Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. The Medical History Analysis
2.3. Sample Collection and Storage
2.4. Microbiome Assessment
2.5. Cortisol Analysis
2.6. Statistics and Biostatistics
3. Results
3.1. Oral Microbiota Sequencing
3.2. The Structure of the Group
3.3. Functional Gastrointestinal Disorders
3.4. Diet and Food Selectivity
3.5. Vineland Adaptive Behavioral Scale Results
3.5.1. Domain: Communication
Subdomain: Receptive Communication
Subdomain: Expressive Communication
Subdomain: Writing Skills
3.5.2. Domain: Daily Living Skills
Subdomain: Personal Skills
Subdomain: Domestic Skills
Subdomain: Community Skills
3.5.3. Domain: Socialization
Subdomain: Interpersonal Skills
Subdomain: Play and Leisure Skills
Subdomain: Coping Skills
3.5.4. Domain: Motor Skills
Subdomain: Large Muscle Skills
Subdomain: Small Muscle Skills
3.6. Cortisol Diurnal Release Pattern
4. Discussion
4.1. Oral Microbiota Composition and Population Structure
4.2. Functional Gastrointestinal Disorders and Microbiota Profiles
4.3. Dietary Patterns and Food Selectivity
4.4. Functioning and Microbiota Composition
4.5. Cortisol Diurnal Release Pattern
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorder |
ChBD | Carbohydrate-Based Diet |
ELISA | Enzyme-Linked Immunosorbent Assay |
FGID | Functional Gastrointestinal Disorder |
FS | Food Selectivity |
HCD | High-Calorie Diet |
ICD-10 | International Statistical Classification of Diseases and Related Health Problems—10th Revision |
LCD | Low-Calorie Diet |
PBD | Protein-Based Diet |
VABS | Vineland Adaptive Behavior Scale |
References
- World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision; World Health Organization: Geneva, Switzerland, 1990. [Google Scholar]
- World Health Organization. Autism. Available online: https://www.who.int/news-room/fact-sheets/detail/autism-spectrum-disorders (accessed on 10 July 2025).
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef]
- Lewandowska-Pietruszka, Z.; Figlerowicz, M.; Mazur-Melewska, K. The History of the Intestinal Microbiota and the Gut-Brain Axis. Pathogens 2022, 11, 1540. [Google Scholar] [CrossRef]
- Saurman, V.; Margolis, K.G.; Luna, R.A. Autism Spectrum Disorder as a Brain-Gut-Microbiome Axis Disorder. Dig. Dis. Sci. 2020, 65, 818–828. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Wang, Y.P. Gut Microbiota-brain Axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska-Pietruszka, Z.; Figlerowicz, M.; Mazur-Melewska, K. Microbiota in Autism Spectrum Disorder: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 16660. [Google Scholar] [CrossRef] [PubMed]
- Alharthi, A.; Alhazmi, S.; Alburae, N.; Bahieldin, A. The Human Gut Microbiome as a Potential Factor in Autism Spectrum Disorder. Int. J. Mol. Sci. 2022, 23, 1363. [Google Scholar] [CrossRef]
- Iannone, L.F.; Preda, A.; Blottière, H.M.; Clarke, G.; Albani, D.; Belcastro, V.; Carotenuto, M.; Cattaneo, A.; Citraro, R.; Ferraris, C.; et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert. Rev. Neurother. 2019, 19, 1037–1050. [Google Scholar] [CrossRef]
- Rajasekaran, J.J.; Krishnamurthy, H.K.; Bosco, J.; Jayaraman, V.; Krishna, K.; Wang, T.; Bei, K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024, 12, 1797. [Google Scholar] [CrossRef]
- Diémé, B.; Mavel, S.; Blasco, H.; Tripi, G.; Bonnet-Brilhault, F.; Malvy, J.; Bocca, C.; Andres, C.R.; Nadal-Desbarats, L.; Emond, P. Metabolomics Study of Urine in Autism Spectrum Disorders Using a Multiplatform Analytical Methodology. J. Proteome Res. 2015, 14, 5273–5282. [Google Scholar] [CrossRef]
- Emond, P.; Mavel, S.; Aïdoud, N.; Nadal-Desbarats, L.; Montigny, F.; Bonnet-Brilhault, F.; Barthélémy, C.; Merten, M.; Sarda, P.; Laumonnier, F.; et al. GC-MS-based urine metabolic profiling of autism spectrum disorders. Anal. Bioanal. Chem. 2013, 405, 5291–5300. [Google Scholar] [CrossRef]
- Neubauer, J.; Kaiser, A.; Hohmann, S. Darmmikrobiota und Autismus-Spektrum-Störungen: Ein Überblick zu Zusammenhängen und möglichen Implikationen für therapeutische Interventionen [Gut Microbiota and Autism Spectrum Disorders: An Overview of Correlations and Potential Implications for Therapeutic Interventions]. Z. Kinder Jugendpsychiatr. Psychother. 2024, 52, 151–165. [Google Scholar] [PubMed]
- Dao, M.C.; Subar, A.F.; Warthon-Medina, M.; Cade, J.E.; Burrows, T.; Golley, R.K.; Forouhi, N.G.; Pearce, M.; Holmes, B.A. Dietary assessment toolkits: An overview. Public Health Nutr. 2018, 22, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Estimated Food Diaries. Measurement Toolkit. Available online: https://www.measurement-toolkit.org/diet/subjective-methods/estimated-food-diaries (accessed on 21 June 2025).
