Recent Changes in the Epidemiology of Group A Streptococcus Infections: Observations and Implications
Abstract
1. Introduction
2. Methods
3. Group A Streptococcus (GAS) General Characteristics
4. Epidemiology of Group A Streptococcus (GAS) Infections
4.1. In the First Years of the Antibiotic Era Until 2005
4.2. From 2005 to the Beginning of the COVID-19 Pandemic
4.3. The Period of the COVID-19 Pandemic
5. Future Outlook for Group A Streptococcus Infections
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martin, J. The Streptococcus pyogenes Carrier State. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/books/NBK374206/ (accessed on 10 July 2024).
- Shulman, S.T.; Bisno, A.L.; Clegg, H.W.; Gerber, M.A.; Kaplan, E.L.; Lee, G.; Martin, J.M.; Van Beneden, C.; Infectious Diseases Society of America (2012). Clinical practice guideline for the diagnosis and management of group A streptococcal pharyngitis: 2012 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2012, 55, e86–e102. [Google Scholar] [CrossRef]
- Sanyahumbi, A.S.; Colquhoun, S.; Wyber, R.; Carapetis, J.R. Global Disease Burden of Group A Streptococcus. In Streptococcus pyogenes: Basic Biology to Clinical Manifestations [Internet]; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Andrejko, K.; Whittles, L.K.; Lewnard, J.A. Health-Economic Value of Vaccination Against Group A Streptococcus in the United States. Clin. Infect. Dis. 2022, 74, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.B.; Fischetti, V.A.; Carapetis, J.R.; Steer, A.C.; Sow, S.; Kumar, R.; Mayosi, B.M.; Rubin, F.A.; Mulholland, K.; Hombach, J.M.; et al. Group A streptococcal vaccines: Paving a path for accelerated development. Vaccine 2013, 31 (Suppl. 2), B216–B222. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, S.; Rivera-Hernandez, T.; Curren, B.F.; Harbison-Price, N.; De Oliveira, D.M.P.; Jespersen, M.G.; Davies, M.R.; Walker, M.J. Pathogenesis, epidemiology and control of Group A Streptococcus infection. Nat. Rev. Microbiol. 2023, 21, 431–447. [Google Scholar] [CrossRef]
- Golińska, E.; van der Linden, M.; Więcek, G.; Mikołajczyk, D.; Machul, A.; Samet, A.; Piórkowska, A.; Dorycka, M.; Heczko, P.B.; Strus, M. Virulence factors of Streptococcus pyogenes strains from women in peri-labor with invasive infections. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 747–754. [Google Scholar] [CrossRef]
- Shannon, B.A.; McCormick, J.K.; Schlievert, P.M. Toxins and Superantigens of Group A Streptococci. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Flamant, A.; Demirjian, A.; Lamagni, T.; Toubiana, J.; Smeesters, P.R.; Cohen, J.F. Invasive group A streptococcal infections: Lessons learned from the 2022–23 upsurge. Lancet Infect. Dis. 2025, S1473-3099(25)00343-3. [Google Scholar] [CrossRef]
- Musser, J.M.; Hauser, A.R.; Kim, M.H.; Schlievert, P.M.; Nelson, K.; Selander, R.K. Streptococcus pyogenes causing toxic-shock-like syndrome and other invasive diseases: Clonal diversity and pyrogenic exotoxin expression. Proc. Natl. Acad. Sci. USA 1991, 88, 2668–2672. [Google Scholar] [CrossRef]
- Cockerill, F.R., III.; MacDonald, K.L.; Thompson, R.L.; Roberson, F.; Kohner, P.C.; Besser-Wiek, J.; Manahan, J.M.; Musser, J.M.; Schlievert, P.M.; Talbot, J.; et al. An outbreak of invasive group A streptococcal disease associated with high carriage rates of the invasive clone among school-aged children. JAMA 1997, 277, 38–43. [Google Scholar] [CrossRef]
