Emergence of Cryptosporidium parvum IIc Subtype and Giardia duodenalis Assemblage E in AIDS Patients in Central China: Evidence for Neglected Transmission Dynamics
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Specimens and Information
2.2. Genomic DNA Extraction
2.3. Nested PCR
2.4. Indirect Immunofluorescence Microscopy Assay
2.5. Sequencing and Nucleotide Sequence Analysis
2.6. Statistical Analysis
3. Results
3.1. Demographic Information
3.2. Occurrence of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi
3.3. Characterization of Subtypes of Cryptosporidium spp. and Assemblages of Giardia duodenalis
3.4. Statistical Analyses of Cryptosporidium spp. and Giardia duodenalis Infection Risks
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AIDS | Acquired immunodeficiency syndrome |
Accession no. | Accession number |
bg | β-gardin |
BSA | Bovine serum albumin |
CD4+ | Cluster of differentiation 4 positive |
gp60 | 60-kDa glycoprotein gene |
gdh | Glutamate dehydrogenase |
HIV | Human immunodeficiency virus |
ITS | Internal transcribed spacer |
PBS | Phosphate buffered saline |
PCR | Polymerase chain reaction |
PLHIV | People living with human immunodeficiency virus |
SSU rRNA | Small subunit ribosomal RNA |
tpi | Triosephosphate isomerase |
References
- Beyrer, C.; Das, P.; Horton, R.; Ryan, O.; Bekker, L.G. The international AIDS society-Lancet commission on the future of the HIV response and global health. Lancet 2017, 390, 344–345. [Google Scholar] [CrossRef] [PubMed]
- AIDSinfo | UNAIDS. Available online: https://aidsinfo.unaids.org/ (accessed on 30 May 2025).
- El-Atrouni, W.; Berbari, E.; Temesgen, Z. HIV-associated opportunistic infections. J. Med. Liban. 2006, 54, 80–83. [Google Scholar] [PubMed]
- Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis. 2017, 17, e334–e343. [Google Scholar] [CrossRef] [PubMed]
- Lichtner, M.; Cicconi, P.; Vita, S.; Cozzi-Lepri, A.; Galli, M.; Caputo, S.L.; Saracino, A.; De Luca, A.; Moioli, M.; Maggiolo, F.; et al. Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J. Infect. Dis. 2015, 211, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Temesgen, Z. Opportunistic infections in patients with HIV and AIDS. Fungal and parasitic infections. J. Med. Liban. 2006, 54, 84–90. [Google Scholar] [PubMed]
- Bekker, L.G.; Beyrer, C.; Mgodi, N.; Lewin, S.R.; Delany-Moretlwe, S.; Taiwo, B.; Masters, M.C.; Lazarus, J.V. HIV infection. Nat. Rev. Dis. Prim. 2023, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Adam, R.D. Giardia duodenalis: Biology and pathogenesis. Clin. Microbiol. Rev. 2021, 34, e00024-19. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.; Zahedi, A.; Feng, Y.; Xiao, L. An update on zoonotic Cryptosporidium species and genotypes in humans. Animals 2021, 11, 3307. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Gong, B.; Liu, X.; Wu, Y.; Yang, F.; Xu, J.; Zhang, X.; Cao, J.; Liu, A. First identification and genotyping of Enterocytozoon bieneusi in humans in Myanmar. BMC Microbiol. 2020, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Xu, X.; He, Q.; Li, L.; Guo, J.; Bao, J.; Pan, G.; Li, T.; Zhou, Z. The largest meta-analysis on the global prevalence of Microsporidia in mammals, avian and water provides insights into the epidemic features of these ubiquitous pathogens. Parasit. Vectors 2021, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.M.; Feng, Y.; Fayer, R.; Xiao, L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia–a 50 year perspective (1971–2021). Int. J. Parasitol. 2021, 51, 1099–1119. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Feng, Y.; Xiao, L. Enterocytozoon bieneusi. Trends Parasitol. 2022, 38, 95–96. [Google Scholar] [CrossRef] [PubMed]
