Influence of Two Root Media and Three Vermicompost Amendments on Bacterial Communities in a Greenhouse Container Garden Model System
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Lettuce Harvest
2.3. DNA Extraction and 16S rRNA Gene PCR Amplification
2.4. Processing and Analysis of 16S rRNA Gene Sequencing Data
2.5. Statistical Analyses
3. Results
3.1. Alpha Diversity
3.2. Beta Diversity
3.3. Taxa Specific Differences
3.3.1. Individual Microbial Differences Between PL (PL, PLI, PLV) and C (C, CI, CV, CVW) Media
3.3.2. Individual Microbial Differences Among the Seven Root Media/Amendment Conditions
3.4. Lettuce Weight
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blum, W.E.H.; Zechmeister-Boltenstern, S.; Keiblinger, K.M. Does Soil Contribute to the Human Gut Microbiome? Microorganisms 2019, 7, 287. [Google Scholar] [CrossRef] [PubMed]
- Tasnim, N.; Abulizi, N.; Pither, J.; Hart, M.M.; Gibson, D.L. Linking the Gut Microbial Ecosystem with the Environment: Does Gut Health Depend on Where We Live? Front. Microbiol. 2017, 8, 1935. [Google Scholar] [CrossRef]
- Ovaska, M.; Tamminen, M.; Lahdenperä, M.; Vahtera, J.; Rautava, S.; Gonzales-Inca, C.; Heiskanen, M.A.; Lagström, H. The Role of Early Life Factors and Green Living Environment in the Development of Gut Microbiota in Infancy: Population-Based Cohort Study. Environ. Int. 2024, 193, 109093. [Google Scholar] [CrossRef]
- Zuo, T.; Kamm, M.A.; Colombel, J.-F.; Ng, S.C. Urbanization and the Gut Microbiota in Health and Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 440–452. [Google Scholar] [CrossRef]
- West, C.E. Impact of the Environment on Gut Microbiome and Allergy. BMJ Nutr. Prev. Health 2023, 6 (Suppl. 3), s30–s37. [Google Scholar] [CrossRef]
- Sun, X.; Liddicoat, C.; Tiunov, A.; Wang, B.; Zhang, Y.; Lu, C.; Li, Z.; Scheu, S.; Breed, M.F.; Geisen, S.; et al. Harnessing Soil Biodiversity to Promote Human Health in Cities. npj Urban Sustain. 2023, 3, 5. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Chepsergon, J.; Moleleki, L.N. Rhizosphere Bacterial Interactions and Impact on Plant Health. Curr. Opin. Microbiol. 2023, 73, 102297. [Google Scholar] [CrossRef]
- Inbar, E.; Green, S.J.; Hadar, Y.; Minz, D. Competing Factors of Compost Concentration and Proximity to Root Affect the Distribution of Streptomycetes. Microb. Ecol. 2005, 50, 73–81. [Google Scholar] [CrossRef]
- Tiquia, S.M.; Lloyd, J.; Herms, D.A.; Hoitink, H.A.J.; Michel, F.C. Effects of Mulching and Fertilization on Soil Nutrients, Microbial Activity and Rhizosphere Bacterial Community Structure Determined by Analysis of TRFLPs of PCR-Amplified 16S RRNA Genes. Appl. Soil Ecol. 2002, 21, 31–48. [Google Scholar] [CrossRef]
- Antoniou, A.; Tsolakidou, M.-D.; Stringlis, I.A.; Pantelides, I.S. Rhizosphere Microbiome Recruited from a Suppressive Compost Improves Plant Fitness and Increases Protection against Vascular Wilt Pathogens of Tomato. Front. Plant Sci. 2017, 8, 2022. [Google Scholar] [CrossRef]
