Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. SARS-CoV-2 RNA Detection
2.3. Anti-SARS-CoV-2 Total Antibody Detection
2.4. Viral Genomic Next-Generation Sequencing and Bioinformatics
3. Results
3.1. Prevalence of Positive SARS-CoV-2 mRT-PCR and Anti-SARS-CoV-2 Antibody Test Results
3.2. Prevalence, Phylogeny, and Domain Localization of SARS-CoV-2 Mutations in the B.1.1.7 (Alpha) Lineage
3.3. Genomic Diversity of the nsp3 Gene in the B.1.1.7 (Alpha) Lineage
3.4. Other Rare and Noteworthy Mutations Among Isolates from the B.1.1.7 (Alpha) Lineage
3.5. Prevalence, Phylogeny, and Domain Localization of SARS-CoV-2 Mutations in the B.1.526 (Iota) Lineage
3.6. Prevalence, Phylogeny, and Domain Localization of SARS-CoV-2 Mutations in a Single Isolate from the B.1.623 Lineage
3.7. Mutation Analysis and Community Transmission of Omicron
- Household A: Two individuals (nyo-mi029 and nyo-mi275), residing in the same apartment complex in ZIP code 10024, tested positive within six days of each other.
- Workplace A: Two cases (nyo-mi105 and nyo-mi231) from ZIP code 10001 were epidemiologically linked to the same business location, suggesting occupational exposure as the likely transmission route.
- Household B: Two additional cases (nyo-mi333 and nyo-mi342) from ZIP code 10024 also shared a residential address and tested positive on the same day, further supporting the occurrence of intra-household transmission.
ID | Collection Date | Clade | Zip Code | Epidemiologic Features | |
---|---|---|---|---|---|
1 | nyomi029 | 12 March 2021 | A | 10024 | Household A |
2 | nyomi275 | 12 September 2021 | A | 10024 | Household A |
3 | nyomi105 | 12 August 2021 | B | 10001 | Workplace A |
4 | nyomi231 | 12 September 2021 | B | 10001 | Workplace A |
5 | nyomi333 | 12 October 2021 | D | 10024 | Household B |
6 | nyomi342 | 12 October 2021 | D | 10024 | Household B |
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
COVID-19 | Coronavirus disease of 2019 |
NSP | Non-structural protein |
N | Nucleocapsid protein |
E | Envelope protein |
M | Membrane protein |
S | Spike glycoprotein |
mRT-PCR | Multiplex reverse transcription polymerase chain reaction |
WGA | Whole-genome amplification |
NGS | Next-generation sequencing |
Ct | Cycle threshold |
GISAID | Global Initiative on Sharing All Influenza Data |
TM | Transmembrane |
ORF | Open reading frame |
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int (accessed on 16 February 2025).
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell Host Microbe 2020, 27, 325–328. [Google Scholar] [CrossRef]
- Liu, D.; Rodriguez, G.D.; Zhou, H.Y.; Cheng, Y.X.; Li, X.; Tang, W.; Prasad, N.; Chen, C.-C.; Singh, V.; Konadu, E.; et al. SARS-CoV-2 Continuous Genetic Divergence and Changes in Multiplex RT-PCR Detection Pattern on Positive Retesting Median 150 Days after Initial Infection. Int. J. Mol. Sci. 2022, 23, 6254. [Google Scholar] [CrossRef] [PubMed]
- China National Center for Bioinformation. Available online: https://ngdc.cncb.ac.cn/ncov/variation/statistics (accessed on 29 April 2022).
