Fusobacterium nucleatum Infection Drives Glutathione Depletion in Gastric Cancer: Integrated Multi-Omics and Experimental Validation
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacteria and Cell Culture
2.3. Process and Analysis of Microbiome and Metabolomics
2.3.1. Process and Analysis of Microbiome
2.3.2. Process and Analysis of Metabolomics
2.4. Correlation and Coexistence Relationship Analysis of Microbe and Metabolites
2.5. Quantitative Real-Time PCR (RT-qPCR)
2.6. Detection of GSH and ROS
2.7. Statistical Analysis
3. Results
3.1. The Baseline Information of the Study Cases
3.2. Differential Metabolites Between GC Tissues with Different Fusobacterium sp. Infection States
3.3. Correlation and Coexistence Relationship Analysis of Microbes and Metabolites in GC Tissues with Different Fusobacterium sp. Infection States
3.4. High Abundance of Fusobacterium Nucleatum in GC Tissues Is Associated with GSH Depletion
3.5. F. nucleatum Infection in GC Cells Is Associated with GSH Depletion
4. Discussion
4.1. Distribution and Clinical Significance of F. nucleatum in the GC Microenvironment
4.2. Innovative Multi-Omics Integration Reveals a Previously Unrecognized Negative Correlation Between Fusobacterium sp. and GSH in GC
4.3. Exploration of the Mechanism of F. nucleatum-Induced GSH Depletion
- (1)
- Synthesis inhibition: F. nucleatum infection downregulated the expression of GSS. This discovery supplements the results of the team from Sun Yat-sen University, who confirmed that ACTL6A, acting as a co-transcription factor with NRF2, upregulates the expression of GCLC and participates in pathways in GC linked to GSH metabolism [33]. We found that F. nucleatum could participate in the GSH metabolism pathway by downregulating the expression of GSS. However, whether F. nucleatum can block this pathway by inhibiting NRF2 nuclear translocation or degrading its activated form is still worth exploring.
- (2)
- Metabolic consumption: After an infection of F. nucleatum, the intracellular ROS level decreases, resulting in a substantial consumption of GSH to maintain redox homeostasis. Meanwhile, as a facultative anaerobic bacterium, it may indirectly alter the redox state of tumor cells through its metabolic activities, including acid production and the consumption of specific nutrients. Previous studies have suggested that antioxidants support the growth of anaerobic bacteria, including F. nucleatum [34]. Fusobacterium sp. can utilize amino acids and peptides as energy sources, by which their cells are capable of producing hydrogen sulfide through the metabolism of GSH [35,36]. This metabolic competition is particularly significant in acidic microenvironments, aligning with the decrease in F. nucleatum colonization in acidic environments reported by Hara et al. [28]. In addition, a study by Xin Yiwei indicated that F. nucleatum may influence host cell metabolism through an extracellular vesicle-mediated mechanism. Specifically, F. nucleatum-infected GC cells were shown to secrete exosomes enriched in lncRNA HOTTIP, which promote tumor progression through the miR-885-3p/EphB2/PI3K/AKT axis [37]. Although this study did not directly address GSH metabolism, the discovered “microbiota–exosome–host cell” communication pattern may similarly apply to metabolic regulation. The observed decrease in intercellular GSH levels in our study suggests that F. nucleatum-infected cells may transmit oxidative stress signals to neighboring uninfected cells through exosomes, potentially forming a “metabolic domino effect” [38].