- Schreiter, S.; Ding, G.-C.; Heuer, H.; Neumann, G.; Sandmann, M.; Grosch, R.; Kropf, S.; Smalla, K. Effect of the Soil Type on the Microbiome in the Rhizosphere of Field-Grown Lettuce. Front. Microbiol. 2014, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Wang, R.; Ding, W.; Li, Y. Effects of Cultivation Soils and Ages on Microbiome in the Rhizosphere Soil of Panax Ginseng. Appl. Soil Ecol. 2022, 174, 104397. [Google Scholar] [CrossRef]
- Nuccio, E.E.; Anderson-Furgeson, J.; Estera, K.Y.; Pett-Ridge, J.; de Valpine, P.; Brodie, E.L.; Firestone, M.K. Climate and Edaphic Controllers Influence Rhizosphere Community Assembly for a Wild Annual Grass. Ecology 2016, 97, 1307–1318. [Google Scholar] [CrossRef]
- Žiarovská, J.; Urbanová, L.; Moravčíková, D.; Artimová, R.; Omelka, R.; Medo, J. Varieties of Lettuce Forming Distinct Microbial Communities Inhabiting Roots and Rhizospheres with Various Responses to Osmotic Stress. Horticulturae 2022, 8, 1174. [Google Scholar] [CrossRef]
- Aira, M.; Domínguez, J. Earthworm Effects without Earthworms: Inoculation of Raw Organic Matter with Worm-Worked Substrates Alters Microbial Community Functioning. PLoS ONE 2011, 6, e16354. [Google Scholar] [CrossRef]
- Blouin, M.; Hodson, M.E.; Delgado, E.A.; Baker, G.; Brussaard, L.; Butt, K.R.; Dai, J.; Dendooven, L.; Peres, G.; Tondoh, J.E.; et al. A Review of Earthworm Impact on Soil Function and Ecosystem Services. Eur. J. Soil Sci. 2013, 64, 161–182. [Google Scholar] [CrossRef]
- Zhu, D.; Delgado-Baquerizo, M.; Su, J.-Q.; Ding, J.; Li, H.; Gillings, M.R.; Penuelas, J.; Zhu, Y.-G. Deciphering Potential Roles of Earthworms in Mitigation of Antibiotic Resistance in the Soils from Diverse Ecosystems. Environ. Sci. Technol. 2021, 55, 7445–7455. [Google Scholar] [CrossRef]
- Beesley, L.; Dickinson, N. Carbon and Trace Element Fluxes in the Pore Water of an Urban Soil Following Greenwaste Compost, Woody and Biochar Amendments, Inoculated with the Earthworm Lumbricus Terrestris. Soil Biol. Biochem. 2011, 43, 188–196. [Google Scholar] [CrossRef]
- Edwards, C.A.; Dominguez, J.; Neuhauser, E.F. Growth and Reproduction of Perionyx Excavatus (Perr.) (Megascolecidae) as Factors in Organic Waste Management. Biol. Fertil. Soils 1998, 27, 155–161. [Google Scholar] [CrossRef]
- Castellini, M.; Bondì, C.; Giglio, L.; Iovino, M. Impact of Vermicompost Addition on Water Availability of Differently Textured Soils. Heliyon 2024, 10, e35699. [Google Scholar] [CrossRef]
- Jack, A.L.H.; Rangarajan, A.; Culman, S.W.; Sooksa-Nguan, T.; Thies, J.E. Choice of Organic Amendments in Tomato Transplants Has Lasting Effects on Bacterial Rhizosphere Communities and Crop Performance in the Field. Appl. Soil Ecol. 2011, 48, 94–101. [Google Scholar] [CrossRef]
- Domínguez, J.; Aira, M.; Kolbe, A.R.; Gómez-Brandón, M.; Pérez-Losada, M. Changes in the Composition and Function of Bacterial Communities during Vermicomposting May Explain Beneficial Properties of Vermicompost. Sci. Rep. 2019, 9, 9657. [Google Scholar] [CrossRef]
