Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis
Abstract
1. Introduction
2. Materials and Methods
2.1. Meccus Pallidipennis Specimens
2.2. Infection of Adult M. pallidipennis Specimens
2.3. Trypanosoma Cruzi Isolate
2.4. Confirmation of Infection
2.5. Dissection and Extraction of Meccus pallidipennis Gut
2.6. Extraction, Precipitation, and Quantification of AMG and RE Proteins
2.7. Protein Profile by SDS-PAGE Electrophoresis (1D)
2.8. Proteomic Mapping by Isoelectric Focusing and Two-Dimensional (2D) Electrophoresis
2.9. Glycosylation Patterns from Lectin Blots
2.10. Gel and Blot Analysis
2.11. Parasite Count
2.12. Determination of Metacyclogenic Index
2.13. Statistical Analysis
3. Results
3.1. Protein Profiles by SDS-PAGE Electrophoresis (1D) in AMG and RE of Male and Female Triatomines Infected with T. cruzi
3.2. Proteomic Maps of AMG and RE of T. cruzi-Infected Male and Female Triatomines
3.3. Protein Glycosylation with α-Mannose and α-Glucose in the AMG and RE of T. cruzi-Infected Male and Female Triatomines
3.4. Protein Glycosylation with N-acetylglucosamine and Sialic Acid in the AMG and RE of T. cruzi-Infected Male and Female Triatomines
3.5. Protein Glycosylation with N-acetylgalactosamine and β-galactose in the AMG and RE of T. cruzi-Infected Male and Female Triatomines
3.6. Feeding, Parasite Burden, and Metacyclogenesis in Infected Triatomines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMG | Anterior Midgut |
RE | Proctodeum or Rectum |
ConA | Concanavalin A from Canavalia ensiformis |
WGA | Wheat germ agglutinin from Triticum vulgaris |
PNA | Peanut agglutinin from Arachis hypogaea |
References
- World Health Organization. Chagas Disease (American Trypanosomiasis). Available online: https://www.who.int/health-topics/chagas-disease (accessed on 16 March 2023).
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef]
- Hill, J.; Teal, E.; Cross, C.L.; Sanchez, Z.; Webber, M.M.; Oxborough, R.M.; Messenger, L.A. Using iNaturalist Presence Data to Produce Suitability Maps for Triatoma Protracta, T. Rubida and T. Recurva in the American Southwest, Texas and Northern Mexico, to Identify Potential Transmission Zones of Chagas Disease. Sci. Rep. 2024, 14, 26879. [Google Scholar] [CrossRef]
- Keesing, F.; Holt, R.D.; Ostfeld, R.S. Effects of Species Diversity on Disease Risk. Ecol. Lett. 2006, 9, 485–498. [Google Scholar] [CrossRef]
- Álvarez-Hernández, D.-A.; Franyuti-Kelly, G.-A.; Díaz-López-Silva, R.; González-Chávez, A.-M.; González-Hermosillo-Cornejo, D.; Vázquez-López, R. Chagas Disease: Current Perspectives on a Forgotten Disease. Rev. Médica Del. Hosp. Gen. México 2018, 81, 154–164. [Google Scholar] [CrossRef]
- Benjamin, R.J.; Stramer, S.L.; Leiby, D.A.; Dodd, R.Y.; Fearon, M.; Castro, E. Trypanosoma cruzi Infection in North America and Spain: Evidence in Support of Transfusion Transmission (CME). Transfusion 2012, 52, 1913–1921. [Google Scholar] [CrossRef]
- Shikanai-Yasuda, M.A.; Carvalho, N.B. Oral Transmission of Chagas Disease. Clin. Infect. Dis. 2012, 54, 845–852. [Google Scholar] [CrossRef]