- Demers, B.; Simor, A.E.; Vellend, H.; Schlievert, P.M.; Byrne, S.; Jamieson, F.; Walmsley, S.; Low, D.E. Severe invasive group A streptococcal infections in Ontario, Canada: 1987–1991. Clin. Infect. Dis. 1993, 16, 792–800. [Google Scholar] [CrossRef]
- Hauser, A.R.; Stevens, D.L.; Kaplan, E.L.; Schlievert, P.M. Molecular analysis of pyrogenic exotoxins from Streptococcus pyogenes isolates associated with toxic shock-like syndrome. J. Clin. Microbiol. 1991, 29, 1562–1567. [Google Scholar] [CrossRef]
- Miyoshi-Akiyama, T.; Zhao, J.; Kikuchi, K.; Kato, H.; Suzuki, R.; Endoh, M.; Uchiyama, T. Quantitative and qualitative comparison of virulence traits, including murine lethality, among different M types of group A Streptococci. J. Infect. Dis. 2003, 187, 1876–1887. [Google Scholar] [CrossRef] [PubMed]
- Avire, N.J.; Whiley, H.; Ross, K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- Smeesters, P.R.; de Crombrugghe, G.; Tsoi, S.K.; Leclercq, C.; Baker, C.; Osowicki, J.; Verhoeven, C.; Botteaux, A.; Steer, A.C. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: A systematic review. Lancet Microbe 2024, 5, e181–e193. [Google Scholar] [CrossRef]
- Nasir, B.F.; Vinayagam, R.; Rae, K. “It’s what makes us unique”: Indigenous Australian perspectives on genetics research to improve comorbid mental and chronic disease outcomes. Curr. Med. Res. Opin. 2022, 38, 1219–1228. [Google Scholar] [CrossRef]
- Mponponsuo, K.; Church, D.L.; Lu, S.J.; Viczko, J.; Naugler, C.; McDonald, T.; Dickinson, J.; Somayaji, R. Age and sex-specific incidence rates of group A streptococcal pharyngitis between 2010 and 2018: A population-based study. Future Microbiol. 2021, 16, 1053–1062. [Google Scholar] [CrossRef]
- Nelson, G.E.; Pondo, T.; Toews, K.A.; Farley, M.M.; Lindegren, M.L.; Lynfield, R.; Aragon, D.; Zansky, S.M.; Watt, J.P.; Cieslak, P.R.; et al. Epidemiology of Invasive Group A Streptococcal Infections in the United States, 2005–2012. Clin. Infect. Dis. 2016, 63, 478–486. [Google Scholar] [CrossRef]
- Musumeci, S.; MacPhail, A.; Weisser Rohacek, M.; Erba, A.; Goldenberger, D.; Lang, C.; Colin-Benoit, E.; Leib, S.L.; Sendi, P.; Chuard, C.; et al. Role of viral coinfection in post-pandemic invasive Group A streptococcal infections in adults, a nation-wide cohort study (iGASWISS). Eur. J. Clin. Microbiol. Infect. Dis. 2025. [Google Scholar] [CrossRef]
- Ben-Abraham, R.; Keller, N.; Vered, R.; Harel, R.; Barzilay, Z.; Paret, G. Invasive group A streptococcal infections in a large tertiary center: Epidemiology, characteristics and outcome. Infection 2002, 30, 81–85. [Google Scholar] [CrossRef]
- Davies, H.D.; McGeer, A.; Schwartz, B.; Green, K.; Cann, D.; Simor, A.E.; Low, D.E. Invasive group A streptococcal infections in Ontario, Canada. Ontario Group A Streptococcal Study Group. N. Engl. J. Med. 1996, 335, 547–554. [Google Scholar] [CrossRef]
- Factor, S.H. Invasive group A streptococcal disease: Risk factors for adults. Emerg. Infect. Dis. 2003, 9, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Morens, D.M.; Taubenberger, J.K.; Fauci, A.S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: Implications for pandemic influenza preparedness. J. Infect. Dis. 2008, 198, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Tasher, D.; Stein, M.; Simões, E.A.; Shohat, T.; Bromberg, M.; Somekh, E. Invasive bacterial infections in relation to influenza outbreaks, 2006–2010. Clin. Infect. Dis. 2011, 53, 1199–1207. [Google Scholar] [CrossRef]