- Khateeb, D.; Gabrieli, T.; Sofer, B.; Hattar, A.; Cordela, S.; Chaouat, A.; Spivak, I.; Lejbkowicz, I.; Almog, R.; Mandelboim, M.; et al. SARS-CoV-2 variants with reduced infectivity and varied sensitivity to the BNT162b2 vaccine are developed during the course of infection. PLoS Pathog. 2022, 18, e1010242. [Google Scholar] [CrossRef] [PubMed]
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.B.; Russell, T.W.; Tully, D.C.; Washburne, A.D.; et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science 2021, 372, eabg3055. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Rahman, S.A.; Ehtesham, N.Z.; Hira, S.; Hasnain, S.E. SARS-CoV-2 variants of concern are emerging in India. Nat. Med. 2021, 27, 1131–1133. [Google Scholar] [CrossRef]
- Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; et al. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature 2022, 603, 679–686. [Google Scholar] [CrossRef]
- Liu, D.; Cheng, Y.; Zhou, H.; Wang, L.; Fiel, R.H.; Gruenstein, Y.; Luo, J.J.; Singh, V.; Konadu, E.; James, K.; et al. Early Introduction and Community Transmission of SARS-CoV-2 Omicron Variant, New York, New York, USA. Emerg. Infect. Dis. 2023, 29, 371–380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taffertshofer, K.; Walter, M.; Mackeben, P.; Kraemer, J.; Potapov, S.; Jochum, S. Design and performance characteristics of the Elecsys anti-SARS-CoV-2 S assay. Front. Immunol. 2022, 13, 1002576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aksamentov, I.; Roemer, C.; Hodcroft, E.B.; Neher, R.A. Nextclade: Clade assignment, mutation calling and quality control for viral genomes. J. Open Source Softw. 2021, 6, 3773. [Google Scholar] [CrossRef]
- Elbe, S.; Buckland-Merrett, G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 2017, 1, 33–46. [Google Scholar] [CrossRef]
- Khare, S.; Gurry, C.; Freitas, L.; Schultz, M.B.; Bach, G.; Diallo, A.; Akite, N.; Ho, J.; Lee, R.T.; Yeo, W.; et al. GISAID’s Role in Pandemic Response. China CDC Wkly. 2021, 3, 1049–1051. [Google Scholar] [CrossRef]
- Shu, Y.; McCauley, J. GISAID: Global initiative on sharing all influenza data-from vision to reality. Euro Surveill 2017, 22, 30494. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Feng, S.; O’Brien, A.; Chen, D.Y.; Saeed, M.; Baker, S.C. SARS-CoV-2 nonstructural protein 6 from Alpha to Omicron: Evolution of a transmembrane protein. mBio 2023, 14, e0068823. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Peterson, S.W.; Lidder, R.; Daigle, J.; Wonitowy, Q.; Dueck, C.; Nagasawa, A.; Mulvey, M.R.; Mangat, C.S. RT-qPCR detection of SARS-CoV-2 mutations S 69-70 del, S N501Y and N D3L associated with variants of concern in Canadian wastewater samples. Sci. Total Environ. 2022, 810, 151283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Srivastava, Y.; Muthuramalingam, P.; Singh, S.K.; Verma, G.; Tiwari, S.; Tandel, N.; Beura, S.K.; Panigrahi, A.R.; Maji, S.; et al. Understanding Mutations in Human SARS-CoV-2 Spike Glycoprotein: A Systematic Review & Meta-Analysis. Viruses 2023, 15, 856. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ricciardi, S.; Guarino, A.M.; Giaquinto, L.; Polishchuk, E.V.; Santoro, M.; Di Tullio, G.; Wilson, C.; Panariello, F.; Soares, V.C.; Dias, S.S.G.; et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature 2022, 606, 761–768. [Google Scholar] [CrossRef]
- Adedeji, A.O.; Marchand, B.; Velthuis AJWte Snijder, E.J.; Weiss, S.; Eoff, R.L.; Singh, K.; Sarafianos, S.G.; Darlix, J.-L.E. Mechanism of Nucleic Acid Unwinding by SARS-CoV Helicase. PLoS ONE 2012, 7, e36521. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020, 368, 779–782. [Google Scholar] [CrossRef]
- Snijder, E.J.; Decroly, E.; Ziebuhr, J. Chapter Three-The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. In Advances in Virus Research; Ziebuhr, J., Ed.; Coronaviruses; Academic Press: Cambridge, MA, USA, 2016; Volume 96, pp. 59–126. Available online: https://www.sciencedirect.com/science/article/pii/S0065352716300471 (accessed on 20 November 2023).
