Integrated Microbiome–Metabolome Analysis and Functional Strain Validation Reveal Key Biochemical Transformations During Pu-erh Tea Pile Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Tea Samples and Reagents
2.2. Tea Sampling
2.3. Metagenome DNA Extraction, Library Construction, and High-Throughput Sequencing of Amplicons of Pu-erh Tea Samples
2.4. Raw Data Processing and Analysis of High-Throughput Sequencing
2.5. Non-Targeted Metabolomics Profiling
2.5.1. Pretreatment of Tea Samples
2.5.2. Liquid Chromatography–High-Resolution Mass Spectrometry (LC-HRMS) Conditions
2.5.3. Data Processing and Analysis of Non-Targeted Metabolomics
2.6. Determination of Biochemical Parameters of Pu-erh Tea
2.7. Determination of Main Chemical Components of Pu-erh Tea
2.8. Determination of Polyphenols, Protein, and Free Amino Acid Concentration
2.9. Evaluation of Hydrolytic Capabilities of Representative Strains on Solid Media
3. Results and Discussion
3.1. Variations in Physicochemical Parameters and Major Chemical Constituents During Pu-erh Tea Pile Fermentation
3.2. Whole-System Microbial Community Profile During Pile Fermentation
3.2.1. Alpha Diversity and Beta Diversity Analysis
3.2.2. Core Microbial Composition of Pu-erh Tea
3.2.3. Species Difference and Marker and Association Network Analysis
3.2.4. Functional Potential Prediction of Microbial Community in Different Periods
3.3. Metabolite Analysis of Pu-erh Tea Throughout Fermentation
3.4. Profile Analysis of Differential Metabolites
3.5. Screening and Identification of Differential Metabolites
3.6. Metabolic Pathway Analysis of Differential Metabolites
3.7. Correlation Analysis Between Physicochemical Properties, Microbial Communities, and Metabolites of Pu-erh Tea
3.8. Functional Characterization of Core Microbial Strains from Pu-erh Tea Pile Fermentation
3.8.1. Isolation and Taxonomic Identification of Representative Strains
3.8.2. Evaluation of Macromolecule Degradation by Representative Strains on Solid Media
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.Q.; Wang, J.Q.; Chen, J.X.; Wang, F.; Yin, J.F.; Zeng, L.; Shi, J.; Xu, Y.Q. Effect of baking on the flavor stability of green tea beverages. Food Chem. 2020, 331, 127258. [Google Scholar] [CrossRef]
- Zhu, M.Z.; Li, N.; Zhou, F.; Ouyang, J.; Lu, D.M.; Xu, W.; Li, J.; Lin, H.Y.; Zhang, Z.; Xiao, J.B.; et al. Microbial bioconversion of the chemical components in dark tea. Food Chem. 2020, 312, 126043. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, Y.; Gan, R.Y.; Zhu, F. Chemical constituents and biological properties of Pu-erh tea. Food Res. Int. 2022, 154, 110899. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, R.; Zong, L.; Brake, J.; Cheng, L.; Wu, J.; Wu, X. Dynamic Evolution and Correlation Between Metabolites and Microorganisms During Manufacturing Process and Storage of Fu Brick Tea. Metabolites 2021, 11, 703. [Google Scholar] [CrossRef]
- Huang, F.; Zheng, X.; Ma, X.; Jiang, R.; Zhou, W.; Zhou, S.; Zhang, Y.; Lei, S.; Wang, S.; Kuang, J.; et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat. Commun. 2019, 10, 4971. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Zhang, H.; Qi, R.; Tsao, R.; Mine, Y. Recent Advances in the Understanding of the Health Benefits and Molecular Mechanisms Associated with Green Tea Polyphenols. J. Agric. Food Chem. 2019, 67, 1029–1043. [Google Scholar] [CrossRef]