- Mariat, D.; Firmesse, O.; Levenez, F.; Guimarăes, V.D.; Sokol, H.; Doré, J.; Corthier, G.; Furet, J. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Sawicka-Gutaj, N.; Gruszczyński, D.; Guzik, P.; Mostowska, A.; Walkowiak, J. Publication ethics of human studies in the light of the Declaration of Helsinki—A mini-review. J. Med. Sci. 2022, 91, e700. [Google Scholar] [CrossRef]
- D’Angelo, E.; Fiori, F.; Ferraro, G.A.; Tessitore, A.; Nazzaro, L.; Serpico, R.; Contaldo, M. Autism Spectrum Disorder, Oral Implications, and Oral Microbiota. Children 2025, 12, 368. [Google Scholar] [CrossRef]
- Wang, J.; Yang, R.; Zhong, H.; Liu, Y.J. Fecal microbiota transplants in pediatric autism: Opportunities and challenges. World J. Pediatr. 2024, 20, 1201–1204. [Google Scholar] [CrossRef]
- AlHarbi, S.G.; Almushayt, A.S.; Bamashmous, S.; Abujamel, T.S.; Bamashmous, N.O. The oral microbiome of children in health and disease-a literature review. Front. Oral Health 2024, 5, 1477004. [Google Scholar] [CrossRef]
- Schult, D.; Reitmeier, S.; Koyumdzhieva, P.; Lahmer, T.; Middelhoff, M.; Erber, J.; Schneider, J.; Kager, J.; Frolova, M.; Horstmann, J.; et al. Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut Microbes 2022, 14, 2031840. [Google Scholar] [CrossRef]
- Millen, A.E.; Dahhan, R.; Freudenheim, J.L.; Hovey, K.M.; Li, L.; McSkimming, D.I.; Andrews, C.A.; Buck, M.J.; LaMonte, M.J.; Kirkwood, K.L.; et al. Dietary carbohydrate intake is associated with the subgingival plaque oral microbiome abundance and diversity in a cohort of postmenopausal women. Sci. Rep. 2022, 12, 2643. [Google Scholar] [CrossRef]
- Alfenas, R.C.G. Impact of dietary fat on gut microbiota and low-grade systemic inflammation: Mechanisms and clinical implications on obesity. Int. J. Food Sci. Nutr. 2018, 69, 125–143. [Google Scholar]
- Salia, S.; Burke, F.F.; Hinks, M.E.; Randell, A.M.; Matheson, M.A.; Walling, S.G.; Swift-Gallant, A. Gut microbiota transfer from the preclinical maternal immune activation model of autism is sufficient to induce sex-specific alterations in immune response and behavioural outcomes. Brain Behav. Immun. 2025, 123, 813–823. [Google Scholar] [CrossRef]
- Stehlikova, Z.; Tlaskal, V.; Galanova, N.; Roubalova, R.; Kreisinger, J.; Dvorak, J.; Prochazkova, P.; Kostovcikova, K.; Bartova, J.; Libanska, M.; et al. Oral Microbiota Composition and Antimicrobial Antibody Response in Patients with Recurrent Aphthous Stomatitis. Microorganisms 2019, 7, 636. [Google Scholar] [CrossRef]
- Rahman, B.; Al-Marzooq, F.; Saad, H.; Benzina, D.; Al Kawas, S. Dysbiosis of the Subgingival Microbiome and Relation to Periodontal Disease in Association with Obesity and Overweight. Nutrients 2023, 15, 826. [Google Scholar] [CrossRef] [PubMed]
- Tamana, S.K.; Tun, H.M.; Konya, T.; Chari, R.S.; Field, C.J.; Guttman, D.S.; Becker, A.B.; Moraes, T.J.; Turvey, S.E.; Subbarao, P.; et al. Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment. Gut Microbes 2021, 13, 1930875. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Gong, D.; Shi, C.; Shao, F.; Shi, J.; Fei, J. Dysbiosis of oral buccal mucosa microbiota in patients with oral lichen planus. Oral Dis. 2017, 23, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Kutsch, M.; González-Prieto, C.; Lesser, C.F.; Coers, J. The GBP1 microcapsule interferes with IcsA-dependent septin cage assembly around Shigella flexneri. Pathog. Dis. 2021, 79, ftab023. [Google Scholar] [CrossRef]