- Lent, H.; Wygodzinsky, P.W. Revision of the Triatominae (Hemiptera, Reduviidae), and Their Significance as Vectors of Chagas’ Disease. Bulletin of the AMNH; v. 163, Article 3. Bull. Am. Mus. Nat. Hist. 1979, 163, 125–520. [Google Scholar]
- Galvão, C.; Carcavallo, R.; Rocha, D.D.S.; Jurberg, J. A Checklist of the Current Valid Species of the Subfamily Triatominae Jeannel, 1919 (Hemiptera, Reduviidae) and Their Geographical Distribution, with Nomenclatural and Taxonomic Notes. Zootaxa 2003, 202, 1–36. [Google Scholar] [CrossRef]
- Salazar Schettino, P.M.; de Haro Arteaga, I.; Cabrera Bravo, M. Tres Especies de Triatominos y Su Importancia Como Vectores de Trypanosoma cruzi En México. Med. Buenos Aires 2005, 65, 63–69. [Google Scholar]
- Otálora-Luna, F.; Pérez-Sánchez, A.J.; Sandoval, C.; Aldana, E. Evolution of Hematophagous Habit in Triatominae (Heteroptera: Reduviidae). Rev. Chil. Hist. Nat. 2015, 88, 4. [Google Scholar] [CrossRef]
- Ramsey, J.M.; Ordoñez, R.; Cruz-Celis, A.; Alvear, A.L.; Chavez, V.; Lopez, R.; Pintor, J.R.; Gama, F.; Carrillo, S. Distribution of Domestic Triatominae and Stratification of Chagas Disease Transmission in Oaxaca, Mexico. Med. Vet. Entomol. 2000, 14, 19–30. [Google Scholar] [CrossRef]
- Martínez-Ibarra, J.A.; Nogueda-Torres, B.; García-Benavídez, G.; Vargas-Llamas, V.; Bustos-Saldaña, R.; Montañez-Valdez, O.D. Bionomics of Populations of Meccus pallidipennis (Stål), 1872 (Hemiptera: Reduviidae) from Mexico. J. Vector Ecol. 2012, 37, 474–477. [Google Scholar] [CrossRef]
- Mesquita, R.D.; Vionette-Amaral, R.J.; Lowenberger, C.; Rivera-Pomar, R.; Monteiro, F.A.; Minx, P.; Spieth, J.; Carvalho, A.B.; Panzera, F.; Lawson, D.; et al. Genome of Rhodnius prolixus, an Insect Vector of Chagas Disease, Reveals Unique Adaptations to Hematophagy and Parasite Infection. Proc. Natl. Acad. Sci. USA 2015, 112, 14936–14941. [Google Scholar] [CrossRef]
- Gutiérrez-Cabrera, A.E.; Córdoba-Aguilar, A.; Zenteno, E.; Lowenberger, C.; Espinoza, B. Origin, Evolution and Function of the Hemipteran Perimicrovillar Membrane with Emphasis on Reduviidae That Transmit Chagas Disease. Bull. Entomol. Res. 2016, 106, 279–291. [Google Scholar] [CrossRef]
- Ouali, R.; Vieira, L.R.; Salmon, D.; Bousbata, S. Early Post-Prandial Regulation of Protein Expression in the Midgut of Chagas Disease Vector Rhodnius prolixus Highlights New Potential Targets for Vector Control Strategy. Microorganisms 2021, 9, 804. [Google Scholar] [CrossRef]
- Kleffmann, T.; Schmidt, J.; Schaub, G.A. Attachment of Trypanosoma cruzi Epimastigotes to Hydrophobic Substrates and Use of This Property to Separate Stages and Promote Metacyclogenesis. J. Eukaryot. Microbiol. 1998, 45, 548–555. [Google Scholar] [CrossRef]
- Garcia, E.S.; Genta, F.A.; de Azambuja, P.; Schaub, G.A. Interactions between Intestinal Compounds of Triatomines and Trypanosoma cruzi. Trends Parasitol. 2010, 26, 499–505. [Google Scholar] [CrossRef]
- Azambuja, P.; Garcia, E.S.; Waniek, P.J.; Vieira, C.S.; Figueiredo, M.B.; Gonzalez, M.S.; Mello, C.B.; Castro, D.P.; Ratcliffe, N.A. Rhodnius prolixus: From Physiology by Wigglesworth to Recent Studies of Immune System Modulation by Trypanosoma cruzi and Trypanosoma rangeli. J. Insect Physiol. 2017, 97, 45–65. [Google Scholar] [CrossRef]