- Anandan, R.; Dharumadurai, D.; Ponnusamy Manogaran, G. An Introduction to Actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; InTech: London, UK, 2016. [Google Scholar] [CrossRef]
- Lv, B.; Xing, M.; Yang, J.; Zhang, L. Pyrosequencing Reveals Bacterial Community Differences in Composting and Vermicomposting on the Stabilization of Mixed Sewage Sludge and Cattle Dung. Appl. Microbiol. Biotechnol. 2015, 99, 10703–10712. [Google Scholar] [CrossRef]
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic Substrate for Transplant Production in Organic Nurseries. A Review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Sradnick, A.; Werner, M.; Körner, O. Make a Choice: A Rapid Strategy for Minimizing Peat in Horticultural Press Pots Substrates Using a Constrained Mixture Design and Surface Response Approach. PLoS ONE 2023, 18, e0289320. [Google Scholar] [CrossRef] [PubMed]
- Tahvonen, R. The Suppressiveness of Finnish Light Coloured Sphagnum Peat. Agric. Food Sci. 1982, 54, 345–356. [Google Scholar] [CrossRef]
- Scheuerell, S.J.; Sullivan, D.M.; Mahaffee, W.F. Suppression of Seedling Damping-Off Caused by Pythium Ultimum, P. Irregulare, and Rhizoctonia Solani in Container Media Amended with a Diverse Range of Pacific Northwest Compost Sources. Phytopathology 2005, 95, 306–315. [Google Scholar] [CrossRef]
- del Castillo Múnera, J.; Quesada-Ocampo, L.M.; Rojas, A.; Chilvers, M.I.; Hausbeck, M.K. Population Structure of Pythium Ultimum from Greenhouse Floral Crops in Michigan. Plant Dis. 2019, 103, 859–867. [Google Scholar] [CrossRef]
- Fritz, C.; Lamers, L.P.M.; Riaz, M.; van den Berg, L.J.L.; Elzenga, T.J.T.M. Sphagnum Mosses-Masters of Efficient N-Uptake While Avoiding Intoxication. PLoS ONE 2014, 9, e79991. [Google Scholar] [CrossRef]
- Azizi Yeganeh, M.; Shahabi, A.A.; Ebadi, A.; Abdossi, V. Vermicompost as an Alternative Substrate to Peat Moss for Strawberry (Fragaria ananassa) in Soilles Culture. BMC Plant Biol. 2024, 24, 149. [Google Scholar] [CrossRef]
- Zaller, J.G. Vermicompost as a Substitute for Peat in Potting Media: Effects on Germination, Biomass Allocation, Yields and Fruit Quality of Three Tomato Varieties. Sci. Hortic. 2007, 112, 191–199. [Google Scholar] [CrossRef]
- Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C.; Gevers, D.; Petrosino, J.F.; Abubucker, S.; Mannon, P.J.; et al. A Framework for Human Microbiome Research. Nature 2012, 486, 215–221. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-Species Living Tree Project (LTP)” Taxonomic Frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2018. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’Hara, R.B.; Simpson, G.L.; Solymos, P. Vegan: Community Ecology Package; CRAN: Vienna, Austria, 2012. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Cai, L.; Gong, X.; Sun, X.; Li, S.; Yu, X. Comparison of Chemical and Microbiological Changes during the Aerobic Composting and Vermicomposting of Green Waste. PLoS ONE 2018, 13, e0207494. [Google Scholar] [CrossRef] [PubMed]