- Salem, I.; Ramser, A.; Isham, N.; Ghannoum, M.A. The Gut Microbiome as a Major Regulator of the Gut-Skin Axis. Front. Microbiol. 2018, 9, 1459. [Google Scholar] [CrossRef]
- Liye, A.; Saichao, Z.; Zhang, X.; Loktionova, M.; Gavrikov, L.K.; Glazachev, O. Influence of Inflammation, Gut Microbiota, and Stress on Cognition and Oral Health Therapies. Curr. Alzheimer’s Res. 2025, 22, 123–151. [Google Scholar] [CrossRef]
- Cirstea, M.S.; Yu, A.C.; Golz, E.; Sundvick, K.; Kliger, D.; Radisavljevic, N.; Foulger, L.H.; Mackenzie, M.; Huan, T.; Finlay, B.B.; et al. Microbiota Composition and Metabolism Are Associated with Gut Function in Parkinson’s Disease. Mov. Disord. 2020, 35, 1208–1217. [Google Scholar] [CrossRef]
- Precup, G.; Vodnar, D.C. Gut Prevotella as a possible biomarker of diet and its eubiotic versus dysbiotic roles: A comprehensive literature review. Br. J. Nutr. 2019, 122, 131–140. [Google Scholar] [CrossRef]
- Kim, J.; Jung, S.; Kim, G.; Kim, J.; Son, B.; Shin, H. Modulation of Gut Microbiota by Cacao: Insights from an In Vitro Model. Curr. Issues Mol. Biol. 2025, 47, 414. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Arango, L.F.; Barrett, H.L.; Wilkinson, S.A.; Callaway, L.K.; McIntyre, H.D.; Morrison, M. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 2018, 50, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Platts-Mills, J.A.; Juma, J.; Kabir, F.; Nkeze, J.; Okoi, C.; Operario, D.J.; Uddin, J.; Ahmed, S.; Alonso, P.L.; et al. Use of quantitative molecular diagnostic methods to identify causes of diarrhea in children: A reanalysis of the GEMS case-control study. Lancet 2018, 388, 1291–1301. [Google Scholar] [CrossRef]
- Corbett, B.A.; McGonigle, T.; Muscatello, R.A.; Liu, J.; Vandekar, S. The developmental trajectory of diurnal cortisol in autistic and neurotypical youth. Dev. Psychopathol. 2024, 36, 1570–1581. [Google Scholar] [CrossRef]
- Corbett, B.A.; Schupp, C.W.; Levine, S.; Mendoza, S. Elevated cortisol and behavioral stress in children with autism spectrum disorder: Evidence for altered hypothalamic-pituitary-adrenal function. J. Autism Dev. Disord. 2008, 38, 494–505. [Google Scholar]
- Hsiao, E.Y. Gastrointestinal issues in autism spectrum disorder. Harv. Rev. Psychiatry 2014, 22, 104–111. [Google Scholar] [CrossRef]
- Rossignol, D.A.; Frye, R.E. The gut–brain axis: Potential role in autism spectrum disorder. Clin. Ther. 2014, 36, 696–710. [Google Scholar]
Total Number of Participants | 45 |
Sex | |
Girl | 7 |
Boy | 38 |
Age | 7.9 ± 3.35 |
2–6 years | 12 |
6–14 years | 28 |
15–18 years | 5 |
Type of delivery | |
Vaginal delivery | 31 |
Cesarean section | 14 |
Gastrointestinal symptoms | |
Functional constipation | 8 |
Functional diarrhea | 9 |
Functional bloating | 7 |
Food selectivity | 16 |
Diet | |
Average daily protein intake (g/day) | 90.05 ± 31.06 |
Protein intake per kilogram of body weight (g/kg BW) | 3.81 ± 1.71 |
Average daily carbohydrate intake (g/day) | 251.02 ± 62.66 |
Percentage of energy from carbohydrates (%) | 51.41 ± 9.31 |
Proportion of simple carbohydrates in total carbohydrate intake (%) | 41.31± 7.82 |
Average daily fat intake (g/day) | 79.51 ± 31.32 |
Average fat intake per kilogram of body weight (g/kg BW) | 3.3 ± 1.7 |
Percentage of unsaturated fats in total fat intake (%) | 59.89 ± 5.30 |
Feature | Bacteria | p-Value≤ |
---|---|---|
Class | ||
Age: younger children | Alphaproteobacteria | 0.05 |
Other diagnosis | Fusobacteria | 0.05 |
Saccharimonadia | 0.05 | |
Diarrhea | Negativicutes | 0.05 |
Communication—total (average over low) | Verrucomicrobiae | 0.05 |