4.4. Clinical and Translational Significance
4.4.1. The Potential of the F. nucleatum-GSH Axis as a Diagnostic Biomarker
4.4.2. A Novel Therapeutic Strategy Targeting the F. nucleatum-GSH Axis
5. Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, Z.; Ma, Z.; Wu, E.; Chen, X.; Tuo, B.; Li, T.; Liu, X. Effect of metabolic reprogramming on the immune microenvironment in gastric cancer. Biomed. Pharmacother. 2024, 170, 116030. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.M.; Pereira-Marques, J.; Pinto-Ribeiro, I.; Costa, J.L.; Carneiro, F.; Machado, J.C.; Figueiredo, C. Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut 2018, 67, 226–236. [Google Scholar] [CrossRef] [PubMed]
- Queen, J.; Domingue, J.C.; White, J.R.; Stevens, C.; Udayasuryan, B.; Nguyen, T.T.D.; Wu, S.; Ding, H.; Fan, H.; McMann, M.; et al. Comparative Analysis of Colon Cancer-Derived Fusobacterium nucleatum Subspecies: Inflammation and Colon Tumorigenesis in Murine Models. MBio 2021, 13, e0299121. [Google Scholar] [CrossRef]
- Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 2015, 42, 344–355. [Google Scholar] [CrossRef]
- Petkevicius, V.; Lehr, K.; Kupcinskas, J.; Link, A. Fusobacterium nucleatum: Unraveling its potential role in gastric carcinogenesis. World J. Gastroenterol. 2024, 30, 3972–3984. [Google Scholar] [CrossRef]
- Hsieh, Y.Y.; Tung, S.Y.; Pan, H.Y.; Yen, C.W.; Xu, H.W.; Lin, Y.J.; Deng, Y.F.; Hsu, W.T.; Wu, C.S.; Li, C. Increased Abundance of Clostridium and Fusobacterium in Gastric Microbiota of Patients with Gastric Cancer in Taiwan. Sci. Rep. 2018, 8, 158. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Zhai, E.; Zhao, R.; Qian, Y.; Huang, Z.; Liu, Y.; Zhao, Z.; Xu, X.; Liu, J.; et al. Intratumoral Fusobacterium nucleatum Recruits Tumor-Associated Neutrophils to Promote Gastric Cancer Progression and Immune Evasion. Cancer Res. 2025, 85, 1819–1841. [Google Scholar] [CrossRef]
- Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef]
- Li, B.; Ming, H.; Qin, S.; Nice, E.C.; Dong, J.; Du, Z.; Huang, C. Redox regulation: Mechanisms, biology and therapeutic targets in diseases. Signal Transduct. Target. Ther. 2025, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell Longev. 2013, 2013, 972913. [Google Scholar] [CrossRef]
- Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-κB, and Up-regulating Expression of MicroRNA-21. Gastroenterology 2017, 152, 851–866.e824. [Google Scholar] [CrossRef]
- Mima, K.; Nishihara, R.; Qian, Z.R.; Cao, Y.; Sukawa, Y.; Nowak, J.A.; Yang, J.; Dou, R.; Masugi, Y.; Song, M.; et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut 2016, 65, 1973–1980. [Google Scholar] [CrossRef]
- Mima, K.; Sukawa, Y.; Nishihara, R.; Qian, Z.R.; Yamauchi, M.; Inamura, K.; Kim, S.A.; Masuda, A.; Nowak, J.A.; Nosho, K.; et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015, 1, 653–661. [Google Scholar] [CrossRef]
- Tahara, T.; Yamamoto, E.; Suzuki, H.; Maruyama, R.; Chung, W.; Garriga, J.; Jelinek, J.; Yamano, H.O.; Sugai, T.; An, B.; et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014, 74, 1311–1318. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e516. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Yan, X.; Zhu, Y.; Zhu, H.; Luo, Y.; Liu, P.; Ferrandon, S.; Kalady, M.F.; Gao, R.; He, J.; et al. Fusobacterium Nucleatum Promotes the Development of Colorectal Cancer by Activating a Cytochrome P450/Epoxyoctadecenoic Acid Axis via TLR4/Keap1/NRF2 Signaling. Cancer Res. 2021, 81, 4485–4498. [Google Scholar] [CrossRef] [PubMed]