- Wang, T.; Bo, N.; Sha, G.; Guan, Y.; Yang, D.; Shan, X.; Lv, Z.; Chen, Q.; Yang, G.; Gong, S.; et al. Identification and molecular mechanism of novel hypoglycemic peptide in ripened pu-erh tea: Molecular docking, dynamic simulation, and cell experiments. Food Res. Int. 2024, 194, 114930. [Google Scholar] [CrossRef]
- Liu, T.; Xiang, Z.; Chen, F.; Yin, D.; Huang, Y.; Xu, J.; Hu, L.; Xu, H.; Wang, X.; Sheng, J. Theabrownin suppresses in vitro osteoclastogenesis and prevents bone loss in ovariectomized rats. Biomed. Pharmacother. 2018, 106, 1339–1347. [Google Scholar] [CrossRef]
- Li, T.; Wei, Y.; Feng, W.; Lu, M.; Ke, H.; Li, Y.; Shao, A.; Dai, Q.; Ning, J. Exploring the mysterious effect of piling fermentation on Pu-erh tea quality formation: Microbial action and moist-heat action. LWT 2023, 185, 115132. [Google Scholar] [CrossRef]
- Xu, J.; Wei, Y.; Li, F.; Weng, X.; Wei, X. Regulation of fungal community and the quality formation and safety control of Pu-erh tea. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4546–4572. [Google Scholar] [CrossRef]
- Zhao, M.; Zhang, D.L.; Su, X.Q.; Duan, S.M.; Wan, J.Q.; Yuan, W.X.; Liu, B.Y.; Ma, Y.; Pan, Y.H. An Integrated Metagenomics/Metaproteomics Investigation of the Microbial Communities and Enzymes in Solid-State Fermentation of Pu-erh tea. Sci. Rep. 2015, 5, 10117. [Google Scholar] [CrossRef]
- Zhang, Y.; Skaar, I.; Sulyok, M.; Liu, X.; Rao, M.; Taylor, J.W. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis. PLoS ONE 2016, 11, e0157847. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, R.; Zong, L.; Brake, J.; Cheng, L.; Wu, J.; Wu, X. Dynamic evolution and correlation between microorganisms and metabolites during manufacturing process and storage of Pu-erh tea. LWT 2022, 158, 113128. [Google Scholar] [CrossRef]
- Zhao, C.; Lin, J.; Zhang, Y.; Wu, H.; Li, W.; Lin, W.; Luo, L. Comprehensive analysis of flavor formation mechanisms in the mechanized preparation Cantonese soy sauce koji using absolute quantitative metabolomics and microbiomics approaches. Food Res. Int. 2024, 180, 114079. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Liu, J.; Zhang, M.; Aziz, T.; Felemban, S.; Khowdiary, M.M.; Yang, Z. Physicochemical, microbiological and metabolomics changes in yogurt supplemented with lactosucrose. Food Res. Int. 2024, 178, 114000. [Google Scholar] [CrossRef]
- Song, H.S.; Whon, T.W.; Kim, J.; Lee, S.H.; Kim, J.Y.; Kim, Y.B.; Choi, H.J.; Rhee, J.K.; Roh, S.W. Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chem. 2020, 318, 126481. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Zinger, L.; Nilsson, R.H.; Kennedy, P.G.; Yang, T.; Anslan, S.; Mikryukov, V. Best practices in metabarcoding of fungi: From experimental design to results. Mol. Ecol. 2022, 31, 2769–2795. [Google Scholar] [CrossRef]
- Kerrigan, Z.; D’Hondt, S. Patterns of Relative Bacterial Richness and Community Composition in Seawater and Marine Sediment Are Robust for Both Operational Taxonomic Units and Amplicon Sequence Variants. Front. Microbiol. 2022, 13, 796758. [Google Scholar] [CrossRef]
- Ma, C.; Zhou, B.; Wang, J.; Ma, B.; Lv, X.; Chen, X.; Li, X. Investigation and dynamic changes of phenolic compounds during a new-type fermentation for ripened Pu-erh tea processing. LWT 2023, 180, 114683. [Google Scholar] [CrossRef]