- Yan, L.; Ge, J.; Zheng, L.; Zhang, Y.; Gao, Y.; Wang, T.; Huang, Y.; Yang, Y.; Gao, S.; Li, M.; et al. Cryo-EM Structure of an Extended SARS-CoV-2 Replication and Transcription Complex Reveals an Intermediate State in Cap Synthesis. Cell 2021, 184, 184–193.e10. [Google Scholar] [CrossRef]
- Xu, Z.; Choi, J.H.; Dai, D.L.; Luo, J.; Ladak, R.J.; Li, Q.; Wang, Y.; Zhang, C.; Wiebe, S.; Liu, A.C.H.; et al. SARS-CoV-2 impairs interferon production via NSP2-induced repression of mRNA translation. Proc. Natl. Acad. Sci. USA 2022, 119, e2204539119. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, Y.; Wu, W.; Chen, Z. Structure and Function of N-Terminal Zinc Finger Domain of SARS-CoV-2 NSP2. Virol. Sin. 2021, 36, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Sha, Z.; Trimpert, J.; Kunec, D.; Jiang, C.; Xiong, Y.; Xu, B.; Zhu, Z.; Xue, W.; Wu, H. The NSP4 T492I mutation increases SARS-CoV-2 infectivity by altering non-structural protein cleavage. Cell Host Microbe 2023, 31, 1170–1184.e7. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Peng, L.; Park, J.J.; Hu, Y.; Devarkar, S.C.; Dong, M.B.; Shen, Q.; Wu, S.; Chen, S.; Lomakin, I.B.; et al. Nonstructural Protein 1 of SARS-CoV-2 Is a Potent Pathogenicity Factor Redirecting Host Protein Synthesis Machinery toward Viral RNA. Mol. Cell 2020, 80, 1055–1066.e6. [Google Scholar] [CrossRef]
- Wu, W.; Cheng, Y.; Zhou, H.; Sun, C.; Zhang, S. The SARS-CoV-2 nucleocapsid protein: Its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol. J. 2023, 20, 6. [Google Scholar] [CrossRef]
- Martin-Sancho, L.; Lewinski, M.K.; Pache, L.; Stoneham, C.A.; Yin, X.; Becker, M.E.; Pratt, D.; Churas, C.; Rosenthal, S.B.; Liu, S.; et al. Functional landscape of SARS-CoV-2 cellular restriction. Mol. Cell 2021, 81, 2656–2668.e8. [Google Scholar] [CrossRef]
- Arshad, N.; Laurent-Rolle, M.; Ahmed, W.S.; Hsu, J.C.C.; Mitchell, S.M.; Pawlak, J.; Sengupta, D.; Biswas, K.H.; Cresswell, P. SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression. Proc. Natl. Acad. Sci. USA 2023, 120, e2208525120. [Google Scholar] [CrossRef]
- Dolan, K.A.; Dutta, M.; Kern, D.M.; Kotecha, A.; Voth, G.A.; Brohawn, S.G. Structure of SARS-CoV-2 M protein in lipid nanodiscs. eLife 2022, 11, e81702. [Google Scholar] [CrossRef]
- Martínez-González, B.; Soria, M.E.; Vázquez-Sirvent, L.; Ferrer-Orta, C.; Lobo-Vega, R.; Mínguez, P.; de la Fuente, L.; Llorens, C.; Soriano, B.; Ramos, R.; et al. SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiol. Spectr. 2022, 10, e0022122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lei, J.; Kusov, Y.; Hilgenfeld, R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antivir. Res. 2018, 149, 58–74. [Google Scholar] [CrossRef]
- Fehr, A.R.; Channappanavar, R.; Jankevicius, G.; Fett, C.; Zhao, J.; Athmer, J.; Meyerholz, D.K.; Ahel, I.; Perlman, S. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection. mBio 2016, 7, e01721-16. [Google Scholar] [CrossRef]
- Gong, Y.N.; Kuo, N.Y.; Yeh, T.S.; Shih, S.R.; Chen, G.W. Genomic Surveillance of SARS-CoV-2 in Taiwan: A Perspective on Evolutionary Data Interpretation and Sequencing Issues. Biomed. J. 2024, 48, 100820. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, T.B.; Saha, A.; Hossan, M.I.; Mizan, S.; Arman, S.M.A.S.; Chowdhury, A.S. A next generation sequencing (NGS) analysis to reveal genomic and proteomic mutation landscapes of SARS-CoV-2 in South Asia. Curr. Res. Microb. Sci. 2021, 2, 100065. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Pietz, H.; Rodriguez, G.D.; Wu, Y.; Cao, Y.; Singh, V.; Li, H.; Konadu, E.; James, K.K.; Lui, C.; et al. Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS. Microorganisms 2025, 13, 1821. https://doi.org/10.3390/microorganisms13081821
Liu D, Pietz H, Rodriguez GD, Wu Y, Cao Y, Singh V, Li H, Konadu E, James KK, Lui C, et al. Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS. Microorganisms. 2025; 13(8):1821. https://doi.org/10.3390/microorganisms13081821
Chicago/Turabian StyleLiu, Dakai, Harlan Pietz, George D. Rodriguez, Yuexiu Wu, Yihan Cao, Vishnu Singh, Hui Li, Eric Konadu, Keither K. James, Calvin Lui, and et al. 2025. "Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS" Microorganisms 13, no. 8: 1821. https://doi.org/10.3390/microorganisms13081821
APA StyleLiu, D., Pietz, H., Rodriguez, G. D., Wu, Y., Cao, Y., Singh, V., Li, H., Konadu, E., James, K. K., Lui, C., Varghese, B., Shao, M., Chen, G., Schreiner, A., Tong, J., Urban, C., Prasad, N., Hassoun, A., Sharma, M., & Rodgers, W. H. (2025). Assessing SARS-CoV-2 Rare Mutations and Transmission in New York City by NGS. Microorganisms, 13(8), 1821. https://doi.org/10.3390/microorganisms13081821