis. 2021, 105, 3459–3465. [Google Scholar] [CrossRef]
- Halmer, P. Seed technology and seed enhancement. Acta Hortic. 2008, 771, 17–26. [Google Scholar] [CrossRef]
- Yogeesha, H.S.; Panneerselvam, P.; Bhanuprakash, K.; Hebbar, S.S. Standardization of protocol for seed pelleting in onion (Allium cepa) to improve seed handling. Indian J. Agric. Sci. 2017, 87, 975–980. [Google Scholar] [CrossRef]
- Xie, Z.; Zhou, C.; Xie, X.; Li, K.; Yang, D.; Tu, X.; Li, F.; Qin, Y.; Xu, D.; Li, J.; et al. A novel seed balling technology and its effect on cotton emergence, yield and fiber quality. Ital. J. Agron. 2023, 18, 1125–4718. [Google Scholar] [CrossRef]
- Teichroew, E.B.; Rew, L.J. Testing the effects of seed pellet composition to aid in semiarid restoration seeding. Restor. Ecol. 2024, 33, e14349. [Google Scholar] [CrossRef]
- Heijbroek, W.; Huijbregts, A.W.M. Fungicides and insecticides applied to pelleted sugar-beet seeds—II. Control of pathogenic fungi in soil. Crop Prot. 1995, 14, 363–366. [Google Scholar] [CrossRef]
- Liu-Xu, L.; González-Hernández, A.I.; Camañes, G.; Vicedo, B.; Scalschi, L.; Llorens, E. Harnessing Green. Helpers: Nitrogen-Fixing Bacteria and Other Beneficial Microorganisms in Plant–Microbe Interactions for Sustainable Agriculture. Horticulturae 2024, 10, 621. [Google Scholar] [CrossRef]
- Bennett, A.J.; Whipps, J.M. Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming. Biol. Control 2008, 44, 349–361. [Google Scholar] [CrossRef]
- Gea, F.J.; Navarro, M.J.; Santos, M.; Diánez, F.; Carrasco, J. Control of Fungal Diseases in Mushroom Crops while Dealing with Fungicide Resistance: A Review. Microorganisms 2021, 9, 585. [Google Scholar] [CrossRef]
- Sharma, S.R.; Kumar, S.; Sharma, V.P. Diseases and Competitor Moulds of Mushrooms and Their Management, 1st ed.; National Research Centre for Mushroom: Chambaghat, Solan, India, 2007; p. 81. [Google Scholar]
- Kumar, D.; Maurya, M.; Kumar, P.; Singh, H.; Addy, S.K. Assessment of germination and carnivorous activities of a nematode-trapping fungus Arthrobotrys dactyloides in fungistatic and fungicidal soil environment. Biol. Control 2015, 82, 76–85. [Google Scholar] [CrossRef]
- Roberti, R.; Badiali, F.; Pisi, A.; Veronesi, A.; Pancaldi, D.; Cesari, A. Sensitivity of Clonostachys rosea and Trichoderma spp. as Potential. Biocontrol Agents to Pesticides. J. Phytopathol. 2006, 154, 100–109. [Google Scholar] [CrossRef]
- Kangsopa, J.; Hynes, R.K.; Siri, B. Lettuce seeds pelleting: A new bilayer matrix for lettuce (Lactuca sativa) seeds. Seed Sci. Tech. 2018, 46, 521–531. [Google Scholar] [CrossRef]
- Grellier, P.; Riviere, L.M.; Renault, P. Transfer and water-retention properties of seed-pelleting materials. Eur. J. Agron. 1999, 10, 57–65. [Google Scholar] [CrossRef]
- Prakash, M.; Pallavamallan, S.; Narayanan, G.; Rameshkumar, S. Effect of organic seed pelleting on biometric, biophysical and yield parameters of clusterbean under saline condition. Legume Res. 2021, 43, 819–825. [Google Scholar] [CrossRef]
- Murata, M.R.; Zharare, G.E.; Hammes, P.S. Pelleting or priming seed with calcium improves groundnut seedling survival in acid soils. J. Plant Nutr. 2008, 31, 1736–1745. [Google Scholar] [CrossRef]
- Prakash, M.; Ophelia, A.G.; Narayanan, G.S.; Anandan, R.; Baradhan, G.; Sureshkumar, S.M. Effect of organic seed pelleting on seedling quality, gas exchange, growth, yield and resultant seed quality parameters of black gram. Legume Res. 2020, 43, 221–228. [Google Scholar] [CrossRef]
- Simone Pedrini, S.; Webber, S.; D’Agui, H.; Dixon, K.; Just, M.; Arya, T.; Turner, S. Customise the seeds, not the seeder: Pelleting of small-seeded species for ecological restoration. Ecol. Eng. 2023, 196, 107105. [Google Scholar] [CrossRef]
- Pedrini, S. A novel multi-species seed pelleting method to improve the efficiency of seed-based ecological restoration. Front. Environ. Sci. 2025, 13, 1595530. [Google Scholar] [CrossRef]
- Wolfgang, A.; Temme, N.; Tilcher, R.; Berg, G. Understanding the sugar beet holobiont for sustainable agriculture. Front. Microbiol. 2025, 14, 1151052. [Google Scholar] [CrossRef]
- Hegarty, T.W. Seed and seedling susceptibility to phased moisture stress in soil. J. Exp. Bot. 1977, 28, 659–668. [Google Scholar] [CrossRef]
- Wolfgang, A.; Zachow, C.; Müller, H.; Grand, A.; Temme, N.; Tilcher, R.; Berg, G. Understanding the Impact of Cultivar, Seed Origin, and Substrate on Bacterial Diversity of the Sugar Beet Rhizosphere and Suppression of Soil-Borne Pathogens. Front. Plant Sci. 2020, 11, 560869. [Google Scholar] [CrossRef]
- Shimizu, Y.; Sagiya, D.; Matsui, M.; Fukui, R. Zonal soil amendment with simple sugars to elevate soil C/N ratios as an alternative disease management strategy for Rhizoctonia damping-off of sugar beet. Plant Dis. 2018, 102, 1434–1444. [Google Scholar] [CrossRef]
- Johnson, A.J.; Geary, B.; Hulet, A.; Madsen, M.D. Fungicide Seed Coating Increases Emergence of Bluebunch Wheatgrass (Pseudoroegneria spicata) Under High-Fungal-Biomass Conditions. Plants 2025, 14, 679. [Google Scholar] [CrossRef]
- Domsch, K.H.; Gams, W.; Anderson, T.-H. Compendium of Soil Fungi, 2nd ed.; IHW-Verlag: Eching, Germany, 2007; 672p. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soukupová, M.; Novotný, D. The Impact of Sugar Beet Seed Pelletization on the Proliferation of Nematophagous Fungi. Microorganisms 2025, 13, 1936. https://doi.org/10.3390/microorganisms13081936
Soukupová M, Novotný D. The Impact of Sugar Beet Seed Pelletization on the Proliferation of Nematophagous Fungi. Microorganisms. 2025; 13(8):1936. https://doi.org/10.3390/microorganisms13081936
Chicago/Turabian StyleSoukupová, Miroslava, and David Novotný. 2025. "The Impact of Sugar Beet Seed Pelletization on the Proliferation of Nematophagous Fungi" Microorganisms 13, no. 8: 1936. https://doi.org/10.3390/microorganisms13081936
APA StyleSoukupová, M., & Novotný, D. (2025). The Impact of Sugar Beet Seed Pelletization on the Proliferation of Nematophagous Fungi. Microorganisms, 13(8), 1936. https://doi.org/10.3390/microorganisms13081936