- Stark, D.; Barratt, J.L.N.; van Hal, S.; Marriott, D.; Harkness, J.; Ellis, J.T. Clinical significance of enteric protozoa in the immunosuppressed human population. Clin. Microbiol. Rev. 2009, 22, 634–650. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Marriott, D.; Field, A.; Vasak, E.; Cooper, D.A. Treatment of HIV-1-associated microsporidiosis and cryptosporidiosis with combination antiretroviral therapy. Lancet 1998, 351, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Amadi, B.; Mwiya, M.; Sianongo, S.; Payne, L.; Watuka, A.; Katubulushi, M.; Kelly, P. High dose prolonged treatment with nitazoxanide is not effective for cryptosporidiosis in HIV positive Zambian children: A randomised controlled trial. BMC Infect. Dis. 2009, 9, 195. [Google Scholar] [CrossRef] [PubMed]
- Nourrisson, C.; Lavergne, R.A.; Moniot, M.; Morio, F.; Poirier, P. Enterocytozoon bieneusi, a human pathogen. Emerg. Microbes Infect. 2024, 13, 2406276. [Google Scholar] [CrossRef] [PubMed]
- Bourque, D.L.; Neumayr, A.; Libman, M.; Chen, L.H. Treatment strategies for nitroimidazole-refractory giardiasis: A systematic review. J. Travel Med. 2022, 29, taab120. [Google Scholar] [CrossRef] [PubMed]
- Savioli, L.; Smith, H.; Thompson, A. Giardia and Cryptosporidium join the ‘neglected diseases initiative’. Trends Parasitol. 2006, 22, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, J.; Jin, X.; Wang, J.; Huang, J.; Zhang, H.; Chen, L.; Deng, K.; Cai, W.; Li, L.; et al. Grand challenges on HIV/AIDS in China—The 5th symposium, Yunnan 2024. Emerg. Microbes Infect. 2025, 14, 2492208. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, H.; Zhao, X.; Zhang, L.; Zhang, G.; Guo, M.; Liu, L.; Feng, Y.; Xiao, L. Zoonotic Cryptosporidium species and Enterocytozoon bieneusi genotypes in HIV-positive patients on antiretroviral therapy. J. Clin. Microbiol. 2013, 51, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xu, N.; Shen, Y.; Hu, Y.; Cao, J. Infection and genotype of Giardia lamblia among HIV/AIDS patients in Guangxi. Chin. J. Parasitol. Parasit. Dis. 2019, 37, 321–325. (In Chinese) [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, L.; Yuan, Z.; Liu, A.; Cao, J.; Shen, Y. Molecular identification and genetic characteristics of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in human immunodeficiency virus/acquired immunodeficiency syndrome patients in Shanghai, China. Parasit. Vectors 2023, 16, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yao, L.; Zhuang, M.; Lin, Y.L.; Chen, X.H.; Wang, L.; Song, B.; Zhao, Y.-S.; Xiao, Y.; Zhang, F.M.; et al. A baseline epidemiological study of the co-infection of enteric protozoans with human immunodeficiency virus among men who have sex with men from Northeast China. PLoS Negl. Trop. Dis. 2022, 16, e0010712. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Lu, L.; Yu, Y.; Li, L.; Wang, W.; Fan, G.; Feng, C.; Deng, Y.; Peng, G. Prevalence and genetic characteristics of Cryptosporidium infections among HIV-positive individuals in Jiangxi Province. Chin. J. Schistosomiasis Control 2024, 36, 637–642. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L. Research on the correlation of transportation and economic development in Wuhan. Appl. Mech. Mater. 2014, 505–506, 745–749. [Google Scholar] [CrossRef]