Communication—total (average above high) | Bacilli | 0.05 |
Receptive communication (average over high) | Actinobacteria | 0.05 |
Expressive communication (low over high) | Bacilli | 0.05 |
Expressive communication (average over high) | Actinobacteria | 0.05 |
Communication—writing skills (average over low) | Verrucomicrobiae | 0.01 |
Daily living skills—total (low over high) | Bacilli | 0.05 |
Daily living skills—personal skills (low over high) | Bacilli | 0.05 |
Daily living skills—domestic skills (low over high) | Bacilli | 0.05 |
Socialization—coping skills (low over average) | Bacilli | 0.05 |
Socialization—coping skills (low over high) | Bacilli | 0.05 |
Motor skills—total (average over high) | Coriobacteria | 0.05 |
Campylobacteria | 0.05 | |
Negativicutes | 0.01 | |
Motor skills—using large muscles (low over average) | Actinobacteria | 0.05 |
Motor skills—using large muscles (average over low) | Campylobacteria | 0.05 |
Motor skills—using large muscles (high over average) | Actinobacteria | 0.05 |
Order | ||
Age (younger over school age) | Actinomycetales | 0.05 |
Propionibacteriales | 0.05 | |
Age (teenagers over school age) | Pseudomonadales | 0.01 |
Other diagnosis | Fusobacteriales | 0.05 |
Propionibacteriales | 0.05 | |
Saccharimonadales | 0.05 | |
Low protein diet | Pseudomonadales | 0.05 |
Food selectivity | Enterobacteriales | 0.05 |
Diarrhea | Veillonellales Selenomonadales | 0.05 |
Bloating | Corynebacteriales | 0.05 |
Constipation | Corynebacteriales | 0.05 |
Communication—total (low over high) | Actinomycetales | 0.05 |
Communication—total (average over low) | Verrucomicrobiales | 0.05 |
Communication—total (average above high) | Propionibacteriales | 0.05 |
Expressive communication (low over high) | Actinomycetales | 0.05 |
Propionibacteriales | 0.05 | |
Receptive communication (low over high) | Actinomycetales | 0.05 |
Propionibacteriales | 0.05 | |
Communication—writing skills (average over low) | Verrucomicrobiales | 0.01 |
Communication—writing skills (average over high) | Oscillospirales | 0.05 |
Daily living skills—total (low over high) | Lactobacillales | 0.05 |
Daily living skills—personal skills (low over high) | Lactobacillales | 0.05 |
Propionibacteriales | 0.05 | |
Daily living skills—personal skills (average over high) | Propionibacteriales | 0.05 |
Daily living skills—domestic skills (low over high) | Lactobacillales | 0.05 |
Socialization—total (low over average + high) | Lactobacillales | 0.05 |
Socialization—interpersonal adaptive level (low over average) | Propionibacteriales | 0.05 |
Socialization—interpersonal adaptive level (low over high) | Lactobacillales | 0.05 |
Socialization—coping skills (low over average) | Lactobacillales | 0.05 |
Motor skills—total (average over high) | Bacteroidales | 0.05 |
Campylobacteriales | 0.05 | |
Coriobacteriales | 0.05 | |
Lachnospirales | 0.05 | |
Pasteurellales | 0.05 | |
Veillonellales Selenomonadales | 0.01 | |
Motor skills—using large muscles (average over high) | Campylobacteriales | 0.05 |
Motor skills—using large muscles (high over average) | Micrococcales | 0.05 |
Genus | ||
Sex: female | Faecalibacterium | 0.05 |
Age (younger over school age) | Actinomyces | 0.05 |
Microbacterium | 0.05 | |
Pseudopropionibacterium | 0.05 | |
Age (teenagers over younger) | Candidatus saccharibacteria | 0.05 |
Age (school age over teenagers) | Candidatus saccharibacteria | 0.05 |
Pseudomonas | 0.05 | |
Vaginal delivery | Butyrivibrio | 0.05 |
Prevotella | 0.05 | |
