Selenium-Enriched Microorganisms: Metabolism, Production, and Applications
Abstract
1. Introduction
2. Bibliometric Analysis of Research on Selenium-Enriched Microorganisms (2002–2025)
3. Types of Selenium-Enriched Microorganisms
3.1. Selenium-Enriched Bacteria
3.1.1. Selenium-Enriched Lactic Acid Bacteria
Strain Name | Selenium Conversion Capacity | Maximum Tolerable Concentration | Ref. |
---|---|---|---|
Streptococcus thermophilus CCDM 144 | SeCys, SeMet | 10 mg/L | [30] |
Enterococcus faecium CCDM 922 A | SeCys, SeMe | 10 mg/L | [30] |
L. plantarum HBUT121 | selenoprotein | 2 mg/L | [31] |
Pediococcus acidilactici ATCC 8042 | SeCys, SeNPs | 1 mg/L | [32] |
L. paracasei ML13 | SeCys | 150 mg/L | [33] |
L. paracasei CH135 | SeCys | 150 mg/L | [33] |
Enterococcus faecium ABMC-05 | SeCys | 100 mg/L | [34] |
Lactobacillus delbrueckii ssp. bulgaricus | SeNPs | 80 mg/L | [35] |
Streptococcus thermophilus | SeNPs | 80 mg/L | [35] |
E. faecium CCDM 922A | SeCys | 100 mg/L | [36] |
Lcc. lactic subsp. cremoris CCDM 72 | SeCys | 100 mg/L | [36] |
Lcc. lactic subsp. cremoris CCDM 73 | SeCys | 100 mg/L | [36] |
L. plantarum CXG-4 | Se0 | 16 mg/L | [14] |
Limosilactobacillus fermentum CGMCC 17434 | organic selenium | 12 mg/L | [37] |
Streptococcus thermophilus CICC6220 | organic selenium | 16 mg/L | [38] |
Bifidobacterium breve CICC6184 | organic selenium | 10 mg/L | [38] |
Levilactobacillus brevis CRL 2051 | SeCys, SeNPs | 0.15 mg/L | [39] |
Fructobacillus tropaeoli CRL 2034 | SeCys, SeNPs | 0.15 mg/L | [39] |
L. plantarum L123 | Se0 | 15 mg/L | [40] |
L. delbrueckii subsp. bulgaricus CCDM 364 | SeCys, SeNPs | 50 mg/L | [41] |
3.1.2. Selenium-Enriched Bacillus spp.
3.1.3. Other Selenium-Enriched Bacteria
3.2. Selenium-Enriched Fungi
3.2.1. Selenium-Enriched Molds
3.2.2. Selenium-Enriched Mushrooms
3.2.3. Selenium-Enriched Yeast
4. Selenium Metabolic Mechanisms in Selenium-Enriched Microorganisms
4.1. Absorption and Reduction of Inorganic Selenium
4.2. The Generation of BioSeNPs
5. Production Process of Selenium-Enriched Microbial Products
5.1. Screening of Selenium-Enriched Microorganisms
5.2. Optimization of Fermentation Conditions
6. Applications of Selenium-Enriched Microbial Products
6.1. Agricultural Field
Representative Strain | Product Type | Selenium Tolerance Concentration | Conversion Efficiency | Application Direction | Ref. |
---|---|---|---|---|---|
Lactiplantibacillus plantarum NML21 | SeNPs, selenoproteins | 4 mg/L | 86.17% | Selenium-enriched yogurt, functional fermented dairy products | [20] |
Bifidobacterium animalis 01 | Selenoproteins | 10 mg/L | 77.4–86.6% | Intestinal regulation, selenium supplementation health products | [24] |
Bacillus cereus | Organic selenium | 150 mg/L | 94.3% | Nutritional supplements, medicinal drugs | [21] |
Saccharomyces cerevisiae EMY6# | SeMet, SeCys, SeMecys | 30 mg/L | 85.85–94.51% | Selenium-enriched beer, functional cider, feed | [126] |
Pleurotus ostreatus CICC 50115 | Organic selenium | 30.65 mg/L | -- | Functional edible mushrooms, medicinal polysaccharides | [64] |
Metasolibacillus sp. ES129 | SeNPs | 733.56 mg/L | 91% | Environmental remediation | [50] |
Rhodococcus qingshengii PM1 | SeNPs | 17,294 mg/L | 99% | Environmental remediation | [51] |
6.2. Food Industry
6.3. Pharmaceutical Field
7. Research Focus, Challenges, and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qi, Z.; Duan, A.; Ng, K. Selenoproteins in Health. Molecules 2024, 29, 136. [Google Scholar] [CrossRef]
- Jin, K.; Shi, S.; Huang, D.; Huang, H.; Zou, B.; Huang, W.; Chen, T. Maintaining cardiac homeostasis by translational selenium nanoparticles with rapid selenoproteins regulation to achieve radiation-induced heart prevention. Chem. Eng. J. 2025, 506, 160005. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, Y.; Dong, P.-Y.; Chen Yan, Y.-M.; Liu, J.; Zhang, B.-Q.; Chen, M.-M.; Zhang, S.-E.; Zhang, X.-F. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024, 10, e34975. [Google Scholar] [CrossRef] [PubMed]
- Anouar, Y.; Lihrmann, I.; Falluel-Morel, A.; Boukhzar, L. Selenoprotein T is a key player in ER proteostasis, endocrine homeostasis and neuroprotection. Free Radic. Biol. Med. 2018, 127, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Hoffmann, P.R. Selenoproteins as regulators of T cell proliferation, differentiation, and metabolism. Semin. Cell Dev. Biol. 2021, 115, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, A.; Toyama, T.; Taguchi, H.; Shiina, S.; Takashima, H.; Takahashi, K.; Ogra, Y.; Mizuno, A.; Arisawa, K.; Saito, Y. The selenoprotein P/ApoER2 axis facilitates selenium accumulation in selenoprotein P-accepting cells and confers prolonged resistance to ferroptosis. Redox Biol. 2025, 83, 103664. [Google Scholar] [CrossRef]
- Zhang, D.; Deng, J.-J.; Xu, Q.; Zeng, Y.; Jiang, J. MiR-146b-5p regulates the scavenging effect of GPx-3 on peroxide in papillary thyroid cancer cells. Heliyon 2023, 9, e18489. [Google Scholar] [CrossRef]
- Egressy-Molnár, O.; Ouerdane, L.; Győrfi, J.; Dernovics, M. Analogy in selenium enrichment and selenium speciation between selenized yeast Saccharomyces cerevisiae and Hericium erinaceus (lion’s mane mushroom). LWT—Food Sci. Technol. 2016, 68, 306–312. [Google Scholar] [CrossRef]
- Silva, V.A.; Bertechini, A.G.; de Carvalho, A.C.; da Costa Castro, R.T.; de Oliveira, B.L.; Moreira Konig, I.F.; Ramos, E.M. Meat quality and performance of broilers fed diets containing selenium yeast and sodium selenite. Pesqui. Agropecu. Bras. 2022, 57, 02428. [Google Scholar] [CrossRef]
- Shen, X.; Geng, Y.; Feng, H.; Guo, X.; Yang, Q.; Fang, M.; Wu, Y.; Gong, Z. Analysis of speciation and bioavailability in vitro of major selenium species in selenium-enriched Rice and pork. Food Chem. 2025, 487, 144687. [Google Scholar] [CrossRef]