- Gómez Brandón, M.; Aira, M.; Kolbe, A.R.; de Andrade, N.; Pérez-Losada, M.; Domínguez, J. Rapid Bacterial Community Changes during Vermicomposting of Grape Marc Derived from Red Winemaking. Microorganisms 2019, 7, 473. [Google Scholar] [CrossRef]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Copetta, A.; D’Agostino, G.; Massa, N.; Avidano, L.; et al. AM Fungi and PGP Pseudomonads Increase Flowering, Fruit Production, and Vitamin Content in Strawberry Grown at Low Nitrogen and Phosphorus Levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef]
- Zvinavashe, A.T.; Mardad, I.; Mhada, M.; Kouisni, L.; Marelli, B. Engineering the Plant Microenvironment To Facilitate Plant-Growth-Promoting Microbe Association. J. Agric. Food Chem. 2021, 69, 13270–13285. [Google Scholar] [CrossRef]
- Lundberg, D.S.; Lebeis, S.L.; Paredes, S.H.; Yourstone, S.; Gehring, J.; Malfatti, S.; Tremblay, J.; Engelbrektson, A.; Kunin, V.; Rio, T.G.; et al. Defining the Core Arabidopsis Thaliana Root Microbiome. Nature 2012, 488, 86–90. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Rott, M.; Schlaeppi, K.; Ver Loren van Themaat, E.; Ahmadinejad, N.; Assenza, F.; Rauf, P.; Huettel, B.; Reinhardt, R.; Schmelzer, E.; et al. Revealing Structure and Assembly Cues for Arabidopsis Root-Inhabiting Bacterial Microbiota. Nature 2012, 488, 91–95. [Google Scholar] [CrossRef]
- Wang, X.; Chi, Y.; Song, S. Important Soil Microbiota’s Effects on Plants and Soils: A Comprehensive 30-Year Systematic Literature Review. Front. Microbiol. 2024, 15, 1347745. [Google Scholar] [CrossRef]
- van Elsas, J.D.; Trevors, J.T.; Rosado, A.S.; Nannipieri, P. Modern Soil Microbiology, 3rd ed.; Rutledge Tafylor & Francis Group: London, UK, 2019. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, P.; Riggins, C.W.; Zabaloy, M.C.; Rodríguez-Zas, S.; Villamil, M.B. Long-Term N Fertilization Decreased Diversity and Altered the Composition of Soil Bacterial and Archaeal Communities. Agronomy 2019, 9, 574. [Google Scholar] [CrossRef]
- Calderón, K.; Spor, A.; Breuil, M.-C.; Bru, D.; Bizouard, F.; Violle, C.; Barnard, R.L.; Philippot, L. Effectiveness of Ecological Rescue for Altered Soil Microbial Communities and Functions. ISME J. 2017, 11, 272–283. [Google Scholar] [CrossRef]
- Saghaï, A.; Wittorf, L.; Philippot, L.; Hallin, S. Loss in Soil Microbial Diversity Constrains Microbiome Selection and Alters the Abundance of N-Cycling Guilds in Barley Rhizosphere. Appl. Soil Ecol. 2022, 169, 104224. [Google Scholar] [CrossRef]
- Patumona Manalu, S.; Sabrina, T.; Anggia Sari, Y. Exploring the Triad: PH, Nitrogen, and Phosphorus Characteristics of Peat Soils in Humbang Hasundutan Regency. E3S Web Conf. 2024, 519, 03009. [Google Scholar] [CrossRef]
- Linkosalmi, M.; Lohila, A.; Biasi, C. Stronger Negative Priming Effect and Lower Basal Respiration Rates in Nutrient-poor as Compared to Nutrient-rich Forestry-drained Peatland. Rapid Commun. Mass Spectrom. 2023, 37, e9540. [Google Scholar] [CrossRef]
