BOL Lectin: A Protein Derived from Cauliflower Exhibits Antibiofilm Activity in In Vitro Assays Against Staphylococcus aureus
Abstract
1. Introduction
2. Materials and Methods
2.1. Extraction and Purification of BOL Lectin
2.2. Hemagglutination Assay
2.3. Standardization of Bacterial Strains
2.4. Biofilm Formation Assay
2.5. Consolidated Biofilm Assay
Scanning Electron Microscopy (SEM)
2.6. Minimum Inhibitory Concentration (MIC) Assay
2.7. Minimum Bactericidal Concentration (MBC) Assay
2.8. Statistical Analysis
3. Results
3.1. Protein Purification and Hemagglutination Assay
3.2. Biofilm Formation
3.3. Consolidated Biofilm
3.4. Minimum Inhibitory Concentration (MIC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Procópio, T.F.; Patriota, L.L.d.S.; Moura, M.C.d.; Silva, P.M.d.; Oliveira, A.P.S.d.; Carvalho, L.V.d.N.; Lima, T.d.A.; Soares, T.; Silva, T.D.d.; Coelho, L.C.B.B.; et al. CasuL: A New Lectin Isolated from Calliandra surinamensis Leaf Pinnulae with Cytotoxicity to Cancer Cells, Antimicrobial Activity and Antibiofilm Effect. Int. J. Biol. Macromol. 2017, 98, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Alyousef, A.A.; Alqasim, A.; Aloahd, M.S. Isolation and Characterization of Lectin with Antibacterial, Antibiofilm and Antiproliferative Activities from Acinetobacter baumannii of Environmental Origin. J. Appl. Microbiol. 2018, 124, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Almeida Campos, L.A.d.; Costa Junior, S.D.d.; Santos, J.V.d.O.; Souza, Z.N.d.; Silva, C.E.S.d.; Cristovão-Silva, A.C.; Brelaz-de-Castro, M.C.A.; Pereira, V.R.A.; Paiva, P.M.G.; Santos Correia, M.T.d.; et al. Anti-Staphylococcal, Antibiofilm and Trypanocidal Activities of CrataBL Encapsulated into Liposomes: Lectin with Potential against Infectious Diseases. Microb. Pathog. 2024, 196, 107007. [Google Scholar] [CrossRef] [PubMed]
- Podder, M.K.; Hossain, M.M.; Kabir, S.R.; Asaduzzaman, A.K.M.; Hasan, I. Antimicrobial, Antioxidant and Antiproliferative Activities of a Galactose-Binding Seed Lectin from Manilkara zapota. Heliyon 2024, 10, e24592. [Google Scholar] [CrossRef] [PubMed]
- Konozy, E.H.E.; Osman, M.E.M.; Dirar, A.I.; Osman, R.S.H. Revolutionizing Therapeutics: The Dazzling World of Plant Lectins. J. King Saud. Univ.–Sci. 2024, 36, 103318. [Google Scholar] [CrossRef]
- Naithani, S.; Komath, S.S.; Nonomura, A.; Govindjee, G. Plant Lectins and Their Many Roles: Carbohydrate-Binding and Beyond. J. Plant Physiol. 2021, 266, 153531. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, K.P.; Kiefer, C.; Al-Shehbaz, I.A.; Bailey, C.D.; Hooft van Huysduynen, A.; Nikolov, L.A.; Nauheimer, L.; Zuntini, A.R.; German, D.A.; Franzke, A.; et al. Global Brassicaceae Phylogeny Based on Filtering of 1,000-Gene Dataset. Curr. Biol. 2023, 33, 4052–4068.e6. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.E.M.; Abranches, M.V.; Silva, P.F.; de Paula, S.O.; Cardoso, S.A.; Oliveira, L.L. A New TRAF-like Protein from B. oleracea spp. botrytis with Lectin Activity and Its Effect on Macrophages. Int. J. Biol. Macromol. 2017, 94, 508–514. [Google Scholar] [CrossRef]
- Duarte, C.E.M.; Alamillo, J.M.; Koehler, A.D.; Pineda, M.; Otoni, W.C.; de Oliveira, L.L. Molecular and Biochemical Analyses of a Novel Lectin with MATH Domains from Brassica oleracea. Acta Physiol. Plant. 2020, 42, 79. [Google Scholar] [CrossRef]