- Guo, A.; Jia, W. Metabolomics and proteomics analysis elucidate the regulation of selenium uptake and metabolism by selenite via glutathione S-transferase in fermented goat milk. Food Chem. 2025, 491, 145328. [Google Scholar] [CrossRef] [PubMed]
- Nie, X.; Yang, X.; He, J.; Liu, P.; Shi, H.; Wang, T.; Zhang, D. Bioconversion of inorganic selenium to less toxic selenium forms by microbes: A review. Front. Bioeng. Biotechnol. 2023, 11, 67123. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Yoon, C.; Johnston, T.V.; Ku, S.; Ji, G.E. Production of selenomethionine-enriched Bifidobacterium bifidum BGN4 via sodium selenite biocatalysis. Molecules 2018, 23, 2860. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Liu, D.; Zhang, C.; Wu, W.; Yi, H.; Zhang, J. Biotransformation of inorganic selenium into selenium nanoparticles and organic selenium by Lactiplantibacillus plantarum CXG4. Food Biosci. 2025, 65, 106060. [Google Scholar] [CrossRef]
- Wang, D.; Rensing, C.; Zheng, S. Microbial reduction and resistance to selenium: Mechanisms, applications and prospects. J. Hazard. Mater. 2022, 421, 126684. [Google Scholar] [CrossRef]
- Stabnikova, O.; Khonkiv, M.; Kovshar, I.; Stabnikov, V. Biosynthesis of selenium nanoparticles by lactic acid bacteria and areas of their possible applications. World J. Microbiol. Biotechnol. 2023, 39, 230. [Google Scholar] [CrossRef]
- Siddiqui, M.; Abbas, T.; Mirani, D.Z.; Naseem, M.; Khan, A. Biotransformation of sodium selenite into selenium nanoparticles by Marine B#Bacillus subtilis DK1SA11. Clin. Nutr. ESPEN 2024, 63, 1046–1047. [Google Scholar] [CrossRef]
- Ameri, A.; Shakibaie, M.; Ameri, A.; Faramarzi, M.A.; Amir-Heidari, B.; Forootanfar, H. Photocatalytic decolorization of bromothymol blue using biogenic selenium nanoparticles synthesized by terrestrial actinomycete Streptomyces griseobrunneus strain FSHH12. Desalination Water Treat. 2016, 57, 21552–21563. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, H.; Liu, W.; Lei, Z.; Wang, Y.; Sheng, J.; Wang, Z.; Hu, C.; Zhao, X. DL-alanine promotes the colonization of Pseudomonas aeruginosa and their synergistic enrichment of selenium and decrease of cadmium absorption by Brassica napus. J. Hazard. Mater. 2025, 492, 138154. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Q.; Li, Y.; Shi, C.; Zhang, Y.; Wang, P.; Zhang, H.; Wang, R.; Zhang, W.; Wen, P. Revealing the impact of organic selenium-enriched Lactiplantibacillus plantarum NML21 on yogurt quality through volatile flavor compounds and untargeted metabolomics. Food Chem. 2025, 474, 143223. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Cong, X.; Yu, T.; Zhu, Z.; Barba, F.J.; Marszalek, K.; Puchalski, C.; Cheng, S. Optimization of Bacillus cereus Fermentation Process for Selenium Enrichment as Organic Selenium Source. Front. Nutr. 2020, 7, 543873. [Google Scholar] [CrossRef] [PubMed]
- Alzate, A.; Fernandez-Fernandez, A.; Perez-Conde, M.C.; Gutierrez, A.M.; Camara, C. Comparison of biotransformation of inorganic selenium by Lactobacillus and Saccharomyces in lactic fermentation process of yogurt and kefir. J. Agric. Food Chem. 2008, 56, 8728–8736. [Google Scholar] [CrossRef] [PubMed]
- Christianah Adebayo-Tayo, B.; Olawunmi Yusuf, B.; Omoniyi Alao, S. Antibacterial Activity of Intracellular Greenly Fabricated Selenium Nanoparticle of Lactobacillus pentosus ADET MW861694 against Selected Food Pathogens. Int. J. Biotechnol. 2021, 10, 39–51. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, K.; Zhang, J.; Chen, Q.; Liu, G.; Shang, N.; Qin, W.; Li, P.; Lin, F. Accumulation and species distribution of selenium in Se-enriched bacterial cells of the Bifidobacterium animalis 01. Food Chem. 2009, 115, 727–734. [Google Scholar] [CrossRef]
- Palomo, M.; Gutiérrez, A.M.; Pérez-Conde, M.C.; Cámara, C.; Madrid, Y. Se metallomics during lactic fermentation of Se-enriched yogurt. Food Chem. 2014, 164, 371–379. [Google Scholar] [CrossRef]
- Che, X.; Shang, X.; Xu, W.; Xing, M.; Wei, H.; Li, W.; Li, Z.; Teng, X.; Geng, L. Selenium-enriched Lactiplantibacillus plantarum alleviates alkalinity stress-induced selective hepatic insulin resistance in common carp. Int. J. Biol. Macromol. 2025, 305, 141204. [Google Scholar] [CrossRef]
- Fisinin, V.I.; Papazyan, T.T.; Surai, P.E. Producing selenium-enriched eggs and meat to improve the selenium status of the general population. Crit. Rev. Biotechnol. 2009, 29, 18–28. [Google Scholar] [CrossRef]
- Che, X.; Geng, L.; Zhang, Q.; Wei, H.; He, H.; Xu, W.; Shang, X. Selenium-rich Lactobacillus plantarum alleviates salinity stress in Cyprinus carpio: Growth performance, oxidative stress, and immune and inflammatory responses. Aquac. Rep. 2024, 36, 102058. [Google Scholar] [CrossRef]
- Zhong, B.; Xu, W.; Xie, H.; Wu, Z. Biosynthesis and characterization of selenium nanoparticles by Se-tolerant Lactiplantibacillus plantarum. Food Biosci. 2024, 59, 104061. [Google Scholar] [CrossRef]
- Mrvikova, I.; Hyrslova, I.; Nesporova, V.; Lampova, B.; Cejpova, K.; Doskocil, I.; Musilova, S.; Cihlar, J.; Krausova, G.; Kana, A.; et al. In vitro assessment of selenium bioavailability from selenized lactic acid bacteria using a static INFOGEST digestion model and intestinal permeability model. J. Trace Elem. Med. Biol. 2025, 88, 127632. [Google Scholar] [CrossRef]
- Peng, M.; Li, Q.; Long, B.; Li, B.; Shen, Z.; Xu, N.; Hu, Y.; Wang, C.; Chen, Y.; Zhou, M. Selenium-enriched lactic acid bacteria inoculation enhances the quality of Paocai by imparting the microbiome and metabolome. Food Chem. 2025, 486, 144644. [Google Scholar] [CrossRef]