- Jia, J.S.; Lu, X.; Yuan, Y.; Xu, G.; Jia, J.; Christakis, N.A. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 2020, 382, 1199–1207. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xiao, L.; Wang, L.; Zhao, S.; Zhao, X.; Duan, L.; Guo, M.; Liu, L.; Feng, Y. Molecular surveillance of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi by genotyping and subtyping parasites in wastewater. PLoS Negl. Trop. Dis. 2012, 6, e1809. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Fan, Y.; Koehler, A.V.; Ma, G.; Li, T.; Hu, M.; Gasser, R.B. First survey of Cryptosporidium, Giardia and Enterocytozoon in diarrhoeic children from Wuhan, China. Infect. Genet. Evol. 2017, 51, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, T.; Koehler, A.V.; Hu, M.; Gasser, R.B. Molecular investigation of Cryptosporidium and Giardia in pre- and post-weaned calves in Hubei Province, China. Parasit. Vectors 2017, 10, 519. [Google Scholar] [CrossRef] [PubMed]
- Liao, C.; Wang, T.; Koehler, A.V.; Fan, Y.; Hu, M.; Gasser, R.B. Molecular investigation of Cryptosporidium in farmed chickens in Hubei Province, China, identifies ‘zoonotic’ subtypes of C. meleagridis Parasit. Vectors 2018, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Deng, H.; Zheng, Y.; Zhang, H.; Wang, S.; He, L.; Zhao, J. First characterization and zoonotic potential of Cryptosporidium spp. and Giardia duodenalis in pigs in Hubei Province of China. Front. Cell. Infect. Microbiol. 2022, 12, 949773. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Morgan, U.M.; Limor, J.; Escalante, A.; Arrowood, M.; Shulaw, W.; Thompson, R.C.A.; Fayer, R.; Lal, A.A. Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl. Environ. Microbiol. 1999, 65, 3386–3391. [Google Scholar] [CrossRef] [PubMed]
- Stensvold, C.R.; Beser, J.; Axén, C.; Lebbad, M. High applicability of a novel method for gp60-based subtyping of Cryptosporidium meleagridis. J. Clin. Microbiol. 2014, 52, 2311–2319. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, N.; Duan, L.; Xiao, L. Cryptosporidium genotype and subtype distribution in raw wastewater in Shanghai, China: Evidence for possible unique Cryptosporidium hominis transmission. J. Clin. Microbiol. 2009, 47, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, I.M.; Fayer, R.; Bern, C.; Gilman, R.H.; Trout, J.M.; Schantz, P.M.; Das, P.; Lal, A.A.; Xiao, L. Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerg. Infect. Dis. 2003, 9, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Cacciò, S.M.; de Giacomo, M.; Pozio, E. Sequence Analysis of the beta-giardin gene and development of a polymerase chain reaction-restriction fragment length polymorphism assay to genotype Giardia duodenalis cysts from human faecal samples. Int. J. Parasitol. 2002, 32, 1023–1030. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, I.M.; Fayer, R.; Lal, A.A.; Trout, J.M.; Schaefer, F.W.; Xiao, L. Molecular characterization of Microsporidia indicates that wild mammals harbor host-adapted Enterocytozoon spp. as well as human-pathogenic Enterocytozoon bieneusi. Appl. Environ. Microbiol. 2003, 69, 4495–4501. [Google Scholar] [CrossRef] [PubMed]
- Foronda, P.; Bargues, M.D.; Abreu-Acosta, N.; Periago, M.V.; Valero, M.A.; Valladares, B.; Mas-Coma, S. Identification of genotypes of Giardia intestinalis of human isolates in Egypt. Parasitol. Res. 2008, 103, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Brožová, K.; Jirků, M.; Lhotská, Z.; Květoňová, D.; Kadlecová, O.; Stensvold, C.R.; Samaš, P.; Petrželková, K.J.; Jirků, K. The opportunistic protist, Giardia intestinalis, occurs in gut-healthy humans in a high-income country. Emerg. Microbes Infect. 2023, 12, 2270077. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Shi, Y.; Liu, Y.; Zhou, Y.; Du, J.; Hu, X.; Li, W.; Li, J.; Gao, Y.; Li, G. Coinfection of hepatitis B, tuberculosis, and HIV/AIDS in Beijing from 2016 to 2023: A surveillance data analysis. BMC Infect. Dis. 2025, 25, 584. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Ryan, U.M.; Xiao, L. Genetic diversity and population structure of Cryptosporidium. Trends Parasitol. 2018, 34, 997–1011. [Google Scholar] [CrossRef] [PubMed]