- Vugia, D.J.; Peterson, C.L.; Meyers, H.B.; Kim, K.S.; Arrieta, A.; Schlievert, P.M.; Kaplan, E.L.; Werner, S.B. Invasive group A streptococcal infections in children with varicella in Southern California. Pediatr. Infect. Dis. J. 1996, 15, 146–150. [Google Scholar] [CrossRef]
- Brogan, T.V.; Nizet, V.; Waldhausen, J.H.; Rubens, C.E.; Clarke, W.R. Group A streptococcal necrotizing fasciitis complicating primary varicella: A series of fourteen patients. Pediatr. Infect. Dis. J. 1995, 14, 588–594. [Google Scholar] [CrossRef]
- Wilson, G.J.; Talkington, D.F.; Gruber, W.; Edwards, K.; Dermody, T.S. Group A streptococcal necrotizing fasciitis following varicella in children: Case reports and review. Clin. Infect. Dis. 1995, 20, 1333–1338. [Google Scholar] [CrossRef]
- Khan, K.S.; Wojdyla, D.; Say, L.; Gülmezoglu, A.M.; Van Look, P.F. WHO analysis of causes of maternal death: A systematic review. Lancet 2006, 367, 1066–1074. [Google Scholar] [CrossRef]
- Cleary, P.P.; Kaplan, E.L.; Handley, J.P.; Wlazlo, A.; Kim, M.H.; Hauser, A.R.; Schlievert, P.M. Clonal basis for resurgence of serious Streptococcus pyogenes disease in the 1980s. Lancet 1992, 339, 518–521. [Google Scholar] [CrossRef]
- Musser, J.M.; Kapur, V.; Szeto, J.; Pan, X.; Swanson, D.S.; Martin, D.R. Genetic diversity and relationships among Streptococcus pyogenes strains expressing serotype M1 protein: Recent intercontinental spread of a subclone causing episodes of invasive disease. Infect Immun. 1995, 63, 994–1003. [Google Scholar] [CrossRef]
- Steer, A.C.; Lamagni, T.; Curtis, N.; Carapetis, J.R. Invasive group a streptococcal disease: Epidemiology, pathogenesis and management. Drugs 2012, 72, 1213–1227. [Google Scholar] [CrossRef]
- Lau, E.H.; Nishiura, H.; Cowling, B.J.; Ip, D.K.; Wu, J.T. Scarlet fever outbreak, Hong Kong, 2011. Emerg. Infect. Dis. 2012, 18, 1700–1702. [Google Scholar] [CrossRef]
- Meehan, M.; Murchan, S.; Gavin, P.J.; Drew, R.J.; Cunney, R. Epidemiology of an upsurge of invasive group A streptococcal infections in Ireland, 2012–2015. J. Infect. 2018, 77, 183–190. [Google Scholar] [CrossRef]
- Dunne, E.M.; Hutton, S.; Peterson, E.; Blackstock, A.J.; Hahn, C.G.; Turner, K.; Carter, K.K. Increasing Incidence of Invasive Group A Streptococcus Disease, Idaho, USA, 2008–2019. Emerg. Infect. Dis. 2022, 28, 1785–1795. [Google Scholar] [CrossRef] [PubMed]
- Cannon, J.W.; Jack, S.; Wu, Y.; Zhang, J.; Baker, M.G.; Geelhoed, E.; Fraser, J.; Carapetis, J.R. An economic case for a vaccine to prevent group A Streptococcus skin infections. Vaccine 2018, 33, 6968–6978. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Holden, M.T.; Coupland, P.; Chen, J.H.; Venturini, C.; Barnett, T.C.; Zakour, N.L.; Tse, H.; Dougan, G.; Yuen, K.Y.; et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat. Genet. 2015, 47, 84–87. [Google Scholar] [CrossRef]
- Irish Meningitis and Sepsis Reference Laboratory. Annual Report 2019. Available online: https://media.childrenshealthireland.ie/documents/IMSRL-annual-Report-2019-final.pdf#:~:text=The%20main%20invasive%20types%20in%20the%20Northern,species%20confirmation%20including%20isolates%20collected%20in%202018 (accessed on 1 July 2025).