- Silva, P.M.; Napoleão, T.H.; Silva, L.C.P.B.B.; Fortes, D.T.O.; Lima, T.A.; Zingali, R.B.; Pontual, E.V.; Araújo, J.M.; Medeiros, P.L.; Rodrigues, C.G.; et al. The Juicy Sarcotesta of Punica granatum Contains a Lectin That Affects Growth, Survival as well as Adherence and Invasive Capacities of Human Pathogenic Bacteria. J. Funct. Foods 2016, 27, 695–702. [Google Scholar] [CrossRef]
- De la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E.W. Bacterial Biofilm Development as a Multicellular Adaptation: Antibiotic Resistance and New Therapeutic Strategies. Curr. Opin. Microbiol. 2013, 16, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Butucel, E.; Balta, I.; McCleery, D.; Morariu, F.; Pet, I.; Popescu, C.A.; Stef, L.; Corcionivoschi, N. Farm Biosecurity Measures and Interventions with an Impact on Bacterial Biofilms. Agriculture 2022, 12, 1251. [Google Scholar] [CrossRef]
- Santos, J.V.d.O.; Porto, A.L.F.; Cavalcanti, I.M.F. Potential Application of Combined Therapy with Lectins as a Therapeutic Strategy for the Treatment of Bacterial Infections. Antibiotics 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2021, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shang, Z.; Jin, Q.; Chan, S.Y.; Hong, W.; Li, N.; Li, P. Antibody–Antimicrobial Conjugates for Combating Antibiotic Resistance. Adv. Healthc. Mater. 2023, 12, e2202207. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Roccaro, A.S.; Bisignano, G.; Marino, A.; Cannatelli, M.A.; Pizzimenti, F.C.; Cioni, P.L.; Procopio, F.; Blanco, A.R. Effects of Oregano, Carvacrol and Thymol on Staphylococcus aureus and Staphylococcus epidermidis Biofilms. J. Med. Microbiol. 2007, 56, 519–523. [Google Scholar] [CrossRef] [PubMed]
- Hasan, I.; Rahman, S.N.; Islam, M.M.; Ghosh, S.K.; Mamun, M.R.; Uddin, M.B.; Shaha, R.K.; Kabir, S.R. A N-Acetyl-D-Galactosamine-Binding Lectin from Amaranthus gangeticus Seeds Inhibits Biofilm Formation and Ehrlich Ascites Carcinoma Cell Growth in Vivo in Mice. Int. J. Biol. Macromol. 2021, 181, 928–936. [Google Scholar] [CrossRef] [PubMed]
- CLSI VET01; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Test for Bacteria Isolated from Animals. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2024.
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-vlahovic, M. A Modified Microtiter-Plate Test for Quantification of Staphylococcal Biofilm Formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi Rad, Z.; Farahmand, M.; Kavousi, M. Secapin: A Promising Antimicrobial Peptide against Multidrug-Resistant Acinetobacter baumannii. GMS Hyg. Infect. Control 2024, 19, Doc36. [Google Scholar] [CrossRef] [PubMed]
- Zar, J.H. Biostatistical Analysis. In Biostatistical Analysis; Pearson: Upper Saddle River, NJ, USA, 2010; ISBN 0321656865. [Google Scholar]
- Team, R.C. R: A Language and Environment for Statistical Computing; The R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Cavalcante, T.T.A.; Da Rocha, B.A.M.; Carneiro, V.A.; Arruda, F.V.S.; Do Nascimento, A.Ô.S.F.; Sá, N.C.; Do Nascimento, K.S.; Cavada, B.S.; Teixeira, E.H. Effect of Lectins from Diocleinae subtribe against Oral Streptococci. Molecules 2011, 16, 3530–3543. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, A.P.; Onofre, T.S.; Fabres-Klein, M.H.; Klein, R.C.; Feio, R.N.; de Oliveira Mendes, T.A.; de Oliveira Barros Ribon, A. Carbohydrate-Independent Antibiofilm Effect of Bothrops jararacussu Lectin BJcuL on Staphylococcus aureus. Microb. Pathog. 