- Nader, J.L.; Mathers, T.C.; Ward, B.J.; Pachebat, J.A.; Swain, M.T.; Robinson, G.; Chalmers, R.M.; Hunter, P.R.; Van Oosterhout, C.; Tyler, K.M. Evolutionary genomics of anthroponosis in Cryptosporidium. Nat. Microbiol. 2019, 4, 826–836. [Google Scholar] [CrossRef] [PubMed]
- King, P.; Tyler, K.M.; Hunter, P.R. Anthroponotic transmission of Cryptosporidium parvum predominates in countries with poorer sanitation: A systematic review and meta-analysis. Parasit. Vectors 2019, 12, 16. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, Y.; Xiao, L.; Feng, Y. Molecular Epidemiology of human cryptosporidiosis in low-and middle-income countries. Clin. Microbiol. Rev. 2021, 34, e00087-19. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Ryan, U.; Feng, Y.; Xiao, L. Emergence of zoonotic Cryptosporidium parvum in China. Trends Parasitol. 2022, 38, 335–343. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; McInnes, L.; Ryan, U. Cryptosporidium GP60 genotypes from humans and domesticated animals in Australia, North America and Europe. Exp. Parasitol. 2008, 118, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Waldron, L.S.; Ferrari, B.C.; Power, M.L. Glycoprotein 60 diversity in C. hominis and C. parvum causing human cryptosporidiosis in NSW, Australia. Exp. Parasitol. 2009, 122, 124–127. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.S.Y.; Pingault, N.; Gibbs, R.; Koehler, A.; Ryan, U. Molecular characterisation of Cryptosporidium outbreaks in western and south Australia. Exp. Parasitol. 2010, 125, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, R.M.; Hadfield, S.J.; Jackson, C.J.; Elwin, K.; Xiao, L.; Hunter, P. Geographic linkage and variation in Cryptosporidium hominis. Emerg. Infect. Dis. 2008, 14, 496–498. [Google Scholar] [CrossRef] [PubMed]
- Fill, M.M.A.; Lloyd, J.; Chakraverty, T.; Sweat, D.; Manners, J.; Garman, K.; Hlavsa, M.C.; Roellig, D.M.; Dunn, J.R.; Schaffner, W.; et al. Cryptosporidiosis outbreak associated with a single hotel. J. Environ. Health 2017, 79, 16–22. [Google Scholar] [PubMed]
- Huang, W.; Guo, Y.; Lysen, C.; Wang, Y.; Tang, K.; Seabolt, M.H.; Yang, F.; Cebelinski, E.; Gonzalez-Moreno, O.; Hou, T.; et al. Multiple introductions and recombination events underlie the emergence of a hyper-transmissible Cryptosporidium hominis subtype in the USA. Cell Host Microbe 2023, 31, 112–123.e4. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wei, Z.; Zhang, Y.; Zhang, Q.; Zhang, L.; Yu, F.; Qi, M.; Zhao, W. Molecular detection and genetic characterization of Cryptosporidium in kindergarten children in Southern Xinjiang, China. Infect. Genet. Evol. 2022, 103, 105339. [Google Scholar] [CrossRef] [PubMed]
- Robinson, G.; Chalmers, R.M.; Elwin, K.; Guy, R.A.; Bessonov, K.; Troell, K.; Xiao, L. Deciphering a cryptic minefield: A guide to Cryptosporidium gp60 subtyping. Curr. Res. Parasitol. Vector-Borne Dis. 2025, 7, 100257. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Xiao, L.; Ma, J.; Guo, M.; Liu, L.; Feng, Y. Anthroponotic enteric parasites in monkeys in public park, China. Emerg. Infect. Dis. 2012, 18, 1640–1643. [Google Scholar] [CrossRef] [PubMed]