- Vieira, A.; Wan, Y.; Ryan, Y.; Li, H.K.; Guy, R.L.; Papangeli, M.; Huse, K.K.; Reeves, L.C.; Soo, V.W.C.; Daniel, R.; et al. Rapid expansion and international spread of M1UK in the post-pandemic UK upsurge of Streptococcus pyogenes. Nat. Commun. 2024, 15, 3916. [Google Scholar] [CrossRef]
- Tsai, W.C.; Shen, C.F.; Lin, Y.L.; Shen, F.C.; Tsai, P.J.; Wang, S.Y.; Lin, Y.S.; Wu, J.J.; Chi, C.Y.; Liu, C.C. Emergence of macrolide-resistant Streptococcus pyogenes emm12 in southern Taiwan from 2000 to 2019. J. Microbiol. Immunol. Infect. 2021, 54, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cai, J.; Davies, M.R.; Li, Y.; Zhang, C.; Yao, W.; Kong, D.; Pan, H.; Zhang, X.; Zeng, M.; et al. Increase of emm1 isolates among group A Streptococcus strains causing scarlet fever in Shanghai, China. Int. J. Infect. Dis. 2020, 98, 305–314. [Google Scholar] [CrossRef]
- Sutcliffe, C.G.; Close, R.; Brown, L.B.; Parker, D.; Patel, J.; Romancito, E.; Weatherholtz, R.; McAuley, J.; Hammitt, L.L. Group A Streptococcus among American Indian Persons, White Mountain Apache Tribal Lands, United States, 2016-20191. Emerg Infect Dis. 2025, 31, 1580–1588. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Impact of the COVID-19 Pandemic on Pediatric Invasive Group A Streptococcus Infections in the United States. Available online: https://www.cdc.gov/eis-conference/php/media-resources/group-a-Streptococcus-infections.html#:~:text=During%202004%2D2022%2C%20in%20total,2021%2C%20and%202022%2C%20respectively (accessed on 29 June 2025).
- Massese, M.; La Sorda, M.; De Maio, F.; Gatto, A.; Rosato, R.; Pansini, V.; Caroselli, A.; Fiori, B.; Sanguinetti, M.; Chiaretti, A.; et al. Epidemiology of group A streptococcal infection: Are we ready for a new scenario? Lancet Microbe 2024, 5, 620–621. [Google Scholar] [CrossRef]
- Flamant, A.; Faury, H.; Luscan, R.; Couloigner, V.; Pouletty, M.; Bustarret, O.; Chappuy, H.; Gaume, M.; Drummond, D.; Pinhas, Y.; et al. Severe Group A Streptococcus Infections in Children During and After the COVID-19 Pandemic: An Interrupted Time-series Analysis in Paris, France, 2018–2023. Pediatr. Infect. Dis. J. 2025. [Google Scholar] [CrossRef]
- UK Group A Streptococcal Infections: Third Update on Seasonal Activity in England, 2023 to 2024. Available online: https://www.gov.uk/government/publications/group-a-streptococcal-infections-report-on-seasonal-activity-in-england-2023-to-2024/group-a-streptococcal-infections-third-update-on-seasonal-activity-in-england-2023-to-2024 (accessed on 1 July 2025).