- Kousha, M.; Yeganeh, S.; Amirkolaie, A.K. Effect of sodium selenite on the bacteria growth, selenium accumulation, and selenium biotransformation in Pediococcus acidilactici. Food Sci. Biotechnol. 2017, 26, 1013–1018. [Google Scholar] [CrossRef]
- Mörschbächer, A.P.; Dullius, A.; Dullius, C.H.; Bandt, C.R.; Kuhn, D.; Brietzke, D.T.; José Malmann Kuffel, F.; Etgeton, H.P.; Altmayer, T.; Gonçalves, T.E.; et al. Assessment of selenium bioaccumulation in lactic acid bacteria. J. Dairy Sci. 2018, 101, 10626–10635. [Google Scholar] [CrossRef]
- Escobar-RamÍRez, M.C.; RodrÍGuez-Serrano, G.M.; Salazar-Pereda, V.; CastaÑEda-Ovando, A.; PÉRez-Escalante, E.; Jaimez-Ordaz, J.; GonzÁLez-Olivares, L.G. Biogenic production of selenocysteine by Enterococcus faecium ABMC-05: An indigenous lactic acid bacterium from fermented Mexican beverage. Food Sci. Technol. 2023, 43, e63622. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Zhang, L.; Fan, M.; Wei, X. Response surface design for accumulation of selenium by different lactic acid bacteria. 3 Biotech 2017, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- Hyrslova, I.; Kana, A.; Kantorova, V.; Krausova, G.; Mrvikova, I.; Doskocil, I. Selenium accumulation and biotransformation in Streptococcus, Lactococcus, and Enterococcus strains. J. Funct. Foods 2022, 92, 105056. [Google Scholar] [CrossRef]
- Luo, J.; Tian, Z.; Yuan, W.; Peng, X.; Zhou, H.; Shen, Q.; Luo, Y.; Guo, Y.; Shi, Z.; Jiang, X.; et al. Anti-aging effect of Limosilactobacillus fermentum CGMCC 17434 in mice fed with fermented selenium-enriched yogurt. Food Biosci. 2025, 68, 106582. [Google Scholar] [CrossRef]
- Xu, X.; Bao, Y.; Wu, B.; Lao, F.; Hu, X.; Wu, J. Chemical analysis and flavor properties of blended orange, carrot, apple and Chinese jujube juice fermented by selenium-enriched probiotics. Food Chem. 2019, 289, 250–258. [Google Scholar] [CrossRef]
- Crespo, L.; Gaglio, R.; Martínez, F.G.; Martin, G.M.; Franciosi, E.; Madrid-Albarrán, Y.; Settanni, L.; Mozzi, F.; Pescuma, M. Bioaccumulation of selenium-by fruit origin lactic acid bacteria in tropical fermented fruit juices. LWT 2021, 151, 112103. [Google Scholar] [CrossRef]
- Liao, J.-J.; Tan, C.-Y.; Liang, L.; Luo, Y.-Z.; Li, H.-L.; Chen, Y.-Y.; Pei, X.-D.; Wang, C.-H. Screening and identification of selenium-enriched purine-lowering Lactobacillus plantarum and Lactococcus lactis with high stress tolerance and antioxidant capacity. Food Biosci. 2024, 60, 104439. [Google Scholar] [CrossRef]
- Mrvikova, I.; Hyrslova, I.; Kana, A.; Kantorova, V.; Lampova, B.; Doskocil, I.; Krausova, G. Selenium enriched bifidobacteria and lactobacilli as potential dietary supplements. World J. Microbiol. Biotechnol. 2024, 40, 145. [Google Scholar] [CrossRef]
- Shang, X.; Sun, Q.; Yin, Y.; Zhang, Y.; Zhang, P.; Mao, Q.; Chen, X.; Ma, H.; Li, Y. Reducing mercury accumulation in common carp using selenium-enriched Bacillus subtilis. Aquac. Rep. 2021, 19, 100609. [Google Scholar] [CrossRef]
- Lu, Y.-t.; Guo, Z.-y.; Guo, L.; He, Y.-h.; Liu, L.-m.; Jiao, X.; Li, Y.-h. Mitigation PFHxA-induced neurotoxicity in Carassius auratus brain cells by selenium-enriched Bacillus subtilis via the BDNF/PI3K/AKT/GSK-3β pathway. Ecotoxicol. Environ. Saf. 2025, 290, 117567. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Wang, N.; Guo, L.; Guo, Z.-y.; Hou, X.-w.; Lu, Y.-q.; Yao, B.-l.; Sun, J.; Li, Y.-h. Metabolomics profile of selenium-enriched Bacillus subtilis alleviating perfluorohexanoic acid-induced brain damage in Carassius auratus and its response to the intestinal microbial community. Aquaculture 2024, 589, 740947. [Google Scholar] [CrossRef]
- Liu, Y.; Castagnini, J.M.; Berrada, H.; Barba, F.J. High-added-value compounds recovery from supercritical fluid extraction-defatted European sea bass (Dicentrarchus labrax) viscera by lactic acid bacteria (L. plantarum and L. casei) assisted fermentation. Food Chem. 2025, 473, 143085. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Biosynthesis of selenium nanoparticles using plant extracts. J. Nanostructure Chem. 2021, 12, 467–480. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Li, M.; Sun, Q.; Li, Y.; Fu, Y.; Zhang, Y. Selenium-enriched Bacillus subtilis attenuates emamectin benzoate-induced liver injury in grass carp through inhibiting inflammation and ferroptosis via activating Nrf2 signaling pathway. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2025, 294, 110191. [Google Scholar] [CrossRef]
- Staicu, L.C.; Barton, L.L. Selenium respiration in anaerobic bacteria: Does energy generation pay off? J. Inorg. Biochem. 2021, 222, 111509. [Google Scholar] [CrossRef]
- Asefaw, B.K.; Walia, N.; Stroupe, M.E.; Chen, H.; Tang, Y. Unraveling mechanisms of selenium recovery by facultative anaerobic bacterium Azospira sp. A9D-23B in distinct reactor configurations. Environ. Sci. Pollut. Res. 2024, 31, 59027–59040. [Google Scholar] [CrossRef]
- Ge, M.; Zhou, S.; Li, D.; Song, D.; Yang, S.; Xu, M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. J. Hazard. Mater. 2024, 472, 134491. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, X.; Guo, Z.; Lei, X.; Peng, M. Biodegradation of sodium selenite by a highly tolerant strain Rhodococcus qingshengii PM1: Biochemical characterization and comparative genome analysis. Curr. Res. Microb. Sci. 2025, 9, 100426. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Mamchenkova, P.V.; Dyatlova, Y.A.; Kamnev, A.A. FTIR and Raman spectroscopic studies of selenium nanoparticles synthesised by the bacterium Azospirillum thiophilum. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 458–463. [Google Scholar] [CrossRef]
- Lei, Z.; Li, Q.; Tang, Y.; Zhang, H.; Han, C.; Wang, X.; Zhao, X.; Shi, G. Selenium enhanced nitrogen accumulation in legumes in soil with rhizobia bacteria. J. Clean. Prod. 2022, 380, 134960. [Google Scholar] [CrossRef]