- Schaub, G.A.; Meiser, C.K.; Balczun, C. Interactions of Trypanosoma cruzi and Triatomines. In Progress in Parasitology; Mehlhorn, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 155–178. ISBN 978-3-642-21395-3. [Google Scholar]
- Ferreira, R.C.; Kessler, R.L.; Lorenzo, M.G.; Paim, R.M.M.; Ferreira, L.D.L.; Probst, C.M.; Alves-Silva, J.; Guarneri, A.A. Colonization of Rhodnius prolixus Gut by Trypanosoma cruzi Involves an Extensive Parasite Killing. Parasitology 2016, 143, 434–443. [Google Scholar] [CrossRef]
- Kollien, A.; Schaub, G. The Development of Trypanosoma cruzi in Triatominae. Parasitol. Today 2000, 16, 381–387. [Google Scholar] [CrossRef]
- Parodi-Talice, A.; Monteiro-Goes, V.; Arrambide, N.; Avila, A.R.; Duran, R.; Correa, A.; Dallagiovanna, B.; Cayota, A.; Krieger, M.; Goldenberg, S.; et al. Proteomic Analysis of Metacyclic Trypomastigotes Undergoing Trypanosoma cruzi Metacyclogenesis. J. Mass Spectrom. 2007, 42, 1422–1432. [Google Scholar] [CrossRef]
- Perlowagora-Szumlewicz, A.; Muller, C.A. Studies in Search of a Suitable Experimental Insect Model for Xenodiagnosis of Hosts with Chagas’ Disease. 1—Comparative Xenodiagnosis with Nine Triatomine Species of Animals with Acute Infections by Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz 1982, 77, 37–53. [Google Scholar] [CrossRef]
- Schaub, G.A.; Kleffmann, T.; Kollien, A.H.; Schmidt, J. Hydrophobic Attachment of Trypanosoma cruzi to the Rectal Cuticle of Triatoma Infestans and Its Influence on Metacyclogenesis—A Review. Tokai J. Exp. Clin. Med. 1998, 23, 321–327. [Google Scholar]
- Engel, J.C.; Parodi, A.J. Trypanosoma cruzi Cells Undergo an Alteration in Protein N-Glycosylation upon Differentiation. J. Biol. Chem. 1985, 260, 10105–10110. [Google Scholar] [CrossRef]
- Azambuja, P.; Ratcliffe, N.A.; Garcia, E.S. Towards an Understanding of the Interactions of Trypanosoma cruzi and Trypanosoma rangeli within the Reduviid Insect Host Rhodnius prolixus. An. Acad. Bras. Ciênc. 2005, 77, 397–404. [Google Scholar] [CrossRef]
- Chrispeels, M.J.; Raikhel, N.V. Lectins, Lectin Genes, and Their Role in Plant Defense. Plant Cell 1991, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-M.; Margam, V.; Muir, W.M.; Murdock, L.L.; Pittendrigh, B.R. Changes in Drosophila melanogaster Midgut Proteins in Response to Dietary Bowman–Birk Inhibitor. Insect Mol. Biol. 2007, 16, 539–549. [Google Scholar] [CrossRef]
- Macedo, M.L.R.; Freire, M.D.G.M.; Da Silva, M.B.R.; Coelho, L.C.B.B. Insecticidal Action of Bauhinia monandra Leaf Lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2007, 146, 486–498. [Google Scholar] [CrossRef]
- Gutiérrez-Cabrera, A.E.; Zandberg, W.F.; Zenteno, E.; Rodríguez, M.H.; Espinoza, B.; Lowenberger, C. Glycosylation on Proteins of the Intestine and Perimicrovillar Membrane of Triatoma (Meccus) pallidipennis, under Different Feeding Conditions. Insect Sci. 2019, 26, 796–808. [Google Scholar] [CrossRef]
- Torres-Gutiérrez, E.; Candelas-Otero, F.N.; Reynoso-Ducoing, O.A.; González-Rete, B.; Vences-Blanco, M.O.; Cabrera-Bravo, M.; Bucio-Torres, M.I.; Salazar-Schettino, P.M.S. Glycosylation Patterns in Meccus (Triatoma) pallidipennis Gut: Implications for the Development of Vector Control Strategies. Microorganisms 2025, 13, 58. [Google Scholar] [CrossRef]