- Principi, N.; Autore, G.; Ramundo, G.; Esposito, S. Epidemiology of Respiratory Infections during the COVID-19 Pandemic. Viruses 2023, 15, 1160. [Google Scholar] [CrossRef] [PubMed]
- Lim, R.H.; Chow, A.; Ho, H.J. Decline in pneumococcal disease incidence in the time of COVID-19 in Singapore. J. Infect. 2020, 81, e19–e21. [Google Scholar] [CrossRef] [PubMed]
- Juan, H.C.; Chao, C.M.; Lai, C.C.; Tang, H.J. Decline in invasive pneumococcal disease during COVID-19 pandemic in Taiwan. J. Infect. 2020, 82, 282–327. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.L.L.; Fok, K.M.N.; Lin, K.P.K.; Chan, E.; Ma, Y.; Lau, S.K.P.; Woo, P.C.Y. Substantial decline in invasive pneumococcal disease during Coronavirus disease 2019 pandemic in Hong Kong. Clin. Infect. Dis. 2022, 74, 335–338. [Google Scholar] [CrossRef]
- Brueggemann, A.B. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit Health 2021, 3, e360–e370. [Google Scholar]
- Van Groningen, K.M.; Dao, B.L.; Gounder, P. Declines in invasive pneumococcal disease (IPD) during the COVID-19 pandemic in Los Angeles county. J. Infect. 2022, 85, 174–211. [Google Scholar] [CrossRef]
- Amin-Chowdhury, Z.; Aiano, F.; Mensah, A.; Sheppard, C.L.; Litt, D.; Fry, N.K.; Andrews, N.; Ramsay, M.E.; Ladhani, S.N. Impact of the Coronavirus disease 2019 (COVID-19) Pandemic on invasive pneumococcal disease and risk of pneumococcal coinfection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Prospective National Cohort Study, England. Clin. Infect. Dis. 2021, 72, e65–e75. [Google Scholar] [CrossRef]
- Yasir, M.; Al-Sharif, H.A.; Al-Subhi, T.; Sindi, A.A.; Bokhary, D.H.; El-Daly, M.M.; Alosaimi, B.; Hamed, M.E.; Karim, A.M.; Hassan, A.M.; et al. Analysis of the nasopharyngeal microbiome and respiratory pathogens in COVID-19 patients from Saudi Arabia. J. Infect. Public. Health. 2023, 16, 680–688. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Lin, K.P.; Wang, L.A.; Yeh, T.K.; Liu, P.Y. The Impact of the COVID-19 Pandemic on Respiratory Syncytial Virus Infection: A Narrative Review. Infect. Drug Resist. 2023, 16, 661–675. [Google Scholar] [CrossRef]
- Britton, P.N.; Hu, N.; Saravanos, G.; Shrapnel, J.; Davis, J.; Snelling, T.; Dalby-Payne, J.; Kesson, A.M.; Wood, N.; Macartney, K.; et al. COVID-19 public health measures and respiratory syncytial virus. Lancet Child Adolesc. Health. 2020, 4, e42–e43. [Google Scholar] [CrossRef]
- Cohen, R.; Ashman, M.; Taha, M.K.; Varon, E.; Angoulvant, F.; Levy, C.; Rybak, A.; Ouldali, N.; Guiso, N.; Grimprel, E. Pediatric infectious disease group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap? Infect. Dis. Now 2021, 51, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, J.J.; Vu, C.; Zhu, Z.; MacLachlan, J.H.; Thomson, T.N.; Campbell, P.T.; Gibney, K.B. The associations between invasive group A streptococcal disease and infection with influenza, varicella, or hepatitis C viruses: A data linkage study, Victoria, Australia. Int. J. Infect. Dis. 2024, 141, 106969. [Google Scholar] [CrossRef]
- Nygaard, U.; Hartling, U.B.; Munkstrup, C.; Nielsen, A.B.; Dungu, K.H.S.; Schmidt, L.S.; Glenthøj, J.; Matthesen, A.T.; Rytter, M.J.H.; Holm, M. Invasive group A streptococcal infections in children and adolescents in Denmark during 2022–23 compared with 2016–17 to 2021–22: A nationwide, multicentre, population-based cohort study. Lancet Child Adolesc. Health 2024, 8, 112–121. [Google Scholar] [CrossRef]
- Guy, R.; Henderson, K.L.; Coelho, J.; Hughes, H.; Mason, E.L.; Gerver, S.M.; Demirjian, A.; Watson, C.; Sharp, A.; Brown, C.S.; et al. Increase in invasive group A streptococcal infection notifications, England, 2022. Euro Surveill 2023, 28, 2200942. [Google Scholar] [CrossRef]