- Firrincieli, A.; Tornatore, E.; Piacenza, E.; Cappelletti, M.; Saiano, F.; Pavia, F.C.; Alduina, R.; Zannoni, D.; Presentato, A. The actinomycete Kitasatospora sp. SeTe27, subjected to adaptive laboratory evolution (ALE) in the presence of selenite, varies its cellular morphology, redox stability, and tolerance to the toxic oxyanion. Chemosphere 2024, 354, 141712. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Saez, M.; Lauzurique, Y.; Donoso-Garcia, P.; Carmona, M.; Carvajal, A.; Riveros, A.L.; Kogan, M.J.; Báez, D.F.; Poblete-Castro, I. Aerobic bioremediation of selenite in marine and freshwater environments via intracellular selenium nanoparticle formation by Pseudomonas frigusceleri MPC6 in glycerol-fed continuous bioreactors. J. Environ. Manag. 2025, 382, 125370. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, X.; Li, Y.; Zhang, Z.; Wang, J.; Xu, C.; Wu, X. Biochemical characterization, biosynthesis mechanism, and functional evaluation of selenium-enriched Aspergillus oryzae A02. Int. J. Biol. Macromol. 2024, 275, 133714. [Google Scholar] [CrossRef]
- Qi, J.; Guo, X.; Han, W.; Chang, M.; Yuan, Y.; Yue, T. The potency of Monascus purpureus to achieve the transformation from inorganic selenium into organic selenium during the fermentation process. Food Biosci. 2024, 62, 105091. [Google Scholar] [CrossRef]
- Du, J.; Xue, J.; Tian, X.; Luo, J.; Ömür, A.D.; Yang, J.; Li, Y. Selenium-Enriched Aspergillus oryzae A02 Enhances Testicular Antioxidant Capacity in Mice by Regulating Intestinal Microbiota and Serum Metabolite. Biol. Trace Elem. Res. 2024, 203, 4283–4295. [Google Scholar] [CrossRef]
- Su, D.; Zhang, J.-x.; Tie, M.; Xue, S.-w.; Zhao, X.; Song, Y.-h. Selenium speciation analysis of selenium-enriched Shiitake mushrooms (Lentinula edodes) by HPLC-ESI-MS. J. Food Compos. Anal. 2024, 136, 106829. [Google Scholar] [CrossRef]
- Zhao, C.; Li, J.; Chen, N.; Bai, H.; Qu, L.; Yang, Y.; Ye, H.; Xiao, H.; Yan, H.; Zhang, T. Antioxidant Activity and Transcriptomic Analysis of Se-Enriched Golden Oyster Mushroom Pleurotus citrinopileatus (Agaricomycetes). Int. J. Med. Mushrooms 2020, 22, 755–762. [Google Scholar] [CrossRef]
- Zhou, N.; Long, H.; Wang, C.; Yu, L.; Zhao, M.; Liu, X. Research progress on the biological activities of selenium polysaccharides. Food Funct. 2020, 11, 4834–4852. [Google Scholar] [CrossRef]
- Gao, Z.; Li, J.; Song, X.; Zhang, J.; Wang, X.; Jing, H.; Ren, Z.; Li, S.; Zhang, C.; Jia, L. Antioxidative, anti-inflammation and lung-protective effects of mycelia selenium polysaccharides from Oudemansiella radicata. Int. J. Biol. Macromol. 2017, 104, 1158–1164. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Dinh, Q.T.; Yang, W.; Wang, M.; Xue, M.; Bañuelos, G.S.; Liang, D. Assessment of speciation and in vitro bioaccessibility of selenium in Se-enriched Pleurotus ostreatus and potential health risks. Ecotoxicol. Environ. Saf. 2019, 185, 109675. [Google Scholar] [CrossRef] [PubMed]
- Guan, A.; Wang, M.; Gong, Y.; Huang, T.; Du, Y.; Zong, S. Optimization of selenium biofortification by liquid fermentation based on 2,4-dichlorophenoxyacetic acid and its effect on nutritional value of Pleurotus ostreatus. J. Food Compos. Anal. 2025, 137, 106850. [Google Scholar] [CrossRef]
- de Oliveira, A.P.; Naozuka, J.; Landero-Figueroa, J.A. Effects of Se(IV) or Se(VI) enrichment on proteins and protein-bound Se distribution and Se bioaccessibility in oyster mushrooms. Food Chem. 2022, 383, 132582. [Google Scholar] [CrossRef]
- Oliveira, A.P.d.; Naozuka, J. Preliminary results on the feasibility of producing selenium-enriched pink (Pleurotus djamor) and white (Pleurotus ostreatus) oyster mushrooms: Bioaccumulation, bioaccessibility, and Se-proteins distribution. Microchem. J. 2019, 145, 1143–1150. [Google Scholar] [CrossRef]
- Song, Z.; Jia, L.; Xu, F.; Meng, F.; Deng, P.; Fan, K.; Liu, X. Characteristics of Se-Enriched Mycelia by Stropharia rugoso-annulata and its Antioxidant Activities in vivo. Biol. Trace Elem. Res. 2009, 131, 81–89. [Google Scholar] [CrossRef]
- Maseko, T.; Howell, K.; Dunshea, F.R.; Ng, K. Selenium-enriched Agaricus bisporus increases expression and activity of glutathione peroxidase-1 and expression of glutathione peroxidase-2 in rat colon. Food Chem. 2014, 146, 327–333. [Google Scholar] [CrossRef]
- Turło, J.; Gutkowska, B.; Herold, F. Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. mycelial extracts. Food Chem. Toxicol. 2010, 48, 1085–1091. [Google Scholar] [CrossRef]
- Liu, F.; Zhu, Z.-Y.; Sun, X.; Gao, H.; Zhang, Y.-M. The preparation of three selenium-containing Cordyceps militaris polysaccharides: Characterization and anti-tumor activities. Int. J. Biol. Macromol. 2017, 99, 196–204. [Google Scholar] [CrossRef]
- Sun, H.; Zhu, Z.; Tang, Y.; Ren, Y.; Song, Q.; Tang, Y.; Zhang, Y. Structural characterization and antitumor activity of a novel Se-polysaccharide from seleniumenriched Cordyceps gunnii. Food Funct. 2018, 9, 2744–2754. [Google Scholar] [CrossRef]
- Chen, N.; Zhao, C.; Zhang, T. Selenium transformation and selenium-rich foods. Food Biosci. 2021, 40, 100875. [Google Scholar] [CrossRef]
- Ye, S.; Shen, F.; Jiao, L.; Xu, Z.; Wang, F. Biosynthesis of selenoproteins by Saccharomyces cerevisiae and characterization of its antioxidant activities. Int. J. Biol. Macromol. 2020, 164, 3438–3445. [Google Scholar] [CrossRef]