- Mello, C.B.; Garcia, E.S.; Ratcliffe, N.A.; Azambuja, P. Trypanosoma cruzi and Trypanosoma rangeli: Interplay with Hemolymph Components of Rhodnius prolixus. J. Invertebr. Pathol. 1995, 65, 261–268. [Google Scholar] [CrossRef]
- Ratcliffe, N.A.; Nigam, Y.; Mello, C.B.; Garcia, E.S.; Azambuja, P. Trypanosoma cruzi and Erythrocyte Agglutinins: A Comparative Study of Occurrence and Properties in the Gut and Hemolymph of Rhodnius prolixus. Exp. Parasitol. 1996, 83, 83–93. [Google Scholar] [CrossRef]
- González-Rete, B.; Gutiérrez-Cabrera, A.E.; De Fuentes-Vicente, J.A.; Salazar-Schettino, P.M.; Cabrera-Bravo, M.; Córdoba-Aguilar, A. Higher Temperatures Reduce the Number of Trypanosoma cruzi Parasites in the Vector Triatoma pallidipennis. Parasites Vectors 2021, 14, 385. [Google Scholar] [CrossRef] [PubMed]
- Favila-Ruiz, G.; Jiménez-Cortés, J.G.; Córdoba-Aguilar, A.; Salazar-Schettino, P.M.; Gutiérrez-Cabrera, A.E.; Pérez-Torres, A.; De Fuentes-Vicente, J.A.; Vences-Blanco, M.O.; Bucio-Torres, M.I.; Flores-Villegas, A.L.; et al. Effects of Trypanosoma cruzi on the Phenoloxidase and Prophenoloxidase Activity in the Vector Meccus pallidipennis (Hemiptera: Reduviidae). Parasites Vectors 2018, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- González-Rete, B.; Salazar-Schettino, P.M.; Bucio-Torres, M.I.; Córdoba-Aguilar, A.; Cabrera-Bravo, M. Activity of the Prophenoloxidase System and Survival of Triatomines Infected with Different Trypanosoma cruzi Strains under Different Temperatures: Understanding Chagas Disease in the Face of Climate Change. Parasit. Vectors 2019, 12, 219. [Google Scholar] [CrossRef]
- Mendoza-Rodríguez, M. Caracterización Biológica y Bioquímica de Cuatro Aislados de Trypanosoma cruzi. Bachelor’s Thesis, Universidad Nacional Autónoma de México, Ciudad de México, México, 2015. [Google Scholar]
- Zeledón, R. Infection of the Insect Host by Trypanosoma cruzi. In Atlas of Chagas Disease Vectors in the Americas; Fiocruz: Rio de Janeiro, Brazil, 1997; Volume 1, pp. 271–278. ISBN 978-85-85676-37-7. [Google Scholar]
- Ambrosio, J.R.; Reynoso-Ducoing, O.; Hernández-Sanchez, H.; Correa-Piña, D.; González-Malerva, L.; Cruz-Rivera, M.; Flisser, A. Actin Expression in Taenia solium Cysticerci (Cestoda): Tisular Distribution and Detection of Isoforms. Cell Biol. Int. 2003, 27, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Deatherage Kaiser, B.L.; Wunschel, D.S.; Sydor, M.A.; Warner, M.G.; Wahl, K.L.; Hutchison, J.R. Improved Proteomic Analysis Following Trichloroacetic Acid Extraction of Bacillus Anthracis Spore Proteins. J. Microbiol. Methods 2015, 118, 18–24. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- O’Farrell, P. High Resolution Two-Dimensional Electrophoresis of Proteins. J. Biol. Chem. 1975, 250, 4007–4021. [Google Scholar] [CrossRef]
- Haro, I. de Enfermedad de Chagas En Una Comunidad Del Altiplano Mexicano. Ph.D. Thesis, Universidad Nacional Autónoma de México, Ciudad de México, México, 1997. [Google Scholar]