- Samanta, T.; Cheeni, V.; Das, S.; Roy, A.B.; Ghosh, B.C.; Mitra, A. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea. J. Food Sci. Technol. 2015, 52, 2387–2393. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; He, W.; Liao, L.; Xia, B.; Jiang, L.; Liu, Y. Analysis of microbial community and the characterization of Aspergillus flavus in Liuyang Douchi during fermentation. LWT 2022, 154, 112567. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Yu, Q.; Wang, J.; Deng, Y.; Hua, J.; Zhou, Q.; Yuan, H.; Jiang, Y. Chemical profile of a novel ripened Pu-erh tea and its metabolic conversion during pile fermentation. Food Chem. 2022, 378, 132126. [Google Scholar] [CrossRef]
- Zhao, F.; Qian, J.; Liu, H.; Wang, C.; Wang, X.; Wu, W.; Wang, D.; Cai, C.; Lin, Y. Quantification, identification and comparison of oligopeptides on five tea categories with different fermentation degree by Kjeldahl method and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Chem. 2022, 378, 132130. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Liu, L.; Zhang, J.; Dong, M.; Wang, L.; Julian McClements, D.; Fu, Y.; Han, L.; Shen, P.; Chen, X. Effects of pile fermentation on the physicochemical, functional, and biological properties of tea polysaccharides. Food Chem. 2023, 410, 135353. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Si, G.; Du, H.; Li, J.; Zhou, P.; Ye, M. Directional design of a starter to assemble the initial microbial fermentation community of baijiu. Food Res. Int. 2020, 134, 109255. [Google Scholar] [CrossRef] [PubMed]
- Rai, R.; Singh, R.K.; Suthar, S. Production of compost with biopesticide property from toxic weed Lantana: Quantification of alkaloids in compost and bacterial pathogen suppression. J. Hazard. Mater. 2021, 401, 123332. [Google Scholar] [CrossRef]
- Le, M.M.; Zhong, L.W.; Ren, Z.W.; An, M.Q.; Long, Y.H.; Ling, T.J. Dynamic Changes in the Microbial Community and Metabolite Profile during the Pile Fermentation Process of Fuzhuan Brick Tea. J. Agric. Food Chem. 2023, 71, 19142–19153. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Wang, L.; Liu, X.; Wang, X.; Cai, R.; Yuan, Y.; Yue, T.; Wang, Z. Unraveling symbiotic microbial communities, metabolomics and volatilomics profiles of kombucha from diverse regions in China. Food Res. Int. 2023, 174, 113652. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.; Rong, Y.; Qian, M.C.; Liu, F.; Hua, J.; Zhou, Q.; Deng, Y.; Zeng, J.; Jiang, Y. Lipid metabolic characteristics and marker compounds of ripened Pu-erh tea during pile fermentation revealed by LC-MS-based lipidomics. Food Chem. 2023, 404, 134665. [Google Scholar] [CrossRef]
- Kumazawa, K.; Masuda, H. Identification of potent odorants in different green tea varieties using flavor dilution technique. J. Agric. Food Chem. 2002, 50, 5660–5663. [Google Scholar] [CrossRef]
- Wang, T.; Li, R.Y.; Liu, K.Y.; Chen, Q.Y.; Bo, N.G.; Wang, Q.; Xiao, Y.Q.; Sha, G.; Chen, S.Q.; Lei, X.; et al. Changes in sensory characteristics, chemical composition and microbial succession during fermentation of ancient plants Pu-erh tea. Food Chem. X 2023, 20, 101003. [Google Scholar] [CrossRef]