- Wu, J.; Hong, L.; Shi, M. Production of Methylselenocysteine in Saccharomyces cerevisiae LG6 by continuous fermentation. Bioresour. Technol. Rep. 2021, 13, 100627. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, X.; Wang, C.; Wang, D.; Wei, G. Transcriptome analysis reveals the mechanism underlying improved glutathione biosynthesis and secretion in Candida utilis during selenium enrichment. J. Biotechnol. 2019, 304, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Ekumah, J.-N.; Ma, Y.; Akpabli-Tsigbe, N.D.K.; Kwaw, E.; Jie, H.; Quaisie, J.; Manqing, X.; Nkuma, N.A.J. Effect of selenium supplementation on yeast growth, fermentation efficiency, phytochemical and antioxidant activities of mulberry wine. Lwt—Food Sci. Technol. 2021, 146, 111425. [Google Scholar] [CrossRef]
- Rao, Y.; McCooeye, M.; Windust, A.; Bramanti, E.; D’Ulivo, A.; Mester, Z.n. Mapping of Selenium Metabolic Pathway in Yeast by Liquid Chromatography-Orbitrap Mass Spectrometry. Anal. Chem. 2010, 82, 8121–8130. [Google Scholar] [CrossRef]
- Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022, 12, 63. [Google Scholar] [CrossRef]
- Thiry, C.; Schneider, Y.-J.; Pussemier, L.; De Temmerman, L.; Ruttens, A. Selenium Bioaccessibility and Bioavailability in Se-Enriched Food Supplements. Biol. Trace Elem. Res. 2013, 152, 152–160. [Google Scholar] [CrossRef]
- Yin, H.; Fan, G.; Gu, Z. Optimization of culture parameters of selenium-enriched yeast (Saccharomyces cerevisiae) by response surface methodology (RSM). LWT—Food Sci. Technol. 2010, 43, 666–669. [Google Scholar] [CrossRef]
- He, P.; Zhang, M.; Zhang, Y.; Wu, H.; Zhang, X. Effects of Selenium Enrichment on Dough Fermentation Characteristics of Baker’s Yeast. Foods 2023, 12, 2343. [Google Scholar] [CrossRef]
- Du, C.; Zhu, S.; Li, Y.; Yang, T.; Huang, D. Selenium-enriched yeast, a selenium supplement, improves the rheological properties and processability of dough: From the view of yeast metabolism and gluten alteration. Food Chem. 2024, 458, 140256. [Google Scholar] [CrossRef]
- Du, C.; Zhu, S.; Li, Y.; Yang, T.; Huang, D. Exploring the impact of selenium-enriched peptides from yeast autolysate on dough properties: Insights into mechanisms from gluten perspectives. Food Chem. 2025, 464, 141814. [Google Scholar] [CrossRef]
- Sun, J.; Xu, S.; Du, Y.; Yu, K.; Jiang, Y.; Weng, H.; Yuan, W. Accumulation and Enrichment of Trace Elements by Yeast Cells and Their Applications: A Critical Review. Microorganisms 2022, 10, 1746. [Google Scholar] [CrossRef]
- Bahrami, R.; Ebrahimi, B.; Hameed Awlqadr, F.; Rouhi, M.; Paimard, G.; Sarlak, Z.; Fallah, M.; Khalghimanesh, K.; Mohammadi, R. Assessment of selenium-enriched deactivated probiotic yeast efficiency in patulin detoxification in apple juice. Food Control 2025, 168, 110880. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, J.; Xu, L.; Ma, A.; Zhuang, G.; Huo, S.; Zou, B.; Qian, J.; Cui, Y. Selenium volatilization in plants, microalgae, and microorganisms. Heliyon 2024, 10, e26023. [Google Scholar] [CrossRef] [PubMed]
- Zolotarev, A.S.; Unnikrishnan, M.; Shmukler, B.E.; Clark, J.S.; Vandorpe, D.H.; Grigorieff, N.; Rubin, E.J.; Alper, S.L. Increased sulfate uptake by E. coli overexpressing the SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 149, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Barajas, E.; Díaz-Pérez, C.; Ramírez-Díaz, M.I.; Riveros-Rosas, H.; Cervantes, C. Bacterial transport of sulfate, molybdate, and related oxyanions. BioMetals 2011, 24, 687–707. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wang, Z.; Zhao, Y.; Peng, M. Unveiling the vital role of soil microorganisms in selenium cycling: A review. Front. Microbiol. 2024, 15, 1448539. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Mamchenkova, P.V.; Vladimirova, A.A.; Petrova, L.P.; Shelud’ko, A.V.; Kamnev, A.A. Role of Denitrification in Selenite Reduction by Azospirillum brasilense with the Formation of Selenium Nanoparticles. FBL 2024, 29, 361. [Google Scholar] [CrossRef]
- Deng, G.; Fan, Z.; Wang, Z.; Peng, M. Dynamic role of selenium in soil–plant-microbe systems: Mechanisms, biofortification, and environmental remediation. Plant Soil 2025. [Google Scholar] [CrossRef]
- Xiao, C.; Du, S.; Zhou, S.; Cheng, H.; Rao, S.; Wang, Y.; Cheng, S.; Lei, M.; Li, L. Identification and functional characterization of ABC transporters for selenium accumulation and tolerance in soybean. Plant Physiol. Biochem. 2024, 211, 108676. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Lin, W.Q.; Jiao, H.P.; Liu, J.G.; Chan, L.; Liu, X.Y.; Wang, R.; Chen, T.F. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: A review. Metallomics 2021, 13, mfab040. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Liu, P.; Zhao, S.; Dai, M.; Han, W.; Zhang, Z.; Wang, C.; Shafiq, F.; Qiao, X.; Xiao, L.; et al. Under the combined application of selenium and sulfur, sulfur does not interfere with selenite uptake in Tartary buckwheat. Food Chem. 2025, 489, 144895. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Wang, C. Factors affecting selenium-enrichment efficiency, metabolic mechanisms and physiological functions of selenium-enriched lactic acid bacteria. J. Future Foods 2022, 2, 285–293. [Google Scholar] [CrossRef]
- Tabibi, M.; Aghaei, S.; Amoozegar, M.A.; Nazari, R.; Zolfaghari, M.R. Characterization of green synthesized selenium nanoparticles (SeNPs) in two different indigenous halophilic bacteria. Bmc Chem. 2023, 17, 115. [Google Scholar] [CrossRef]
- Fath-All, A.A.; Atia, T.; Mohamed, A.S.; Khalil, N.M.; Abdelaziz, T.D.; Mahmoud, N.A.; Elagali, A.M.; Sakr, H.I.; Abd El-Ghany, M.N. Efficacy of yeast-mediated SeNPs on gastric ulcer healing and gut microbiota dysbiosis in male albino rats. Tissue Cell 2025, 96, 102953. [Google Scholar] [CrossRef]
- Nag, S.; Kar, S.; Mishra, S.; Stany, B.; Seelan, A.; Mohanto, S.; Haryini, S.S.; Kamaraj, C.; Subramaniyan, V. Unveiling Green Synthesis and Biomedical Theranostic paradigms of Selenium Nanoparticles (SeNPs)—A state-of-the-art comprehensive update. Int. J. Pharm. 2024, 662, 124535. [Google Scholar] [CrossRef]