- Schulz, C.; Schütte, K.; Mayerle, J.; Malfertheiner, P. The role of the gastric bacterial microbiome in gastric cancer: Helicobacter pylori and beyond. Ther. Adv. Gastroenterol. 2019, 12, 1756284819894062. [Google Scholar] [CrossRef] [PubMed]
- Lo, Y.L.; Wang, T.Y.; Chen, C.J.; Chang, Y.H.; Lin, A.M. Two-in-One Nanoparticle Formulation to Deliver a Tyrosine Kinase Inhibitor and microRNA for Targeting Metabolic Reprogramming and Mitochondrial Dysfunction in Gastric Cancer. Pharmaceutics 2022, 14, 1759. [Google Scholar] [CrossRef]
- Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J.Y.; et al. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut 2018, 67, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.H.; Wang, A.; Chu, A.N.; Gong, Y.H.; Yuan, Y. Mucosa-associated microbiome in gastric cancer compared with non-cancer tissues. Front. Microbiol. 2019, 10, 1261. [Google Scholar] [CrossRef]
- Nie, S.; Wang, A.; Chen, X.; Gong, Y.; Yuan, Y. Microbial-Related Metabolites May Be Involved in Eight Major Biological Processes and Represent Potential Diagnostic Markers in Gastric Cancer. Cancers 2023, 15, 5271. [Google Scholar] [CrossRef]
- Ni, Y.; Yu, G.; Chen, H.; Deng, Y.; Wells, P.M.; Steves, C.J.; Ju, F.; Fu, J. M2IA: A Web Server for Microbiome and Metabolome Integrative Analysis. Bioinformatics 2020, 36, 3493–3498. [Google Scholar] [CrossRef]
- Morton, J.T.; Aksenov, A.A.; Nothias, L.F.; Foulds, J.R.; Quinn, R.A.; Badri, M.H.; Swenson, T.L.; Van Goethem, M.W.; Northen, T.R.; Vazquez-Baeza, Y.; et al. Learning representations of microbe-metabolite interactions. Nat. Methods 2019, 16, 1306–1314. [Google Scholar] [CrossRef]
- Nie, S.; Wang, A.; Yuan, Y. Comparison of clinicopathological parameters, prognosis, micro-ecological environment and metabolic function of Gastric Cancer with or without Fusobacterium sp. Infection. J. Cancer 2021, 12, 1023–1032. [Google Scholar] [CrossRef]
- Dicksved, J.; Lindberg, M.; Rosenquist, M.; Enroth, H.; Jansson, J.K.; Engstrand, L. Molecular characterization of the stomach microbiota in patients with gastric cancer and in controls. J. Med. Microbiol. 2009, 58, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Hara, Y.; Baba, Y.; Oda, E.; Harada, K.; Yamashita, K.; Toihata, T.; Kosumi, K.; Iwatsuki, M.; Miyamoto, Y.; Tsutsuki, H.; et al. Presence of Fusobacterium nucleatum in relation to patient survival and an acidic environment in oesophagogastric junction and gastric cancers. Br. J. Cancer 2024, 131, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Kamali, N.; Talebi Bezmin Abadi, A.; Rahimi, F.; Forootan, M. Fusobacterium nucleatum confirmed in gastric biopsies of patients without Helicobacter pylori. BMC Res. Notes 2025, 18, 109. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, R.; Shen, J.; Liu, N.; Zheng, Z.; Miao, Y.; Zhu, J.; Zhang, L.; Wang, Y.; Fang, H.; et al. Antibacterial Fusobacterium nucleatum-Mimicking Nanomedicine to Selectively Eliminate Tumor-Colonized Bacteria and Enhance Immunotherapy Against Colorectal Cancer. Adv. Mater. 2023, 35, e2306281. [Google Scholar] [CrossRef]