- Álvarez, J.M.; Pasian, C.; Lal, R.; López, R.; Díaz, M.J.; Fernández, M. Morpho-Physiological Plant Quality When Biochar and Vermicompost Are Used as Growing Media Replacement in Urban Horticulture. Urban For. Urban Green. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Messiga, A.J.; Hao, X.; Dorais, M.; Bineng, C.S.; Ziadi, N. Supplement of Biochar and Vermicompost Amendments in Coir and Peat Growing Media Improves N Management and Yields of Leafy Vegetables. Can. J. Soil Sci. 2022, 102, 39–52. [Google Scholar] [CrossRef]
- Tilman, D. Diversity and Production in European Grasslands. Sci. Mag. 1999, 286, 1099–1100. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of Plant Diversity on Biomass Production Increase through Time Because of Species Complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef]
- Hirt, H. Healthy Soils for Healthy Plants for Healthy Humans. EMBO Rep. 2020, 21, e51069. [Google Scholar] [CrossRef]
- Brown, M.D.; Shinn, L.M.; Reeser, G.; Browning, M.; Schwingel, A.; Khan, N.A.; Holscher, H.D. Fecal and Soil Microbiota Composition of Gardening and Non-Gardening Families. Sci. Rep. 2022, 12, 1595. [Google Scholar] [CrossRef]
- Nurminen, N.; Lin, J.; Grönroos, M.; Puhakka, R.; Kramna, L.; Vari, H.K.; Viskari, H.; Oikarinen, S.; Roslund, M.; Parajuli, A.; et al. Nature-Derived Microbiota Exposure as a Novel Immunomodulatory Approach. Future Microbiol. 2018, 13, 737–744. [Google Scholar] [CrossRef]
- Horwath, W.; Kuzyakov, Y. Climate Change Impacts on Soil Processes and Ecosystem Properties, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 35. [Google Scholar]
Treatment Abbreviation | Growing-Media Composition |
---|---|
C | Compost-based growing medium with no additions |
CI | Compost-based growing medium with water extract (5:1) of vermicompost collected and applied as an irrigation at 2, 3, and 4 weeks of growth |
CV | Compost-based growing medium with vermicompost added at 10% by volume prior to planting |
CVW | Compost-based growing medium with worms and worm compost added to the surface of the growing media at 2, 3, and 4 weeks of growth |
PL | Peat-lite soil-less growing medium with no additions |
PLI | Peat-lite with water extract (5:1) of vermicompost collected and applied as an irrigation at 2, 3, and 4 weeks of growth |
PLV | Peat-lite with vermicompost added at 10% by volume prior to planting |
Soil Diversity Metric | Statistical Tests |
---|---|
Data Normality | Shapiro–Wilk |
Alpha Diversity | Kruskal–Wallis with Dunn’s test or one-way ANOVA with Tukey HSD |
Beta Diversity | PERMANOVA and PERMDISP |
Individual Taxa Differences | Negative Binomial model |
Lettuce Growth Yield | ANOVA with Tukey HSD with The Benjamini–Hochberg adjustment |
Taxa—Phylum Level | Overall | C Media | PL Media | p-Value |
Proteobacteria | 32.3 ± 13.4 | 22.6 ± 2.3 | 45.1 ± 10.9 | <0.0001 |
Chloroflexi | 10.1 ± 7.1 | 15.6 ± 3.2 | 2.7 ± 2 | <0.0001 |
Firmicutes | 1.6 ± 1.2 | 2.2 ± 1 | 0.7 ± 0.7 | <0.0001 |
Acidobacteria | 17 ± 8.6 | 22.9 ± 5.1 | 9.2 ± 5.6 | <0.0001 |