- Long, P.; Wen, M.; Granato, D.; Zhou, J.; Wu, Y.; Hou, Y.; Zhang, L. Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation. Food Chem. 2020, 311, 125895. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Yang, H.; Wen, B.; Zhu, K.; Zheng, X.; Huang, J.; Wang, Y.; Liu, Z.; Tu, P. Inhibition by microbial metabolites of Chinese dark tea of age-related neurodegenerative disorders in senescence-accelerated mouse prone 8 (SAMP8) mice. Food Funct. 2018, 9, 5455–5462. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Deng, X.; Han, Y.; Gong, Z.; Wang, J.; Tao, X.; Tong, H.; Chen, Y. Metabolites and metagenomic analysis reveals the quality of Pu-erh "tea head". Food Chem. 2023, 429, 136992. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, H.; Huang, W.; Duan, S.; Yan, Y.; Zeng, Z.; Fang, Z.; Li, C.; Hu, B.; Wu, W.; et al. Landscapes of the main components, metabolic and microbial signatures, and their correlations during pile-fermentation of Tibetan tea. Food Chem. 2024, 430, 136932. [Google Scholar] [CrossRef]
Species | Identity (%) | Strain Abbreviation |
---|---|---|
Prokaryotes | ||
Bacillus haynesii | 99.66% | Puer_Bh |
Bacillus licheniformis | 99.93% | Puer_Bl |
Bacillus subtilis | 99.59% | Puer_Bs |
Bacillus amyloliquefaciens | 99.93% | Puer_Ba |
Staphylococcus gallinarum | 99.98% | Puer_Sg |
Aeromonas caviae | 99.86% | Puer_Ac |
Priestia aryabhattai | 99.80% | Puer_Pa |
Curtobacterium citreum | 99.51% | Puer_Cc |
Priestia filamentosa | 99.76% | Puer_Pf |
Rothia halotolerans | 99.52% | Puer_Rh |
Lysinibacillus macroides | 99.45% | Puer_Lm |
Staphylococcus lloydii | 99.79% | Puer_Sl |
Pluralibacter gergoviae | 99.51% | Puer_Pge |
Enterococcus faecium | 99.73% | Puer_Ef |
Pseudomonas guariconensis | 98.49% | Puer_Pgu |
Klebsiella pneumoniae | 99.31% | Puer_Kp |
Mammaliicoccus sciuri | 99.86% | Puer_Ms |
Eukaryotes | ||
Aspergillus tubingensis | 99.82% | Puer_At |
Aspergillus niger | 99.82% | Puer_An |
Rhizomucor pusillus | 99.66% | Puer_Rp |
Cyberlindnera rhodanensis | 99.13% | Puer_Cr |
Blastobotrys adeninivorans | 99.47% | Puer_Ba |
Trichosporon asahii | 98.00% | Puer_Ta |
Aspergillus costaricensis | 99.00% | Puer_Ac |
Hamigera fusca | 99.00% | Puer_Hf |
Hamigera insecticola | 100.00% | Puer_Hi |
Lichtheimia corymbifera | 98.00% | Puer_Lc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M.; Zhang, H.; Han, L.; Zhang, W.; Xing, X.; Wang, Y.; Ou, S.; Liu, Y.; Li, X.; Xue, Z. Integrated Microbiome–Metabolome Analysis and Functional Strain Validation Reveal Key Biochemical Transformations During Pu-erh Tea Pile Fermentation. Microorganisms 2025, 13, 1857. https://doi.org/10.3390/microorganisms13081857
Hu M, Zhang H, Han L, Zhang W, Xing X, Wang Y, Ou S, Liu Y, Li X, Xue Z. Integrated Microbiome–Metabolome Analysis and Functional Strain Validation Reveal Key Biochemical Transformations During Pu-erh Tea Pile Fermentation. Microorganisms. 2025; 13(8):1857. https://doi.org/10.3390/microorganisms13081857
Chicago/Turabian StyleHu, Mengkai, Huimin Zhang, Leisa Han, Wenfang Zhang, Xinhui Xing, Yi Wang, Shujian Ou, Yan Liu, Xiangfei Li, and Zhenglian Xue. 2025. "Integrated Microbiome–Metabolome Analysis and Functional Strain Validation Reveal Key Biochemical Transformations During Pu-erh Tea Pile Fermentation" Microorganisms 13, no. 8: 1857. https://doi.org/10.3390/microorganisms13081857
APA StyleHu, M., Zhang, H., Han, L., Zhang, W., Xing, X., Wang, Y., Ou, S., Liu, Y., Li, X., & Xue, Z. (2025). Integrated Microbiome–Metabolome Analysis and Functional Strain Validation Reveal Key Biochemical Transformations During Pu-erh Tea Pile Fermentation. Microorganisms, 13(8), 1857. https://doi.org/10.3390/microorganisms13081857