- Gumiel, M.; de Mattos, D.P.; Vieira, C.S.; Moraes, C.S.; Moreira, C.J.D.C.; Gonzalez, M.S.; Teixeira-Ferreira, A.; Waghabi, M.; Azambuja, P.; Carels, N. Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Front. Mol. Biosci. 2020, 7, 589435. [Google Scholar] [CrossRef]
- Nava-Mirafuentes, I. Proteoma del estómago de Meccus pallidipennis (reduviidae, triatominae) asociado a la infección por Trypanosoma cruzi. Master's Thesis, Universidad Autónoma de Guerrero, Guerrero, México, 2015. [Google Scholar]
- Ribeiro, J.M.C.; Genta, F.A.; Sorgine, M.H.F.; Logullo, R.; Mesquita, R.D.; Paiva-Silva, G.O.; Majerowicz, D.; Medeiros, M.; Koerich, L.; Terra, W.R.; et al. An Insight into the Transcriptome of the Digestive Tract of the Bloodsucking Bug, Rhodnius prolixus. PLoS Negl. Trop. Dis. 2014, 8, e2594. [Google Scholar] [CrossRef]
- Reynoso-Ducoing, O.A.; González-Rete, B.; Díaz, E.; Candelas-Otero, F.N.; López-Aviña, J.A.; Cabrera-Bravo, M.; Bucio-Torres, M.I.; Torres-Gutiérrez, E.; Salazar-Schettino, P.M. Expression of Proteins, Glycoproteins, and Transcripts in the Guts of Fasting, Fed, and Trypanosoma cruzi-Infected Triatomines: A Systematic Review. Pathogens 2023, 12, 1124. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, N.P.; Saraiva, F.M.S.; Sultano, P.E.; Cunha, P.R.B.B.; Laranja, G.A.T.; Justo, G.A.; Sabino, K.C.C.; Coelho, M.G.P.; Rossini, A.; Atella, G.C.; et al. Proliferation and Differentiation of Trypanosoma cruzi inside Its Vector Have a New Trigger: Redox Status. PLoS ONE 2015, 10, e0116712. [Google Scholar] [CrossRef]
- Garcia, E.S.; Ratcliffe, N.A.; Whitten, M.M.; Gonzalez, M.S.; Azambuja, P. Exploring the Role of Insect Host Factors in the Dynamics of Trypanosoma cruzi–Rhodnius prolixus Interactions. J. Insect Physiol. 2007, 53, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Moreira, C.J.D.C.; De Cicco, N.N.T.; Galdino, T.S.; Feder, D.; Gonzalez, M.S.; Miguel, R.B.; Coura, J.R.; Castro, H.C.; Azambuja, P.; Atella, G.C.; et al. Lipoproteins from Vertebrate Host Blood Plasma Are Involved in Trypanosoma cruzi Epimastigote Agglutination and Participate in Interaction with the Vector Insect, Rhodnius prolixus. Exp. Parasitol. 2018, 195, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Lander, N.; Chiurillo, M.A.; Docampo, R. Signaling Pathways Involved in Environmental Sensing in Trypanosoma cruzi. Mol. Microbiol. 2021, 115, 819–828. [Google Scholar] [CrossRef]
- Jacobson, R.L.; Doyle, R.J. Lectin-Parasite Interactions. Parasitol. Today 1996, 12, 55–61. [Google Scholar] [CrossRef]
- Vandenborre, G.; Smagghe, G.; Ghesquière, B.; Menschaert, G.; Nagender Rao, R.; Gevaert, K.; Van Damme, E.J.M. Diversity in Protein Glycosylation among Insect Species. PLoS ONE 2011, 6, e16682. [Google Scholar] [CrossRef]
- Singh, H.; Sai, P. Insight of Lectins-A Review. IJSER 2012, 3, 813–821. [Google Scholar]
- Walski, T.; De Schutter, K.; Van Damme, E.J.M.; Smagghe, G. Diversity and Functions of Protein Glycosylation in Insects. Insect Biochem. Mol. Biol. 2017, 83, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Amino, R.; Serrano, A.A.; Morita, O.M.; Pereira-Chioccola, V.L.; Schenkman, S. A Sialidase Activity in the Midgut of the Insect Triatoma infestans Is Responsible for the Low Levels of Sialic Acid in Trypanosoma cruzi Growing in the Insect Vector. Glycobiology 1995, 5, 625–631. [Google Scholar] [CrossRef]