Gemmatimonadetes | 1.8 ± 1 | 2.4 ± 0.6 | 0.9 ± 0.7 | <0.0001 |
Actinobacteria | 3.6 ± 1.3 | 2.9 ± 0.5 | 4.6 ± 1.4 | <0.0001 |
Bacteroidetes | 9.8 ± 3.7 | 7.3 ± 2.4 | 13.2 ± 2.1 | <0.0001 |
Planctomycetes | 14.1 ± 3.8 | 15.2 ± 3.2 | 12.7 ± 4.1 | 0.1000 |
Verrucomicrobia | 4.9 ± 2.3 | 3.8 ± 1.5 | 6.4 ± 2.3 | 0.0002 |
Taxa—Genus Level | Overall | C Media | PL Media | p-Value |
Subgroup 6 ge | 13.1 ± 8.2 | 18.6 ± 4.7 | 5.9 ± 5.6 | 0.0004 |
Bacteria_unclassified | 1.1 ± 0.8 | 1.7 ± 0.4 | 0.3 ± 0.2 | <0.0001 |
WD2101 soil group ge | 1.4 ± 0.9 | 2 ± 0.5 | 0.5 ± 0.3 | <0.0001 |
A4b ge | 2 ± 1.6 | 3.2 ± 0.9 | 0.4 ± 0.4 | <0.0001 |
Pedosphaeraceae ge | 1.6 ± 0.8 | 2.1 ± 0.6 | 0.9 ± 0.7 | 0.0001 |
uncultured Pirellulaceae | 1.4 ± 0.4 | 1.4 ± 0.4 | 1.2 ± 0.3 | 0.2000 |
Flavobacterium | 1.5 ± 1.3 | 0.8 ± 0.9 | 2.5 ± 1.1 | 0.0020 |
Pir4_lineage | 1.3 ± 0.8 | 1.8 ± 0.5 | 0.6 ± 0.4 | <0.0001 |
uncultured Anaerolineaceae | 2.1 ± 2.1 | 3.7 ± 1.4 | 0.1 ± 0.1 | <0.0001 |
SH PL14 | 1.9 ± 0.7 | 1.6 ± 0.5 | 2.2 ± 0.8 | 0.0200 |
uncultured Micropepsaceae | 1 ± 1.3 | 0.1 ± 0 | 2.3 ± 1 | <0.0001 |
Chryseolinea | 1.2 ± 0.7 | 1.6 ± 0.4 | 0.6 ± 0.6 | <0.0001 |
Burkholderia Caballeronia Paraburkholderia | 2.7 ± 3.7 | 0 ± 0.1 | 6.3 ± 2.8 | <0.0001 |
Rhodanobacter | 2.7 ± 3.6 | 0.1 ± 0.1 | 6.2 ± 2.8 | <0.0001 |
Taxa | Overall | C | CI | CV | CVW | PL | PLI | PLV | p-Value |
---|---|---|---|---|---|---|---|---|---|
Proteobacteria | 32.3 ± 13.4 | 21.4 ± 1.9 a | 21.1 ± 1.5 a | 25.3 ± 2.7 b | 22.7 ± 0.9 ab | 58.9 ± 1.4 c | 38.4 ± 5.8 d | 37.9 ± 3 d | <0.0001 |
Planctomycetes | 14.1 ± 3.8 | 12.5 ± 0.8 ae | 14.4 ± 1.5 ade | 14.5 ± 2.4 ade | 19.4 ± 2.8 bd | 8 ± 1.3 c | 17.1 ± 1.7 d | 12.8 ± 2.1 e | <0.0001 |
Acidobacteria | 17 ± 8.6 | 28.5 ± 3.5 a | 24.2 ± 4.8 abc | 19.9 ± 0.9 bcf | 18.8 ± 4.8 cf | 3.8 ± 0.5 d | 8 ± 1.8 e | 15.8 ± 3.1 f | <0.0001 |
Chloroflexi | 10.1 ± 7.1 | 15.3 ± 2.6 a | 17.9 ± 4.4 a | 16.7 ± 1.4 a | 12.5 ± 2.3 b | 0.3 ± 0.1 c | 2.7 ± 0.2 d | 5 ± 0.6 e | <0.0001 |
Bacteroidetes | 9.8 ± 3.7 | 5.8 ± 2.1 a | 6.5 ± 0.5 a | 6.6 ± 0.9 a | 10.5 ± 2.5 be | 14.2 ± 1.4 cd | 14.4 ± 1.9 d | 10.9 ± 0.6 e | <0.0001 |
Actinobacteria | 3.6 ± 1.3 | 3 ± 0.8 ac | 3 ± 0.4 ac | 2.9 ± 0.3 ac | 2.7 ± 0.7 a | 4.5 ± 0.5 bcd | 3.7 ± 0.7 c | 5.7 ± 2 d | <0.0001 |
Verrucomicrobia | 4.9 ± 2.3 | 3 ± 0.3 a | 3 ± 0.4 a | 3.9 ± 0.5 abe | 5.2 ± 2.6 bce | 5.6 ± 0.5 ce | 9.2 ± 1.7 d | 4.4 ± 0.7 e | <0.0001 |
Firmicutes | 1.6 ± 1.2 | 2.9 ± 1.3 a | 2.4 ± 1.6 ad | 1.7 ± 0.3 ad | 2 ± 0.2 ad | 0.2 ± 0.1 bc | 0.3 ± 0 c | 1.5 ± 0.6 d | <0.0001 |
Gemmatimonadetes | 1.8 ± 1 | 2.7 ± 0.3 a | 2.4 ± 0.4 ad | 2.8 ± 0.7 ad | 1.7 ± 0.5 ad | 0.4 ± 0.1 bc | 0.5 ± 0.1 c | 1.8 ± 0.5 d | <0.0001 |
Taxa Name | Overall | C | CI | CV | CVW | PL | PLI | PLV | p-Value |
---|---|---|---|---|---|---|---|---|---|
Subgroup 6 ge | 13.1 ± 8.2 | 23.6 ± 3 a | 20 ± 4 ab | 15.7 ± 1.3 abe | 15 ± 5 be | 0.8 ± 0.2 c | 3.9 ± 1.3 d | 12.9 ± 2.9 e | <0.0001 |
Bacteria unclassified | 1.1 ± 0.7 | 1.7 ± 0.2 a | 1.8 ± 0.3 a | 2 ± 0.1 a | 1.2 ± 0.1 b | 0.1 ± 0.1 c | 0.3 ± 0 d | 0.5 ± 0.1 e | <0.0001 |