- Thangarathinam, J.; Philips, M.F.; Dhayabaran, V.; Chokkiah, B.; Princy, J.; Crispin Tina, C.A.; Kasthuri, A.; Dhanusuraman, R. Facile synthesis of Co3O4@SeNPs grafted MWCNTs Nanocomposite for high energy density supercapacitor and antimicrobial applications. Chem. Phys. Impact 2023, 7, 100253. [Google Scholar] [CrossRef]
- Shoeibi, S.; Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol. 2017, 39, 135–139. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Basu, A.; Bhattacharya, S. Selenium nanoparticles are less toxic than inorganic and organic selenium to mice in vivo. The Nuceus 2019, 62, 259–268. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, K.S. Role of nano-selenium in health and environment. J. Biotechnol. 2021, 325, 152–163. [Google Scholar] [CrossRef]
- Jain, R.; Dominic, D.; Jordan, N.; Rene, E.R.; Weiss, S.; van Hullebusch, E.D.; Hübner, R.; Lens, P.N.L. Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem. Eng. J. 2016, 284, 917–925. [Google Scholar] [CrossRef]
- Ran, M.; Wu, J.; Jiao, Y.; Li, J. Biosynthetic selenium nanoparticles (Bio-SeNPs) mitigate the toxicity of antimony (Sb) in rice (Oryza sativa L.) by limiting Sb uptake, improving antioxidant defense system and regulating stress-related gene expression. J. Hazard. Mater. 2024, 470, 134263. [Google Scholar] [CrossRef] [PubMed]
- Husen, A.; Siddiqi, K.S. Plants and microbes assisted selenium nanoparticles: Characterization and application. J. Nanobiotechnology 2014, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Afzal, B.; Naaz, H.; Ahmedi, S.; Zeya, B.; Imtiyaz, K.; Yasin, D.; Sami, N.; Ahmad Gogry, F.; Alam Rizvi, M.; Manzoor, N.; et al. Biosynthesis, characterization and biomedical potential of Arthrospira indica SOSA-4 mediated SeNPs. Bioorganic Chem. 2022, 129, 106218. [Google Scholar] [CrossRef]
- Pandey, S.; Awasthee, N.; Shekher, A.; Rai, L.C.; Gupta, S.C.; Dubey, S.K. Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity. Bioprocess Biosyst. Eng. 2021, 44, 2679–2696. [Google Scholar] [CrossRef]
- Tugarova, A.V.; Vladimirova, A.A.; Dyatlova, Y.A.; Kamnev, A.A. Raman spectroscopic and TEM monitoring of selenite and selenate reduction by the bacterium Azospirillum thiophilum with the formation of selenium(0) nanoparticles: Effects of sulfate. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 329, 125463. [Google Scholar] [CrossRef]
- Liu, S.; Gu, Q.; Gao, J.; Li, Z.; Yu, X. Characterization, antioxidant properties and transcriptome analysis of selenium nanoparticles biosynthesized by the high selenite tolerance strain Halomonas sp. SF2000. Environ. Technol. Innov. 2025, 40, 104373. [Google Scholar] [CrossRef]
- Zan, L.; Chen, Z.; Zhang, B.; Zou, X.; Lan, A.; Zhang, W.; Yuan, Y.; Yue, T. Screening, Characterization and Probiotic Properties of Selenium-Enriched Lactic Acid Bacteria. Fermentation 2024, 10, 39. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Q.; Xia, C.; Yang, F.; Xu, N.; Wu, Q.; Hu, Y.; Xia, L.; Wang, C.; Zhou, M. Effect of selenium supplements on the antioxidant activity and nitrite degradation of lactic acid bacteria. World J. Microbiol. Biotechnol. 2019, 35, 61. [Google Scholar] [CrossRef] [PubMed]
- Alijan, S.; Hosseini, M.; Esmaeili, S.; Khosravi-Darani, K. Impact of ultrasound and medium condition on production of selenium-enriched yeast. Electron. J. Biotechnol. 2022, 60, 36–42. [Google Scholar] [CrossRef]
- Bao, P.; Huang, H.; Hu, Z.Y.; Haeggblom, M.M.; Zhu, Y.G. Impact of temperature, CO2 fixation and nitrate reduction on selenium reduction, by a paddy soil Clostridium strain. J. Appl. Microbiol. 2013, 114, 703–712. [Google Scholar] [CrossRef]
- Won, S.; Ha, M.-G.; Nguyen, D.D.; Kang, H.Y. Biological selenite removal and recovery of selenium nanoparticles by haloalkaliphilic bacteria isolated from the Nakdong River. Environ. Pollut. 2021, 280, 117001. [Google Scholar] [CrossRef]
- Gaglio, R.; Pescuma, M.; Madrid-Albarrán, Y.; Franciosi, E.; Moschetti, G.; Francesca, N.; Mozzi, F.; Settanni, L. Selenium bio-enrichment of Mediterranean fruit juices through lactic acid fermentation. Int. J. Food Microbiol. 2021, 354, 109248. [Google Scholar] [CrossRef]
- Diowksz, A.; Kordialik-Bogacka, E.; Ambroziak, W. Se-enriched sprouted seeds as functional additives in sourdough fermentation. LWT—Food Sci. Technol. 2014, 56, 524–528. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, C.X.; Wang, X.; Shi, G.Y.; Lei, Z.; Tang, Y.N.; Zhang, H.; Wuriyanghan, H.; Zhao, X.H. Selenium-induced rhizosphere microorganisms endow salt-sensitive soybeans with salt tolerance. Environ. Res. 2023, 236, 116827. [Google Scholar] [CrossRef]
- Kaur, T.; Tejo Prakash, N.; Reddy, M.S. Biotransformation and bioaccumulation of selenium by arbuscular mycorrhizal fungi associated with maize roots in natural seleniferous soils. Int. Biodeterior. Biodegrad. 2025, 201, 106068. [Google Scholar] [CrossRef]
- Yin, K.; Bao, Q.; Li, J.; Wang, M.; Wang, F.; Sun, B.; Gong, Y.; Lian, F. Molecular mechanisms of growth promotion and selenium enrichment in tomato plants by novel selenium-doped carbon quantum dots. Chemosphere 2024, 364, 143175. [Google Scholar] [CrossRef]
- Gui, J.-Y.; Rao, S.; Gou, Y.; Xu, F.; Cheng, S. Comparative study of the effects of selenium yeast and sodium selenite on selenium content and nutrient quality in broccoli florets (Brassica oleracea L. var. italica). J. Sci. Food Agric. 2022, 102, 1707–1718. [Google Scholar] [CrossRef]