- Du, S.Z.; Zhao, G.H.; Shao, J.F.; Fang, Y.Q.; Tian, G.R.; Zhang, L.X.; Wang, R.J.; Wang, H.Y.; Qi, M.; Yu, S.K. Cryptosporidium spp., Giardia intestinalis, and Enterocytozoon bieneusi in captive non-human primates in Qinling Mountains. Korean J. Parasitol. 2015, 53, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Xi, J.; Li, J.; Wang, H.; Ning, C.; Zhang, L. Prevalence of zoonotic Giardia duodenalis assemblage B and first identification of assemblage E in rabbit fecal samples isolates from Central China. J. Eukaryot. Microbiol. 2015, 62, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiao, L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin. Microbiol. Rev. 2011, 24, 110–140. [Google Scholar] [CrossRef] [PubMed]
- Dan, J.; Zhang, X.; Ren, Z.; Wang, L.; Cao, S.; Shen, L.; Deng, J.; Zuo, Z.; Yu, S.; Wang, Y.; et al. Occurrence and multilocus genotyping of Giardia duodenalis from post-weaned dairy calves in Sichuan Province, China. PLoS ONE 2019, 14, e0224627. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Field, D.; Ryan, U. Molecular typing of Giardia duodenalis in humans in Queensland–first report of assemblage E. Parasitology 2017, 144, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moein, K.A.; Saeed, H. The Zoonotic potential of Giardia intestinalis assemblage E in rural settings. Parasitol. Res. 2016, 115, 3197–3202. [Google Scholar] [CrossRef] [PubMed]
- Fantinatti, M.; Bello, A.R.; Fernandes, O.; Da-Cruz, A.M. Identification of Giardia lamblia assemblage E in humans points to a new anthropozoonotic cycle. J. Infect. Dis. 2016, 214, 1256–1259. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, F.; Zhang, K.; Shi, K.; Chen, Y.; Li, J.; Li, X.; Zhang, L. End-point RPA-CRISPR/Cas12a-based detection of Enterocytozoon bieneusi nucleic acid: Rapid, sensitive and specific. BMC Vet. Res. 2024, 20, 540. [Google Scholar] [CrossRef] [PubMed]
- Nemati, S.; Sadeghi, A.; Khoshfetrat, S.M.; Rahimi, H.M.; Omidfar, K.; Mirjalali, H. Development and synthesis of DNA-based label-free electrochemical biosensor for detection of Enterocytozoon bieneusi using screen-printed gold electrode. BMC Chem. 2025, 19, 184. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Gong, B.; Liu, X.; Shen, Y.; Wu, Y.; Zhang, W.; Cao, J. A retrospective epidemiological analysis of human Cryptosporidium infection in China during the past three decades (1987–2018). PLoS Negl. Trop. Dis. 2020, 14, e0008146. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef] [PubMed]
Groups | Number of Cases | Cryptosporidium spp. | G. duodenalis | Combined Mono-Infections | ||||
---|---|---|---|---|---|---|---|---|
Positive [n (%)] | p-Value | Positive [n (%)] | p-Value | Positive [n (%)] | p-Value | |||
Age | 19–34 | 36 | 0 | 0.592 | 0 | 0.268 | 0 | 0.070 |
35–49 | 41 | 2 (4.88) | 3 (7.32) | 5 (12.20) | ||||
50–64 | 57 | 1 (1.75) | 2 (3.51) | 3 (5.26) | ||||
65–80 | 12 | 0 | 0 | 0 | ||||
Gender | Male | 135 | 2 (1.48) | 0.344 | 5 (3.70) | 1.000 | 6 (4.44) | 0.223 |
Female | 11 | 1 (9.09) | 0 | 1 (9.09) | ||||
Residential area | Urban | 57 | 0 | 0.294 | 0 | 0.144 | 0 | 0.016 |
Rural | 89 | 3 (3.37) | 5 (5.62) | 8 (8.99) | ||||
Receiving ART therapy | Yes | 49 | 0 | 0.293 | 3 (6.12) | 0.674 | 3 (6.12) | 0.697 |
No | 97 | 3 (3.09) | 2 (2.06) | 5 (5.15) |
Species (Accession No.) | Subtype (Accession No.) | Representative Sequences with 100% Identity in gp60 Analysis 1 | ||
---|---|---|---|---|
Host | Area | Accession No. | ||
C. hominis (PV664588) | IfA12G1R5 (PV672204) | human | UK | EU161655 |
Southern Ireland | MT053131 | |||
Netherland | MH796380 | |||
Australia | GU933448 | |||
C. parvum (PV664589) | IIcA5G3 (PV672205) | human | South Africa 2 | AF440621 |
Jamaica 2 | EU141721 | |||
Mozambique 2 | AF440631 | |||
C. meleagridis (PV664587) | IIIbA22G1R1c (PV672203) | human | India | KJ210607 |
China | KY575457 | |||
chicken | China | MG969391 |
Target Gene | Assemblage (n) | Specimen Number | Accession No. | Sequences with 100% Identity 1 | |