WD2101 soil group ge | 1.4 ± 0.9 | 1.9 ± 0.5 a | 1.9 ± 0.6 a | 2.4 ± 0.5 a | 2 ± 0.3 a | 0.3 ± 0 b | 0.5 ± 0.1 c | 0.8 ± 0.3 d | <0.0001 |
A4b ge | 2 ± 1.6 | 2.9 ± 0.2 ab | 2.9 ± 1 ab | 4.2 ± 1 a | 2.9 ± 0.4 b | 0 ± 0 abcd | 0.2 ± 0.2 c | 0.9 ± 0.2 d | <0.0001 |
Pedosphaeraceae ge | 1.6 ± 0.8 | 1.9 ± 0.2 abd | 1.9 ± 0.2 abd | 2.8 ± 0.5 a | 1.7 ± 0.5 bd | 0.4 ± 0.1 c | 1.7 ± 0.6 d | 0.7 ± 0.2 e | <0.0001 |
uncultured Pirellulaceae | 1.4 ± 0.4 | 1.3 ± 0.2 acde | 1.4 ± 0.3 ade | 1.2 ± 0.4 ace | 1.9 ± 0.3 bd | 1 ± 0.4 ce | 1.6 ± 0.2 d | 1.1 ± 0.1 e | <0.0001 |
Flavobacterium | 1.5 ± 1.3 | 0.2 ± 0.1 ac | 0.6 ± 0.1 b | 0.2 ± 0 c | 2.3 ± 0.4 de | 2.4 ± 0.3 e | 3.6 ± 1.1 f | 1.4 ± 0.4 g | <0.0001 |
Pir4 lineage | 1.3 ± 0.8 | 1.7 ± 0.1 a | 1.3 ± 0.3 a | 1.7 ± 0.2 a | 2.6 ± 0.3 b | 0.1 ± 0 c | 0.8 ± 0.2 de | 0.7 ± 0.3 e | <0.0001 |
uncultured Anaerolineaceae | 2.1 ± 2.1 | 3.4 ± 0.8 a | 4.5 ± 2.2 a | 4 ± 0.3 a | 2.7 ± 1.4 a | 0 ± 0 abc | 0 ± 0 b | 0.3 ± 0 c | <0.0001 |
SH PL14 | 1.9 ± 0.7 | 1.1 ± 0.1 ae | 1.5 ± 0.4 abce | 1.6 ± 0.3 abce | 2.1 ± 0.4 bce | 2.2 ± 0.9 ce | 3 ± 0.2 d | 1.5 ± 0.5 e | <0.0001 |
uncultured Micropepsaceae | 1 ± 1.3 | 0.1 ± 0.1 a | 0.1 ± 0 a | 0.1 ± 0.1 a | 0.1 ± 0 a | 3.4 ± 0.5 b | 1.7 ± 0.8 cd | 1.8 ± 0.2 d | <0.0001 |
Chryseolinea | 1.2 ± 0.7 | 1.4 ± 0.4 a | 1.6 ± 0.4 a | 1.8 ± 0.5 a | 1.6 ± 0.4 a | 0 ± 0 abc | 0.7 ± 0.4 b | 1.2 ± 0.4 c | <0.0001 |
Burkholderia Caballeronia Paraburkholderia | 2.7 ± 3.7 | 0 ± 0 abcd | 0.1 ± 0.2 a | 0 ± 0 a | 0 ± 0 abcd | 9.6 ± 1.3 b | 4.9 ± 2.3 cd | 4.6 ± 1.2 d | <0.0001 |
Rhodanobacter | 2.7 ± 3.6 | 0 ± 0 abcde | 0.1 ± 0.1 a | 0.1 ± 0 ab | 0 ± 0 b | 9.8 ± 1 c | 4.5 ± 1.6 de | 4.5 ± 0.3 e | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, S.; Nel, N.H.; Beavers, A.W.; Sugino, K.Y.; Alaimo, K.; Biernbaum, J.A.; Comstock, S.S. Influence of Two Root Media and Three Vermicompost Amendments on Bacterial Communities in a Greenhouse Container Garden Model System. Microorganisms 2025, 13, 1885. https://doi.org/10.3390/microorganisms13081885
Bu S, Nel NH, Beavers AW, Sugino KY, Alaimo K, Biernbaum JA, Comstock SS. Influence of Two Root Media and Three Vermicompost Amendments on Bacterial Communities in a Greenhouse Container Garden Model System. Microorganisms. 2025; 13(8):1885. https://doi.org/10.3390/microorganisms13081885
Chicago/Turabian StyleBu, Sihan, Nikita H. Nel, Alyssa W. Beavers, Kameron Y. Sugino, Katherine Alaimo, John A. Biernbaum, and Sarah S. Comstock. 2025. "Influence of Two Root Media and Three Vermicompost Amendments on Bacterial Communities in a Greenhouse Container Garden Model System" Microorganisms 13, no. 8: 1885. https://doi.org/10.3390/microorganisms13081885
APA StyleBu, S., Nel, N. H., Beavers, A. W., Sugino, K. Y., Alaimo, K., Biernbaum, J. A., & Comstock, S. S. (2025). Influence of Two Root Media and Three Vermicompost Amendments on Bacterial Communities in a Greenhouse Container Garden Model System. Microorganisms, 13(8), 1885. https://doi.org/10.3390/microorganisms13081885