- Alves, C.R.; Albuquerque-Cunha, J.M.; Mello, C.B.; Garcia, E.S.; Nogueira, N.F.; Bourguingnon, S.C.; de Souza, W.; Azambuja, P.; Gonzalez, M.S. Trypanosoma cruzi: Attachment to Perimicrovillar Membrane Glycoproteins of Rhodnius prolixus. Exp. Parasitol. 2007, 116, 44–52. [Google Scholar] [CrossRef]
- Albuquerque-Cunha, J.M.; Gonzalez, M.S.; Garcia, E.S.; Mello, C.B.; Azambuja, P.; Almeida, J.C.A.; de Souza, W.; Nogueira, N.F.S. Cytochemical Characterization of Microvillar and Perimicrovillar Membranes in the Posterior Midgut Epithelium of Rhodnius prolixus. Arthropod Struct. Dev. 2009, 38, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Cabrera, A.E.; Alejandre-Aguilar, R.; Hernández-Martínez, S.; Espinoza, B. Development and Glycoprotein Composition of the Perimicrovillar Membrane in Triatoma (Meccus) pallidipennis (Hemiptera: Reduviidae). Arthropod Struct. Dev. 2014, 43, 571–578. [Google Scholar] [CrossRef]
- Schaub, G.A. Chapter 4 Interactions of Trypanosomatids and Triatomines. In Advances in Insect Physiology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 37, pp. 177–242. ISBN 978-0-12-374829-4. [Google Scholar]
- Kwok, R.; Chung, D.; Brugge, V.T.; Orchard, I. The Distribution and Activity of Tachykinin-Related Peptides in the Blood-Feeding Bug, Rhodnius prolixus. Peptides 2005, 26, 43–51. [Google Scholar] [CrossRef]
- Sarkar, N.R.S.; Tobe, S.S.; Orchard, I. The Distribution and Effects of Dippu-Allatostatin-like Peptides in the Blood-Feeding Bug, Rhodnius prolixus. Peptides 2003, 24, 1553–1562. [Google Scholar] [CrossRef]
- Cámara, M.M.; Balouz, V.; Centeno Cameán, C.; Cori, C.R.; Kashiwagi, G.A.; Gil, S.A.; Macchiaverna, N.P.; Cardinal, M.V.; Guaimas, F.; Lobo, M.M.; et al. Trypanosoma cruzi Surface Mucins Are Involved in the Attachment to the Triatoma Infestans Rectal Ampoule. PLoS Negl. Trop. Dis. 2019, 13, e0007418. [Google Scholar] [CrossRef]
- Garcia, E.S.; Azambuja, P. Development and Interactions of Trypanosoma cruzi within the Insect Vector. Parasitol. Today 1991, 7, 240–244. [Google Scholar] [CrossRef]
- Palau Castaño, M.T. Estudio experimental del impacto de la estructura clonal de “Trypanosoma cruzi” sobre aspectos médico-biológicos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, España, 1996. [Google Scholar]
- Melo, R.D.F.P.; Guarneri, A.A.; Silber, A.M. The Influence of Environmental Cues on the Development of Trypanosoma cruzi in Triatominae Vector. Front. Cell. Infect. Microbiol. 2020, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Schettino, M.P.; Rojas-Wastavino, G.E.; Cabrera-Bravo, M.; Bucio-Torres, M.I.; Martínez-Ibarra, J.A.; Monroy-Escobar, M.C.; Rodas-Retana, A.; Guevara-Gómez, Y.; Vences-Blanco, M.O.; Ruiz Hernández, A.L.; et al. Revisión de 13 especies de la familia Triatominae (Hemiptera: Reduviidae) vectores de la enfermedad de Chagas, en México. J. Selva Andin. Res. Soc. 2010, 1, 57–81. [Google Scholar] [CrossRef]