- Liao, X.; Rao, S.; Yu, T.; Zhu, Z.; Yang, X.; Xue, H.; Gou, Y.; Cheng, S.; Xu, F. Selenium yeast promoted the Se accumulation, nutrient quality and antioxidant system of cabbage (Brassica oleracea var. capitata L.). Plant Signal. Behav. 2021, 16, 1907042. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Abdelrazek, E.M.; Salaheldin, H. Optimization of the physiochemical synthesis parameters of the Se/CMC nanocomposite: Antibacterial, antioxidant, and anticancer activity. Int. J. Biol. Macromol. 2024, 283, 137765. [Google Scholar] [CrossRef]
- Khurana, A.; Allawadhi, P.; Singh, V.; Khurana, I.; Yadav, P.; Sathua, K.B.; Allwadhi, S.; Banothu, A.K.; Navik, U.; Bharani, K.K. Antimicrobial and anti-viral effects of selenium nanoparticles and selenoprotein based strategies: COVID-19 and beyond. J. Drug Deliv. Sci. Technol. 2023, 86, 104663. [Google Scholar] [CrossRef]
- Chuai, H.; Zhang, S.-Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem. 2021, 223, 113621. [Google Scholar] [CrossRef] [PubMed]
- Zeng, R.; Su, Y.; Huang, R.; Li, L.; Asif, M.; Farooq, M.U.; Ye, X.; Jia, X.; Zhu, J. Selenium in rice: Impact on protein content and distribution for enhanced food and feed security in agroclimatic challenges. Heliyon 2024, 10, e27701. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Yang, S.; Song, M.; Zhang, S.; Wang, X.; Liu, L.; Li, S.; Yuan, Y.; Yue, T. Screening and characterization of organic-Se enriched yeasts via engineering combined lab-adaptive evolution strategies to produce fragrant cider. Food Res. Int. 2025, 213, 116549. [Google Scholar] [CrossRef]
- Mohammady, E.Y.; Khafagy, S.S.; Shawer, E.E.; Soaudy, M.R.; Hassaan, M.S. Effects of selenium-enriched Bacillus pumilus on the growth performance, blood biochemical parameters, innate immune response, and oxidative activity Nile tilapia (Oreochromis niloticus) fed fishmeal-free diets. Anim. Feed Sci. Technol. 2025, 320, 116202. [Google Scholar] [CrossRef]
- Khalil, H.S.; Mansour, A.T.; Goda, A.M.A.; Omar, E.A. Effect of selenium yeast supplementation on growth performance, feed utilization, lipid profile, liver and intestine histological changes, and economic benefit in meagre, Argyrosomus regius, fingerlings. Aquaculture 2019, 501, 135–143. [Google Scholar] [CrossRef]
- Liu, G.X.; Jiang, G.Z.; Lu, K.L.; Li, X.F.; Zhou, M.; Zhang, D.D.; Liu, W.B. Effects of dietary selenium on the growth, selenium status, antioxidant activities, muscle composition and meat quality of blunt snout bream, Megalobrama amblycephala. Aquac. Nutr. 2017, 23, 777–787. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, H.; Liu, C.; Fei, S.; Hu, X.; Han, D.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S. Effects of Different Dietary Selenium Sources on the Meat Quality and Antioxidant Capacity of Yellow Catfish (Pelteobagrus fulvidraco). Aquac. Nutr. 2023, 2023, 7981183. [Google Scholar] [CrossRef]
- Zuo, R.; Wu, X.; Wang, Z.; Zhou, X.; Chang, Y.; Yang, Z.; Huang, Z.; Ding, J. Effects of Selenium Yeast Addition on the Growth, Intestinal Health, Immune Status and Body Composition of Juvenile Sea Cucumber Apostichopus japonicus before and after Aestivation. J. Mar. Sci. Eng. 2023, 11, 601. [Google Scholar] [CrossRef]
- Ning, Y.; Wu, X.; Zhou, X.; Ding, J.; Chang, Y.; Yang, Z.; Huang, Z.; Zuo, R. An evaluation on the selenium yeast supplementation in the practical diets of early juvenile sea cucumber (Apostichopus japonicus): Growth performance, digestive enzyme activities, immune and antioxidant capacity, and body composition. Aquac. Nutr. 2021, 27, 2142–2153. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, L.; Zhai, S.; Lin, Z.; Yang, H.; Chen, J.; Ye, H.; Wang, W.; Yang, L.; Zhu, Y. Effects of Selenium-Enriched Yeast on Performance, Egg Quality, Antioxidant Balance, and Egg Selenium Content in Laying Ducks. Front. Vet. Sci. 2020, 7, 591. [Google Scholar] [CrossRef]
- Petrovic, V.; Boldizarova, K.; Faix, S.; Mellen, M.; Arpasova, H.; Leng, L. Antioxidant and selenium status of laying hens fed with diets supplemented with selenite or Se-yeast. J. Anim. Feed Sci. 2006, 15, 435–444. [Google Scholar] [CrossRef]
- Lu, Y.; Ran, M.; Jiao, Y.; Wu, J.; Li, J. Synergistic interplay of selenium (Se) and antimony (Sb)-oxidizing bacteria Bacillus sp. S3 alleviates the Sb toxicity in pak choi (Brassica chinensis L.) by limiting Sb uptake, enhancing antioxidant systems and regulating key metabolic pathways. Environ. Exp. Bot. 2024, 218, 105601. [Google Scholar] [CrossRef]
- Guo, J.; Luo, X.; Zhang, Q.; Duan, X.; Yuan, Y.; Zheng, S. Contributions of selenium-oxidizing bacteria to selenium biofortification and cadmium bioremediation in a native seleniferous Cd-polluted sandy loam soil. Ecotoxicol. Environ. Saf. 2024, 272, 116081. [Google Scholar] [CrossRef]
- Deng, Y.; Man, C.; Fan, Y.; Wang, Z.; Li, L.; Ren, H.; Cheng, W.; Jiang, Y. Preparation of elemental selenium-enriched fermented milk by newly isolated Lactobacillus brevis from kefir grains. Int. Dairy J. 2015, 44, 31–36. [Google Scholar] [CrossRef]
- Shu, G.; Mei, S.; Chen, L.; Zhang, B.; Guo, M.; Cui, X.; Chen, H. Screening, identification, and application of selenium-enriched Lactobacillus in goat milk powder and tablet. J. Food Process. Preserv. 2020, 44, e14470. [Google Scholar] [CrossRef]
- Martínez, F.G.; Cuencas Barrientos, M.E.; Mozzi, F.; Pescuma, M. Survival of selenium-enriched lactic acid bacteria in a fermented drink under storage and simulated gastro-intestinal digestion. Food Res. Int. 2019, 123, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhou, N.; Li, D.; He, S.; Chen, Y.; Bai, Y.; Zhou, M.; He, J.; Wang, C. Effects of Selenium on the Growth and Fermentation Properties of Se-EnrichedBacillus Subtilis J-2. J. Food Biochem. 2016, 40, 31–38. [Google Scholar] [CrossRef]