2019, 137, 103745. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.C.; Napoleão, T.H.; Coriolano, M.C.; Paiva, P.M.G.; Figueiredo, R.C.B.Q.; Coelho, L.C.B.B. Water-Soluble Moringa oleifera Lectin Interferes with Growth, Survival and Cell Permeability of Corrosive and Pathogenic Bacteria. J. Appl. Microbiol. 2015, 119, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Islam, B.; Khan, S.N.; Naeem, A.; Sharma, V.; Khan, A.U. Novel Effect of Plant Lectins on the Inhibition of Streptococcus mutans Biofilm Formation on Saliva-Coated Surface. J. Appl. Microbiol. 2009, 106, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Mattox, D.E.; Bailey-Kellogg, C. Comprehensive Analysis of Lectin-Glycan Interactions Reveals Determinants of Lectin Specificity. PLoS Comput. Biol. 2021, 17, e1009470. [Google Scholar] [CrossRef] [PubMed]
- Moura, M.C.; Trentin, D.S.; Napoleão, T.H.; Primon-Barros, M.; Xavier, A.S.; Carneiro, N.P.; Paiva, P.M.G.; Macedo, A.J.; Coelho, L.C.B.B. Multi-Effect of the Water-Soluble Moringa oleifera Lectin against Serratia marcescens and Bacillus sp.: Antibacterial, Antibiofilm and Anti-Adhesive Properties. J. Appl. Microbiol. 2017, 123, 861–874. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.C.; Fabres-Klein, M.H.; Licursi De Oliveira, L.; Feio, R.N.; Malouin, F.; De Oliveira Barros Ribon, A. A C-Type Lectin from Bothrops jararacussu Venom Disrupts Staphylococcal Biofilms. PLoS ONE 2015, 10, e0120514. [Google Scholar] [CrossRef] [PubMed]
- Subramaniyan, S.B.; Megarajan, S.; Dharshini, K.S.; Veerappan, A. Artocarpus Integrifolia Seed Lectin Enhances Membrane Damage, Oxidative Stress and Biofilm Inhibition Activity of Silver Nanoparticles against Staphylococcus aureus. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126842. [Google Scholar] [CrossRef]
- Fonseca, V.J.A.; Braga, A.L.; Filho, J.R.; Teixeira, C.S.; da Hora, G.C.A.; Morais-Braga, M.F.B. A Review on the Antimicrobial Properties of Lectins. Int. J. Biol. Macromol. 2022, 195, 163–178. [Google Scholar] [CrossRef] [PubMed]
- Rajagopal, M.; Walker, S. Envelope Structures of Gram-Positive Bacteria. In Assessment & Evaluation in Higher Education; Routledge: Oxfordshire, UK, 2018; Volume 37, pp. 1–44. ISBN 0260-2938. [Google Scholar]
- Silva, P.M.; Silva, J.N.O.; Silva, B.R.; Ferreira, G.R.S.; Gaião, W.D.C.; Recio, M.V.; Gonçalves, G.G.A.; Rodrigues, C.G.; Medeiros, P.L.; Brayner, F.A.; et al. Antibacterial Effects of the Lectin from Pomegranate sarcotesta (PgTeL) against Listeria monocytogenes. J. Appl. Microbiol. 2021, 131, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Bose, P.P.; Bhattacharjee, S.; Singha, S.; Mandal, S.; Mondal, G.; Gupta, P.; Chatterjee, B.P. A Glucose/Mannose Binding Lectin from Litchi (Litchi chinensis) Seeds: Biochemical and Biophysical Characterizations. Biochem. Biophys. Rep. 2016, 6, 242–252. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.R.S.; Brito, J.d.S.; Procópio, T.F.; Santos, N.D.d.L.; de Lima, B.J.R.C.; Coelho, L.C.B.B.; Navarro, D.M.d.A.F.; Paiva, P.M.G.; Soares, T.; Moura, M.C.d.; et al. Antimicrobial Potential of Alpinia purpurata Lectin (ApuL): Growth Inhibitory Action, Synergistic Effects in Combination with Antibiotics, and Antibiofilm Activity. Microb. Pathog. 2018, 124, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Moradi, A.; El-Shetehy, M.; Gamir, J.; Austerlitz, T.; Dahlin, P.; Wieczorek, K.; Künzler, M.; Mauch, F. Expression of a Fungal Lectin in Arabidopsis Enhances Plant Growth and Resistance Toward Microbial Pathogens and a Plant-Parasitic Nematode. Front. Plant Sci. 2021, 12, 657451. [Google Scholar] [CrossRef] [PubMed]