- Cortés-Jiménez, M.; Nogueda-Torres, B.; Alejandre-Aguilar, R.; Isita-Tornell, L.; Ramírez-Moreno, E. Frequency of Triatomines Infected with Trypanosoma cruzi Collected in Cuernavaca City, Morelos, México. Rev. Latinoam. Microbiol. 1996, 38, 115–119. [Google Scholar]
- Martínez Ibarra, J.A.; Novelo López, M. Blood meals to molt, feeding time and postfeeding defecation delay of Meccus pallidipennis (Stål, 1872) (Hemiptera: Reduviidae) under laboratory conditions. Folia Entomológica Mex. 2004, 43, 313–319. [Google Scholar]
- Martínez-Ibarra, J.A.; Alejandre-Aguilar, R.; Torres-Morales, A.; Trujillo-García, J.C.; Nogueda-Torres, B.; Trujillo-Contreras, F. Biology of Three Species of the Meccus phyllosomus Complex (Hemiptera: Reduviidae: Triatominae) Fed on Blood of Hens and Rabbits. Mem. Inst. Oswaldo Cruz 2006, 101, 787–794. [Google Scholar] [CrossRef]
- Franzim-Junior, E.; Mendes, M.T.; Anhê, A.; da Costa, T.A.; Silva, M.; Hernandez, C.; Pelli, A.; Sales-Campos, H.; Oliveira, C. Biology of Meccus pallidipennis (Hemiptera: Reduviidae) to Other Conditions than That Encountered in Their Native Habitat. J. Arthropod Borne Dis. 2018, 12, 262–268. [Google Scholar]
- Guarneri, A.A.; Carvalho, M.D.G.; Pereira, M.H.; Diotaiuti, L. Potencial Biológico Do Triatoma brasiliensis. Cad. Saúde Pública 2000, 16, S101–S104. [Google Scholar] [CrossRef]
- Christensen, H.A.; Sousa, O.E.; De Vasquez, A.M. Host Feeding Profiles of Triatoma dimidiata in Peridomestic Habitats of Western Panama. Am. J. Trop. Med. Hyg. 1988, 38, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ibarra, J.A.; Nogueda-Torres, B.; Salazar-Schettino, P.M.; Vences-Blanco, M.O.; de la Torre-Álvarez, F.J.; Montañez-Valdez, O.D. Differences on Biological Attributes of Three Populations of Meccus pallidipennis Stål (Hemiptera: Reduviidae). J. Vector Borne Dis. 2014, 51, 22–26. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Rete, B.; López-Aviña, J.A.; Reynoso-Ducoing, O.A.; Cabrera-Bravo, M.; Bucio-Torres, M.I.; Vences-Blanco, M.O.; Torres-Gutiérrez, E.; Salazar-Schettino, P.M.S. Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis. Microorganisms 2025, 13, 1823. https://doi.org/10.3390/microorganisms13081823
González-Rete B, López-Aviña JA, Reynoso-Ducoing OA, Cabrera-Bravo M, Bucio-Torres MI, Vences-Blanco MO, Torres-Gutiérrez E, Salazar-Schettino PMS. Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis. Microorganisms. 2025; 13(8):1823. https://doi.org/10.3390/microorganisms13081823
Chicago/Turabian StyleGonzález-Rete, Berenice, Juan Antonio López-Aviña, Olivia Alicia Reynoso-Ducoing, Margarita Cabrera-Bravo, Martha Irene Bucio-Torres, Mauro Omar Vences-Blanco, Elia Torres-Gutiérrez, and Paz María Silvia Salazar-Schettino. 2025. "Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis" Microorganisms 13, no. 8: 1823. https://doi.org/10.3390/microorganisms13081823
APA StyleGonzález-Rete, B., López-Aviña, J. A., Reynoso-Ducoing, O. A., Cabrera-Bravo, M., Bucio-Torres, M. I., Vences-Blanco, M. O., Torres-Gutiérrez, E., & Salazar-Schettino, P. M. S. (2025). Lectin Recognition Patterns in the Gut of Meccus (Triatoma) pallidipennis and Their Association with Trypanosoma cruzi Metacyclogenesis. Microorganisms, 13(8), 1823. https://doi.org/10.3390/microorganisms13081823