---|---|---|---|---|---|
Host | Accession No. | ||||
bg | Assemblage B (3) | No. 1 | PV683349 | human | OP947121 |
No. 2 | PV683351 | human | LC436571 | ||
No. 3 | PV683348 | human | KP687755 | ||
hylobatidae | KY696833 | ||||
Assemblage E (1) | No. 4 | PV683347 | sheep | MN833266 | |
calf/cattle | KY769091 2 | ||||
horse | MN174850 | ||||
tpi | Assemblage A (1) | No. 5 | PV700082 | human | OR453274 |
cattle | OL694043 | ||||
yak | MH230890 | ||||
sheep | MN833280 | ||||
Assemblage B (2) | No. 1 | PV672206 | human | LN626348 | |
No. 2 | PV672207 | ||||
gdh | Assemblage B (2) | No. 1 | PV672208 | human | EF507682 |
No. 2 | PV672209 | hylobatidae | KY696799 | ||
rabbit | KC960645 |
Clinical Manifestation | Categories | Number of Cases | Cryptosporidium spp. | G. duodenalis | Combined Mono-Infections | |||
---|---|---|---|---|---|---|---|---|
Positive [n (%)] | p-Value | Positive [n (%)] | p-Value | Positive [n (%)] | p-Value | |||
CD4+ T cell count | <100 | 109 | 3 (2.75) | 0.552 | 3 (2.75) | 0.645 | 6 (5.50) | 0.433 |
101–200 | 37 | 0 | 2 (5.41) | 2 (5.41) | ||||
Diarrhea 2 | Yes | 27 | 3 (11.11) | 0.005 | 1 (3.70) | 0.34 | 4 (14.81) | 0.046 |
No | 119 | 0 | 4 (3.36) | 4 (3.36) | ||||
Vomiting | Yes | 8 | 0 | 1.000 | 0 | 1.000 | 0 | 0.359 |
No | 138 | 3 (2.17) | 5 (3.62) | 8 (5.80) | ||||
Decreased appetite | Yes | 21 | 1 (4.76) | 0.478 | 0 | 0.326 | 1 (4.76) | 0.438 |
No | 125 | 2 (1.60) | 5 (4.00) | 7 (5.60) | ||||
Abdominal pain | Yes | 9 | 0 | 1.00 | 1 (11.1) | 0.340 | 1 (11.1) | 0.435 |
No | 137 | 3 (2.19) | 4 (2.92) | 7 (5.11) | ||||
Fever | Yes | 25 | 1 (4.00) | 0.513 | 0 | 0.319 | 1 (4.00) | 0.435 |
No | 121 | 2 (1.65) | 5 (4.13) | 7 (5.79) | ||||
Fatigue | Yes | 43 | 0 | 0.293 | 3 (6.98) | 0.088 | 3 (6.98) | 0.418 |
No | 103 | 3 (2.91) | 2 (1.94) | 5 (4.85) |
Season (Months) | Number of Specimens | Cryptosporidium spp. | Giardia duodenalis | Total Number of Test-Positive | |||
---|---|---|---|---|---|---|---|
Positive [n (%)] | p-Value | Positive [n (%)] | p-Value | Positive [n (%)] | p-Value | ||
Winter (Dec–Feb) | 53 | 1 (1.89) | 0.394 | 2(3.77) | 0.221 | 3 (5.67) | 0.102 |
Spring (Mar–May) | 32 | 2 (6.25) | 3 (9.38) | 5 (15.63) | |||
Summer (Jun–Aug) | 36 | 0 | 0 | 0 | |||
Autumn (Sep–Nov) | 29 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, Z.; Hong, K.; Qin, P.; Liu, H.; Wang, C.; Yin, J.; Li, X.; Zhu, G.; Hu, M. Emergence of Cryptosporidium parvum IIc Subtype and Giardia duodenalis Assemblage E in AIDS Patients in Central China: Evidence for Neglected Transmission Dynamics. Microorganisms 2025, 13, 1731. https://doi.org/10.3390/microorganisms13081731
Tao Z, Hong K, Qin P, Liu H, Wang C, Yin J, Li X, Zhu G, Hu M. Emergence of Cryptosporidium parvum IIc Subtype and Giardia duodenalis Assemblage E in AIDS Patients in Central China: Evidence for Neglected Transmission Dynamics. Microorganisms. 2025; 13(8):1731. https://doi.org/10.3390/microorganisms13081731
Chicago/Turabian StyleTao, Zhuolin, Ke Hong, Peixi Qin, Hui Liu, Chunqun Wang, Jigang Yin, Xin Li, Guan Zhu, and Min Hu. 2025. "Emergence of Cryptosporidium parvum IIc Subtype and Giardia duodenalis Assemblage E in AIDS Patients in Central China: Evidence for Neglected Transmission Dynamics" Microorganisms 13, no. 8: 1731. https://doi.org/10.3390/microorganisms13081731
APA StyleTao, Z., Hong, K., Qin, P., Liu, H., Wang, C., Yin, J., Li, X., Zhu, G., & Hu, M. (2025). Emergence of Cryptosporidium parvum IIc Subtype and Giardia duodenalis Assemblage E in AIDS Patients in Central China: Evidence for Neglected Transmission Dynamics. Microorganisms, 13(8), 1731. https://doi.org/10.3390/microorganisms13081731