- Santi-Gadelha, T.; Rocha, B.A.M.; Gadelha, C.A.A.; Silva, H.C.; Castellon, R.E.R.; Gonçalves, F.J.T.; Toyama, D.O.; Toyama, M.H.; de Souza, A.J.F.; Beriam, L.O.S.; et al. Effects of a Lectin-like Protein Isolated from Acacia farnesiana Seeds on Phytopathogenic Bacterial Strains and Root-Knot Nematode. Pestic. Biochem. Physiol. 2012, 103, 15–22. [Google Scholar] [CrossRef]
- Bhatwa, A.; Wang, W.; Hassan, Y.I.; Abraham, N.; Li, X.Z.; Zhou, T. Challenges Associated with the Formation of Recombinant Protein Inclusion Bodies in Escherichia coli and Strategies to Address Them for Industrial Applications. Front. Bioeng. Biotechnol. 2021, 9, 630551. [Google Scholar] [CrossRef] [PubMed]
Microorganism | Concentration | NC | PC | Lectin |
---|---|---|---|---|
B. cereus | 0.10 mg/mL | 0.040 ± 0.0044 Aa | 0.040 ± 0.0021 Aa | 0.050 ± 0.0040 Aa |
1.00 mg/mL | 0.040 ± 0.0044 Aa | 0.040 ± 0.0021 Aa | 0.041 ± 0.0047 Aa | |
E. coli | 0.10 mg/mL | 0.042 ± 0.0021 Aa | 0.041 ± 0.0020 Aa | 0.048 ± 0.0036 Aa |
1.00 mg/mL | 0.042 ± 0.0021 Aa | 0.041 ± 0.0020 Aa | 0.046 ± 0.0025 Aa | |
S. agalactiae | 0.10 mg/mL | 0.052 ± 0.0199 Aa | 0.039 ± 0.0017 Aa | 0.069 ± 0.0261 Aa |
1.00 mg/mL | 0.052 ± 0.0199 Aa | 0.039 ± 0.0017 Aa | 0.039 ± 0.0006 Aa | |
S. aureus | 0.10 mg/mL | 0.045 ± 0.0093 Aa | 0.040 ± 0.0042 Aa | 0.073 ± 0.0202 Aa |
1.00 mg/mL | 0.045 ± 0.0093 Aa | 0.040 ± 0.0042 Aa | 0.048 ± 0.0059 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.A.M.; Pereira, N.; Menezes, M.P.d.; Rodrigues, R.A.; Reis, M.S.; Oliveira, G.E.; Santos, H.L.d.; Pizauro, L.J.L.; Ludgero, A.K.d.M.; Duarte, C.E.M.; et al. BOL Lectin: A Protein Derived from Cauliflower Exhibits Antibiofilm Activity in In Vitro Assays Against Staphylococcus aureus. Microorganisms 2025, 13, 1901. https://doi.org/10.3390/microorganisms13081901
Silva LAM, Pereira N, Menezes MPd, Rodrigues RA, Reis MS, Oliveira GE, Santos HLd, Pizauro LJL, Ludgero AKdM, Duarte CEM, et al. BOL Lectin: A Protein Derived from Cauliflower Exhibits Antibiofilm Activity in In Vitro Assays Against Staphylococcus aureus. Microorganisms. 2025; 13(8):1901. https://doi.org/10.3390/microorganisms13081901
Chicago/Turabian StyleSilva, Leandro Augusto Mariano, Natália Pereira, Mareliza Possa de Menezes, Romário Alves Rodrigues, Milena Souza Reis, Giordano Eugenio Oliveira, Hugo Leandro dos Santos, Lucas José Luduverio Pizauro, Ana Karen de Mendonça Ludgero, Christiane Eliza Motta Duarte, and et al. 2025. "BOL Lectin: A Protein Derived from Cauliflower Exhibits Antibiofilm Activity in In Vitro Assays Against Staphylococcus aureus" Microorganisms 13, no. 8: 1901. https://doi.org/10.3390/microorganisms13081901
APA StyleSilva, L. A. M., Pereira, N., Menezes, M. P. d., Rodrigues, R. A., Reis, M. S., Oliveira, G. E., Santos, H. L. d., Pizauro, L. J. L., Ludgero, A. K. d. M., Duarte, C. E. M., Oliveira, L. L. d., Bragança, C. R. S., & Cardozo, M. V. (2025). BOL Lectin: A Protein Derived from Cauliflower Exhibits Antibiofilm Activity in In Vitro Assays Against Staphylococcus aureus. Microorganisms, 13(8), 1901. https://doi.org/10.3390/microorganisms13081901