- Gouveia, C.; Bajanca-Lavado, M.P.; Mamede, R.; Araujo Carvalho, A.; Rodrigues, F.; Melo-Cristino, J.; Ramirez, M.; Friães, A.; Portuguese Group for the Study of Streptococcal Infections; Portuguese Study Group of Pediatric Invasive Streptococcal Disease. Sustained increase of paediatric invasive Streptococcus pyogenes infections dominated by M1(UK) and diverse emm12 isolates, Portugal, September 2022 to May 2023. Euro Surveill 2023, 28, 2300427. [Google Scholar] [CrossRef]
- de Gier, B.; van de Kassteele, J.; van Asten, L.; Schoffelen, A.F.; ISIS-AR Study Group; Hooiveld, M.; Te Wierik, M.J.; van Sorge, N.M.; de Melker, H.E.; Members of the ISIS-AR Study Group. Attribution of invasive group A streptococcal infections (iGAS) to predisposing viral infections, the Netherlands, 2010 to 2023. Euro Surveill 2024, 29, 2300739. [Google Scholar] [CrossRef] [PubMed]
- Rümke, L.W.; Davies, M.A.; Vestjens, S.M.T.; van der Putten, B.C.L.; Bril-Keijzers, W.C.M.; van Houten, M.A.; Rots, N.Y.; Wijmenga-Monsuur, A.J.; van der Ende, A.; de Gier, B.; et al. Nationwide upsurge in invasive disease in the context of longitudinal surveillance of carriage and invasive Streptococcus pyogenes 2009–2023, the Netherlands: A molecular epidemiological study. J. Clin. Microbiol. 2024, 62, e0076624. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.R.; Keller, N.; Brouwer, S.; Jespersen, M.G.; Cork, A.J.; Hayes, A.J.; Pitt, M.E.; De Oliveira, D.M.P.; Harbi-son-Price, N.; Bertolla, O.M.; et al. Detection of Streptococcus pyogenes M1UK in Australia and characterization of the mutation driving enhanced expression of superantigen SpeA. Nat. Commun. 2023, 14, 1051. [Google Scholar] [CrossRef]
- Gergova, R.; Boyanov, V.; Muhtarova, A.; Alexandrova, A. A Review of the Impact of Streptococcal Infections and Antimicrobial Resistance on Human Health. Antibiotics 2024, 13, 360. [Google Scholar] [CrossRef]
- Yu, D.; Guo, D.; Zheng, Y.; Yang, Y. A review of penicillin binding protein and group A Streptococcus with reduced-β-lactam susceptibility. Front. Cell. Infect. Microbiol. 2023, 13, 1117160. [Google Scholar] [CrossRef] [PubMed]
- ESCMID Sore Throat Guideline Group; Pelucchi, C.; Grigoryan, L.; Galeone, C.; Esposito, S.; Huovinen, P.; Little, P.; Verheij, T. Guideline for the management of acute sore throat. Clin. Microbiol. Infect. 2012, 18 (Suppl. 1), 1–28. [Google Scholar]
- Batzloff, M.R.; Davies, M.R.; Zeng, W.; Hartas, J.; Hall, M.; Dee, T.; Neve, S.; La Vincente, S.; Maxwell, T.; Frost, H.R. Vaccine development against group A Streptococcus: Progress and challenges. Curr. Opin. Infect. Dis. 2020, 33, 244–250. [Google Scholar]
- Rivera-Hernandez, T.; Carnathan, D.G.; Jones, S.; Zhao, L.; Wu, Y.; Dey, A.; Clutterbuck, E.A.; Clark, B.E.; Sivananthan, V.; Brummelman, J. A bacterial capsule is a major barrier to host immune recognition of Streptococcus pyogenes. Nat. Microbiol. 2021, 6, 574–586. [Google Scholar]
- Manish, M.; Kumar, A.; Rahi, A.; Kaur, H.; Bansal, A.; Kaur, I. mRNA vaccines and nanotechnology: A new frontier in vaccine development against emerging infectious diseases. Front. Immunol. 2022, 13, 932872. [Google Scholar]
- Principi, N.; Silvestri, E.; Esposito, S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front. Pharmacol. 2019, 10, 513. [Google Scholar] [CrossRef]
- Chopra, S.; Matsuyama, K.; Tran, T.; Maloney, E.; Brown, R.; Campagnari, A.A. Novel synthetic antimicrobial peptides targeting the M protein of Streptococcus pyogenes. Antimicrob. Agents Chemother. 2016, 60, 4559–4566. [Google Scholar]
- Melvin, J.A.; Scheller, E.V.; Miller, J.F.; Weiss, A.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014, 12, 274–288. [Google Scholar] [CrossRef]
Virulence Factor | Function | Associated Clinical Impact | Relevant Strains (Examples) |