Veillonella | 0.05 | |
Other diagnosis | Holdemanella | 0.05 |
Leprotrichia | 0.01 | |
Pseudopropionibacterium | 0.01 | |
Low protein diet | Finapoldia | 0.05 |
Tannerella | 0.05 | |
Food selectivity | Alloprevotella | 0.05 |
Family XII AD3011 | 0.05 | |
Peptoclostridium | 0.05 | |
No FGIDs | Bacteroides | 0.05 |
FGIDs | Selenomonas | 0.05 |
No diarrhea | Actinobacillus | 0.05 |
Diarrhea | Megasphaera | 0.05 |
Prevotella | 0.05 | |
Selenomonas | 0.01 | |
Veillonella | 0.05 | |
Bloating | Bergeyella | 0.05 |
Corynebacterium | 0.05 | |
Constipation | Bergeyella | 0.05 |
Corynebacterium | 0.05 | |
Eikenella | 0.05 | |
Actinomyces F0332 | 0.05 | |
Expressive communication (high over average) | Haemophilus | 0.05 |
Peptococcus | 0.05 | |
Steptobacillus | 0.05 | |
Fusobacterium | 0.05 | |
Communication—total (low over high) | Tannerella | 0.05 |
Communication—total (average over low) | Akkermansia | 0.05 |
Eggerthella | 0.05 | |
Granullicatella | 0.05 | |
Communication—total (average above high) | Pseudopropionibacterium | 0.05 |
Communication—total (high over average) | Catonella | 0.05 |
Oribacterium | 0.05 | |
Receptive communication (low over high) | Actinomyces | 0.05 |
Pseudopropionibacterium | 0.05 | |
Tannerella | 0.05 | |
Receptive communication (average over low) | Alloscardovia | 0.05 |
Receptive communication (high over average) | Haemophilus | 0.05 |
Saccharimonadaceae | 0.05 | |
Expressive communication (low over average) | Peptostreptococcus | 0.05 |
Saccharimonadaceae | 0.05 | |
Tannerella | 0.05 | |
Fusobacterium | 0.05 | |
Expressive communication (low over high) | Pseudopropionibacterium | 0.05 |
Selemonas | 0.05 | |
Tannerella | 0.05 | |
Expressive communication (average over high) | Kingella | 0.05 |
Selenomonas | 0.05 | |
Communication—writing skills (low over high) | Lautropia | 0.05 |
Communication—writing skills (average over low) | Akkermansia | 0.01 |
Bacteroides | 0.05 | |
Eggerthella | 0.01 | |
Communication—writing skills (average over high) | Bacteroides | 0.05 |
Daily living skill total (low over average) | Tannerella | 0.05 |
Daily living skill total (average over high) | Abiotrophia | 0.05 |
Daily living skills—personal skills (low over average) | Tannerella | 0.05 |
Daily living skills—personal skills (low over high) | Pseudopropionibacterium | 0.05 |
Tannerella | 0.05 | |
Daily living skills—personal skills (average over high) | Abiotrophia | 0.05 |
Pseudopropionibacterium | 0.05 | |
Daily living skills—domestic skills (low over high) | Lautropia | 0.05 |
Daily living skills—domestic skills (high over low) | Peptoniphilus | 0.05 |
Daily living skills—domestic skills (high over average) | Mogibacterium | 0.05 |
Daily living skills—community skills (low over high) | Tannerella | 0.05 |
Socialization—total (low over average) | Streptococcus | 0.05 |
Socialization—interpersonal skills (high over average) | Johnsonella | 0.05 |
Staphylococcus | 0.05 | |
Socialization—coping skills (high over low) | Simonsiella | 0.01 |
uncultured | 0.05 | |
Motor skills—total (low over high) | Alloprevotella | 0.05 |
Eubacterium brachy | 0.05 | |
Dialister | 0.05 | |
Family XIII AD3011 | 0.05 | |
Fusicatenibacter | 0.05 | |
Slackia | 0.05 | |
Tannerella | 0.05 | |
Motor skills—total (average over low) | Megasphaera | 0.05 |
Motor skills—total (average over high) | Alloprevotella | 0.05 |
Atopobium | 0.05 | |
Butyrivibrio | 0.05 | |
Campylobacter | 0.05 | |
Dialister | 0.05 | |
Haemophilus | 0.05 | |
Megasphaera | 0.01 | |