- Dai, D.; Yang, Y.; Yu, J.; Dang, T.; Qin, W.; Teng, L.; Ye, J.; Jiang, H. Interactions between gastric microbiota and metabolites in gastric cancer. Cell Death Dis. 2021, 12, 1104. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, R.; Zhou, C.; Yu, H.; Luo, W.; Zhu, J.; Liu, J.; Zhang, Z.; Xie, N.; Peng, X.; et al. ANGPTL4-Mediated Promotion of Glycolysis Facilitates the Colonization of Fusobacterium nucleatum in Colorectal Cancer. Cancer Res. 2021, 81, 6157–6170. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zou, S.; Zhang, Y.; Zhang, J.; Zhang, P.; Xiao, L.; Xie, Y.; Meng, M.; Feng, J.; Kang, L.; et al. ACTL6A protects gastric cancer cells against ferroptosis through induction of glutathione synthesis. Nat. Commun. 2023, 14, 4193. [Google Scholar] [CrossRef] [PubMed]
- La Scola, B.; Khelaifia, S.; Lagier, J.C.; Raoult, D. Aerobic culture of anaerobic bacteria using antioxidants: A preliminary report. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 2014, 33, 1781–1783. [Google Scholar] [CrossRef]
- Carlsson, J.; Larsen, J.T.; Edlund, M.B. Utilization of glutathione (L-gamma-glutamyl-L-cysteinylglycine) by Fusobacterium nucleatum subspecies nucleatum. Oral Microbiol. Immunol. 1994, 9, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Tang-Larsen, J.; Claesson, R.; Edlund, M.B.; Carlsson, J. Competition for peptides and amino acids among periodontal bacteria. J. Periodontal Res. 1995, 30, 390–395. [Google Scholar] [CrossRef]
- Xin, Y.; Li, X.; Zhang, M.; Shang, Z.; Luo, Z.; Wang, Y.; Gui, X.; Liu, Q.; Li, T.; Zeng, S.; et al. Fusobacterium nucleatum-induced exosomal HOTTIP promotes gastric cancer progression through the microRNA-885-3p/EphB2 axis. Cancer Sci. 2023, 114, 2360–2374. [Google Scholar] [CrossRef]
- Scano, A.; Fais, S.; Ciappina, G.; Genovese, M.; Granata, B.; Montopoli, M.; Consolo, P.; Carroccio, P.; Muscolino, P.; Ottaiano, A.; et al. Oxidative Stress by H2O2 as a Potential Inductor in the Switch from Commensal to Pathogen in Oncogenic Bacterium Fusobacterium nucleatum. Antioxidants 2025, 14, 323. [Google Scholar] [CrossRef]
- Chen, W.D.; Zhang, X.; Zhang, M.J.; Zhang, Y.P.; Shang, Z.Q.; Xin, Y.W.; Zhang, Y. Salivary Fusobacterium nucleatum serves as a potential diagnostic biomarker for gastric cancer. World J. Gastroenterol. 2022, 28, 4120–4132. [Google Scholar] [CrossRef]
Characteristics | Number (%) |
---|---|
Age (years) | |
<60 | 21 (40.38%) |
≥60 | 31 (59.62%) |
Gender | |
Female | 12 (23.08%) |
Male | 40 (76.92%) |
Tumor Size | |
≤6 cm | 34 (65.38%) |
>6 cm | 18 (34.62%) |
Histological Grade | |
Low | 41 (78.85%) |
Medium and High | 11 (21.15%) |
TNM Stage | |
I | 7 (13.46%) |
II | 15 (28.85%) |
III | 27 (51.92%) |
IV | 3 (5.77%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, S.; Gong, Y.; Wang, A.; Guo, R.; Chen, X.; Yuan, Y. Fusobacterium nucleatum Infection Drives Glutathione Depletion in Gastric Cancer: Integrated Multi-Omics and Experimental Validation. Microorganisms 2025, 13, 1907. https://doi.org/10.3390/microorganisms13081907
Nie S, Gong Y, Wang A, Guo R, Chen X, Yuan Y. Fusobacterium nucleatum Infection Drives Glutathione Depletion in Gastric Cancer: Integrated Multi-Omics and Experimental Validation. Microorganisms. 2025; 13(8):1907. https://doi.org/10.3390/microorganisms13081907
Chicago/Turabian StyleNie, Siru, Yuehua Gong, Ang Wang, Rui Guo, Xiaohui Chen, and Yuan Yuan. 2025. "Fusobacterium nucleatum Infection Drives Glutathione Depletion in Gastric Cancer: Integrated Multi-Omics and Experimental Validation" Microorganisms 13, no. 8: 1907. https://doi.org/10.3390/microorganisms13081907
APA StyleNie, S., Gong, Y., Wang, A., Guo, R., Chen, X., & Yuan, Y. (2025). Fusobacterium nucleatum Infection Drives Glutathione Depletion in Gastric Cancer: Integrated Multi-Omics and Experimental Validation. Microorganisms, 13(8), 1907. https://doi.org/10.3390/microorganisms13081907