- Adadi, P.; Barakova, N.V.; Muravyov, K.Y.; Krivoshapkina, E.F. Designing selenium functional foods and beverages: A review. Food Res. Int. 2019, 120, 708–725. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Che, J.; Wang, Y.; Xiao, B.; Wei, L.; Rong, L.; Li, R. ACE inhibitory peptides and flavor compounds from Se-enriched Bacillus natto fermented chickpea. LWT 2025, 215, 117190. [Google Scholar] [CrossRef]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P.; Kozak, L. The effect of selenium on phenolics and flavonoids in selected edible white rot fungi. LWT—Food Sci. Technol. 2015, 63, 726–731. [Google Scholar] [CrossRef]
- Yang, Z.; Lian, J.; Yang, Y.; Li, J.; Guo, W.; Lv, X.; Ni, L.; Chen, Y. Selenium enrichment enhances the alleviating effect of Lactobacillus rhamnosus GG on alcoholic liver injury in mice. Curr. Res. Food Sci. 2025, 10, 100964. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, H.; Li, H.; Huang, Y.; Tang, Y.; Tang, X.; Sun, P.; Tan, Z.; Pang, H.; Yang, F. Selenium-Enriched Lactiplantibacillus plantarum ZZU 8–12 Regulates Intestinal Microbiota and Inhibits Acute Liver Injury. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef]
- Yang, J.; Wang, J.; Yang, K.; Liu, M.; Qi, Y.; Zhang, T.; Fan, M.; Wei, X. Antibacterial activity of selenium-enriched lactic acid bacteria against common food-borne pathogens in vitro. J. Dairy Sci. 2018, 101, 1930–1942. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, C.; Xu, Z.; Chen, X.; Gao, F.; Lin, T.; Yang, P.; Kan, S.; Yin, Y.; Chen, D. Selenium-enriched Bifidobacterium longum DD98 significantly improves the efficacy of Mesalazine and Cyclosporin A in colitis mice. Food Biosci. 2024, 61, 104297. [Google Scholar] [CrossRef]
- Yang, J.; Huang, K.; Qin, S.; Wu, X.; Zhao, Z.; Chen, F. Antibacterial Action of Selenium-Enriched Probiotics Against Pathogenic Escherichia coli. Dig. Dis. Sci. 2008, 54, 246–254. [Google Scholar] [CrossRef]
- Roshanravan, N.; Koche Ghazi, M.K.; Ghaffari, S.; Naemi, M.; Alamdari, N.M.; Shabestari, A.N.; Mosharkesh, E.; Soleimanzadeh, H.; Sadeghi, M.T.; Alipour, S.; et al. Sodium selenite and Se-enriched yeast supplementation in atherosclerotic patients: Effects on the expression of pyroptosis-related genes and oxidative stress status. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1528–1537. [Google Scholar] [CrossRef]
- Chen, H.; Li, P.; Shen, Z.; Wang, J.; Diao, L. Protective effects of selenium yeast against cadmium-induced necroptosis through miR-26a-5p/PTEN/PI3K/AKT signaling pathway in chicken kidney. Ecotoxicol. Environ. Saf. 2021, 220, 112387. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, F.; Guo, L.; Guo, Z.-Y.; Fu, Q.-S.; Bi, C.-C.; Hou, X.-W.; Wang, N.; Zhou, J.-X.; Li, Y.-H. Mechanism of selenium-enriched Bacillus subtilis alleviating perfluorohexanoic acid toxicity in Carassius auratus through the microbiota–gut–brain axis. Aquaculture 2025, 595, 741603. [Google Scholar] [CrossRef]
- Darwish, A.M.; Khattab, A.E.-N.A.; Abd El-Razik, K.A.; Othman, S.I.; Allam, A.A.; Abu-Taweel, G.M. Effectiveness of new selenium-enriched mutated probiotics in reducing inflammatory effects of piroxicam medication in liver and kidney. Inflammopharmacology 2022, 30, 2097–2106. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Wang, P.; Wang, B.; Zhang, S.; Hua, Z.; Li, Y.; Wang, X.; Yang, X. Effects of Se-enriched yeast on the amelioration of atrazine-induced meat quality degradation. Food Chem. 2024, 454, 139737. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Y.; Wang, P.; Hua, Z.; Zhang, S.; Yang, X.; Zhang, C. Selenium-enriched yeast regulates aquaporins to alleviate atrazine-induced hepatic ionic homeostasis disturbance in Japanese quails. Int. J. Biol. Macromol. 2024, 280, 135720. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.-H.; Hsia, S.; Shih, M.-Y.; Hsieh, F.-C.; Chen, P.-C. Effects of Selenium Yeast on Oxidative Stress, Growth Inhibition, and Apoptosis in Human Breast Cancer Cells. Int. J. Med. Sci. 2015, 12, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Guo, S.; Liu, H. Antioxidant activity and inhibition of ultraviolet radiation-induced skin damage of Selenium-rich peptide fraction from selenium-rich yeast protein hydrolysate. Bioorganic Chem. 2020, 105, 104431. [Google Scholar] [CrossRef]
- Singh, S.C.; Srivastava, S.K.M.K.; Gopal, R. Optical Properties of Selenium Quantum Dots Produced with Laser Irradiation of Water. J. Phys. Chem. C 2010, 114, 17374. [Google Scholar] [CrossRef]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Han, F.; Liu, Y.; Wang, Q.; Huang, Z. Dietary Reference Intakes of Selenium for Chinese Residents. J. Nutr. 2025, 155, 2508–2518. [Google Scholar] [CrossRef]
- Hadrup, N.; Ravn-Haren, G. Toxicity of repeated oral intake of organic selenium, inorganic selenium, and selenium nanoparticles: A review. J. Trace Elem. Med. Biol. 2023, 79, 127235. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, L.; Hou, X.; Yi, D.; Deng, G.; Wang, Z.; Peng, M. Selenium-Enriched Microorganisms: Metabolism, Production, and Applications. Microorganisms 2025, 13, 1849. https://doi.org/10.3390/microorganisms13081849
Luo L, Hou X, Yi D, Deng G, Wang Z, Peng M. Selenium-Enriched Microorganisms: Metabolism, Production, and Applications. Microorganisms. 2025; 13(8):1849. https://doi.org/10.3390/microorganisms13081849
Chicago/Turabian StyleLuo, Lin, Xue Hou, Dandan Yi, Guangai Deng, Zhiyong Wang, and Mu Peng. 2025. "Selenium-Enriched Microorganisms: Metabolism, Production, and Applications" Microorganisms 13, no. 8: 1849. https://doi.org/10.3390/microorganisms13081849
APA StyleLuo, L., Hou, X., Yi, D., Deng, G., Wang, Z., & Peng, M. (2025). Selenium-Enriched Microorganisms: Metabolism, Production, and Applications. Microorganisms, 13(8), 1849. https://doi.org/10.3390/microorganisms13081849