Prevotella | 0.01 | |
Selenomonales | 0.05 | |
Veillonella | 0.01 | |
Motor skills—using large muscles (low over high) | Family XIII AD3011 group | 0.05 |
Holdemanella | 0.01 | |
Motor skills—using large muscles (average over high) | Bergeyella | 0.05 |
Campylobacter | 0.05 | |
Megasphaera | 0.05 | |
Motor skills—using large muscles (high over average) | Rothia | 0.05 |
Motor skills—using small muscles (low over high) | Tannerella | 0.05 |
Species | ||
Sex: female | Lactobacillus salivarius | 0.01 |
Steptococcus sobrinus | 0.05 | |
Age (teenagers over school age) | Capnocytophaga ochacea | 0.01 |
Corynebacterium strictum | 0.05 | |
Delivery: Cesarean section | Fusobacterium kwasookii | 0.05 |
Food selectivity | Lactobacillus fermentum | 0.05 |
No FGIDs | Bifidobacterium longum | 0.05 |
Diarrhea | Lactobacillus fermentum | 0.05 |
Streptococcus anginosus | 0.05 | |
Communication—total (average over low) | Lactobacillus reuteri | 0.05 |
Daily living skill total (high over low) | Bifidobacterium dentium | 0.05 |
Daily living skills—community skills (high over low) | Bifidobacterium dentium | 0.05 |
Socialization—total (low over high) | Bifidobacterium dentium | 0.001 |
Socialization—total (average over low) | Bifidobacterium dentium | 0.05 |
Fusobacterium hwasookii | 0.05 | |
Socialization—interpersonal (average over high) | Bifidobacterium dentium | 0.05 |
Socialization—interpersonal (high over low) | Bifidobacterium dentium | 0.05 |
Socialization—coping skills (high over low) | Simonsiella muelleri | 0.01 |
Socialization—play and leisure (average over low) | Bifidobacterium dentium | 0.05 |
Fusobacterium hwasookii | 0.05 | |
Socialization—play and leisure (high over low) | Bifidobacterium dentium | 0.01 |
Feature | Bacteria | Correlation (r) |
---|---|---|
Genus | ||
Age | Eubacterium brachy group | 0.62 |
Weight | Eubacterium brachy group | 0.53 |
Fat saturated (mean)/fat total (mean) | Alloscardoria | 0.69 |
Butyryvibrio | 0.57 | |
Mobilincus | 0.81 | |
Liquids (mean) | Eubacterium yurii | 0.55 |
Using large muscles (v-score) | Eubacterium brachy group | −0.59 |
Daily living skills—domestic (v-score) | morning cortisol | 0.58 |
Tannerella | −0.56 | |
Daily living skills—personal (v-score) | Tannerella | −0.53 |
Species | ||
Fat saturated (mean)/fat total (mean) | Bifidobacterium dentium | 0.54 |
Mobilincus curtisii | 0.81 | |
kcal from carbohydrates/total carbohydrates (mean) | Streptococcus mutans | −0.53 |
Complex carbohydrates (mean) | Streptococcus mutans | −0.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewandowska-Pietruszka, Z.; Figlerowicz, M.; Mazur-Melewska, K. Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder. Microorganisms 2025, 13, 1822. https://doi.org/10.3390/microorganisms13081822
Lewandowska-Pietruszka Z, Figlerowicz M, Mazur-Melewska K. Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder. Microorganisms. 2025; 13(8):1822. https://doi.org/10.3390/microorganisms13081822
Chicago/Turabian StyleLewandowska-Pietruszka, Zuzanna, Magdalena Figlerowicz, and Katarzyna Mazur-Melewska. 2025. "Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder" Microorganisms 13, no. 8: 1822. https://doi.org/10.3390/microorganisms13081822
APA StyleLewandowska-Pietruszka, Z., Figlerowicz, M., & Mazur-Melewska, K. (2025). Oral Microbiota Composition and Its Association with Gastrointestinal and Developmental Abnormalities in Children with Autism Spectrum Disorder. Microorganisms, 13(8), 1822. https://doi.org/10.3390/microorganisms13081822