---|---|---|---|
M Protein (emm types) | Inhibits phagocytosis, promotes adhesion | Linked to invasiveness, tissue tropism | emm1, emm3, emm4, emm12, emm89 [6,14] |
Streptolysin O (SLO) | Pore-forming cytotoxin damaging host cells | Beta-hemolysis, tissue injury | Broadly distributed [8] |
Streptolysin S (SLS) | Cytolytic toxin contributing to hemolysis | Tissue damage, immune evasion | Broadly distributed [8] |
Streptokinase | Converts plasminogen to plasmin, promotes fibrinolysis | Facilitates tissue invasion | Broadly distributed [8] |
Hyaluronidase | Degrades connective tissue matrix | Promotes spread through tissues | Broadly distributed [8] |
SpeB (cysteine protease) | Degrades host proteins and immune mediators | Modulates immune response, promotes tissue destruction | Various emm types [8] |
Pyrogenic Exotoxins (SpeA, SpeC, etc.) | Superantigen activity leading to massive cytokine release | Linked to STSS, severe invasive disease | SpeA, SpeC in emm1, emm3, M1UK [9,10,11,12,13] |
Country/ Region | Time Period | iGAS Incidence (Per 100,000 Population) | Notable Strains or Findings | References |
---|---|---|---|---|
USA | 2008 | 1.04 | Baseline prior to steady increase | [35] |
USA | 2019 | 4.76 | Rising incidence noted | [35] |
Australia | 2008/2009 | 4.1 | Rising trends reported | [36] |
Australia | 2017/2018 | 8.3 | Significant increase | [36] |
Ireland | 2012–2015 | ~2–3× higher than 2004–2011 | Predominance of emm1, emm3, emm28, emm12, and emm89 strains | [34,38] |
Hong Kong | 2011 | Surge in scarlet fever cases | Linked to the emm12 strain with toxin acquisition and resistance | [33,37] |
Netherlands | Nov–Dec 2022 | Increase from 32% to 68% of emm1 among iGAS | Emergence and dominance of the M1UK variant | [63] |
Region/ Country | Antibiotic | Resistance Rate (%) | Associated emm Types/Notes | References |
---|---|---|---|---|
Taiwan | Macrolides | 18.1% (2000–2009) → 58.4–61.6% (2010–2019) | Predominantly emm12 strains [40] | [40] |
China | Macrolides | ~97.5% | High resistance among both patients and carriers | [41] |
China | Clindamycin | ~97.3% | Significant resistance documented | [41] |
China | Tetracyclines | ~95.7% | Notable regional variability | [41] |
Australia | Tetracyclines | ~10% | Lower resistance rates observed | [42] |
China | Tetracyclines | >80% | Substantially higher than global averages | [42] |
Hungary | Quinolones | ~10% | Notable but relatively low resistance overall | [42] |
Japan | Quinolones | ~14% | Emerging resistance trend | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, S.; Masetti, M.; Calanca, C.; Canducci, N.; Rasmi, S.; Fradusco, A.; Principi, N. Recent Changes in the Epidemiology of Group A Streptococcus Infections: Observations and Implications. Microorganisms 2025, 13, 1871. https://doi.org/10.3390/microorganisms13081871
Esposito S, Masetti M, Calanca C, Canducci N, Rasmi S, Fradusco A, Principi N. Recent Changes in the Epidemiology of Group A Streptococcus Infections: Observations and Implications. Microorganisms. 2025; 13(8):1871. https://doi.org/10.3390/microorganisms13081871
Chicago/Turabian StyleEsposito, Susanna, Marco Masetti, Carolina Calanca, Nicolò Canducci, Sonia Rasmi, Alessandra Fradusco, and Nicola Principi. 2025. "Recent Changes in the Epidemiology of Group A Streptococcus Infections: Observations and Implications" Microorganisms 13, no. 8: 1871. https://doi.org/10.3390/microorganisms13081871
APA StyleEsposito, S., Masetti, M., Calanca, C., Canducci, N., Rasmi, S., Fradusco, A., & Principi, N. (2025). Recent Changes in the Epidemiology of Group A Streptococcus Infections: Observations and Implications. Microorganisms, 13(8), 1871. https://doi.org/10.3390/microorganisms13081871